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Abstract

The Z-value is an attempt to estimate the statistical signi®cance of a Smith±Waterman dynamic alignment score
(SW-score) through the use of a Monte±Carlo process. It partly reduces the bias induced by the composition and

length of the sequences.
This paper is not a theoretical study on the distribution of SW-scores and Z-values. Rather, it presents a

statistical analysis of Z-values on large datasets of protein sequences, leading to a law of probability that the
experimental Z-values follow.

First, we determine the relationships between the computed Z-value, an estimation of its variance and the number
of randomizations in the Monte±Carlo process. Then, we illustrate that Z-values are less correlated to sequence
lengths than SW-scores.

Then we show that pairwise alignments, performed on `quasi-real' sequences (i.e., randomly shu�ed sequences of
the same length and amino acid composition as the real ones) lead to Z-value distributions that statistically ®t the
extreme value distribution, more precisely the Gumbel distribution (global EVD, Extreme Value Distribution).

However, for real protein sequences, we observe an over-representation of high Z-values.
We determine ®rst a cuto� value which separates these overestimated Z-values from those which follow the global

EVD. We then show that the interesting part of the tail of distribution of Z-values can be approximated by another

EVD (i.e., an EVD which di�ers from the global EVD) or by a Pareto law.
This has been con®rmed for all proteins analysed so far, whether extracted from individual genomes, or from the

ensemble of ®ve complete microbial genomes comprising altogether 16956 protein sequences. # 1999 Elsevier
Science Ltd. All rights reserved.
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1. Introduction

This article introduces a method for building intra-

and inter-genomic families of proteins from several mi-

crobial genomes. The overall stategy, described in

Codani et al. (1999), is based on the Z-value, which is
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an attempt to estimate the statistical signi®cance of a

Smith±Waterman dynamic programming alignment
score (SW-score) through the use of a Monte±Carlo
process. We describe the methods used to adjust the

parameters of the Monte±Carlo process, and analyze
the Z-value distribution. The present analysis is di�er-
ent from the classical `sequence against library'

approach since our aim is to compare a ®nite set of
sequences (i.e., a complete genome) against itself or

against another ®nite set of sequences (another com-
plete genome or several complete genomes) in all poss-
ible pairwise combinations. Indeed, since the Z-values

follow a known distribution (vide infra ), we have been
able to perform systematic inter- and intra-genomic
comparisons of protein sequences by the Smith±

Waterman algorithm, followed by single-linkage clus-
terings based on the probabilities associated with the

Z-values (see the paper by Aude et al. in this issue;
Codani et al., 1999; Diaz-Lazcoz et al., 1998;
Slonimski et al., 1998).

Using Z-values rather than Smith±Waterman scores
obviously leads to di�erent results. In (Codani et al.,

1999), we illustrate the quantitative di�erences
observed between scores and Z-values at a whole gen-
ome comparison level, and demonstrate the non-corre-

lation between scores and Z-values in the `twilight
zone', i.e., the range of scores in between high scores
(sequences are obviously related) and low scores

(sequences are obviously non related). The relevance of
a pairwise alignment method relies precisely in its abil-

ity to provide a reliable criterion concerning the simi-
larity between sequences in the twilight zone.
This article is organized in two sections. The ®rst

section de®nes the Z-value. In the ®rst subsection, we
determine the relationship between the computed Z-
value, an estimation of its variance and the number of

randomizations in the Monte±Carlo process. The sec-
ond subsection underlines the asymmetric bias, leading

to a new de®nition of the Z-value. The third subsec-
tion deals with the in¯uence of the sequence lengths
and shows that the Z-values are less dependent on the

sequence lengths than the Smith±Waterman scores.
The second section focuses on a statistical analysis

of the distribution of Z-values for real proteins, and
for sequences of the same length and amino acid com-
position generated by random shu�ing of real

sequences (which we shall call henceforth `quasi-real'
sequences). For quasi-real sequences, Extreme Value
Distribution (EVD) estimated on the whole set of align-

ments (global EVD) ®ts well the experimental distri-
bution of Z-values. In contrast, for real proteins, we

observe an over-representation of high Z-values as
compared to the global EVD model. We determine
®rst a cuto� value which separates these overestimated

Z-values from those which follow the global EVD. We
then show that the `interesting part' of the tail of dis-

tribution of Z-values can be approximated by another
EVD (i.e., an EVD which di�ers from the global

EVD) or by a Pareto law.

2. Z-value

2.1. De®nitions

The ®rst adaptation of dynamic programming for

sequence alignments was due to Needleman and
Wunsch (1970) who proposed an e�cient algorithm to
determine the best gapped global alignment between
two sequences. The method was later extended to local

alignments by Smith and Waterman (1981).
Subsequent improvements and extensions were made
by Waterman and Eggert (1987) and Miller and

Huang (1991). Any alignment of two protein sequences
by these algorithms results in a so-called optimal align-
ment score. Nevertheless, the optimality of the score

does not ascertain that the two sequences are indeed
related. Numerous reports focus on the expression of a
probability that the score could be obtained by chance.
For non-gapped alignements, such as those reported

by Blast (Altschul et al., 1990), a theoretical model
exists. This model does not apply for gapped align-
ments. One can refer to Mott (1992), where a method

is described for estimating the distribution of scores
obtained from a databank search using the Smith±
Waterman algorithm, that takes into account the

length and composition of the sequences in the distri-
bution function. An interesting approach by
Waterman and Vingron (1994) gives an estimation of

the signi®cance of the score of a gapped alignment.
The authors use the Poisson clumping heuristic to
describe the behavior of scores: as a result, the prob-
ability for a score to be lower than or equal to t is ap-

proximately exp(-gmnp t), where m, n are the sequence
lengths, and g and p are parameters estimated from
the data.

A complementary approach is to use the Z-value.
The Z-value relies on a Monte±Carlo evaluation of the
signi®cance of the Smith±Waterman score (Lipman et

al., 1984; LandeÁ s et al., 1992; Slonimski and Brouillet,
1993). The method consists in comparing one of the
two sequences with as many as possible randomly
shu�ed versions of the second one (Lipman et al.,

1984). The shu�ed sequences share exactly with the in-
itial sequence the same amino acid composition and
length. This simulation eliminates in most cases the

bias due to the amino acid composition, and partly to
the length. It was used, for example in the RDF pro-
gram (Lipman and Pearson, 1985) and later in other

programs such as Best®t (Devereux, 1989).
Given two sequences A and B, and the Smith±

Waterman score S(A, B ), the method consists in per-
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forming N comparisons between the ®rst sequence A
and N shu�ed sequences from B, which yields the

empirical mean score mÄ and the empirical standard de-
viation s. The Z-value Z is then de®ned as:

Z�A,B� � S�A,B� ÿ ~m

~s
: �1�

For this shu�ing process, the `ideal' number N of
shu�ed sequences is so large that the computation of

the mean and standard deviation over all the possible
shu�ed sequences is not practically feasible. Moreover,
the Z-value can depend on the choice of the shu�ed
sequence (A or B ).

2.2. Materials and methods

All the sequences used in this study were obtained
by anonymous ftp from the sites that maintain their
respective genomic sequences databanks (a list of such

sites can be obtained from, e.g., http://www.tigr.org/
links).
The program LASSAP (GleÂ met and Codani, 1997)

was used throughout to perform the Smith±Waterman

protein sequences comparisons and to post-process
their outputs. We consistently used the Dayho�
PAM250 matrix (Schwartz and Dayho�, 1979) where

all the elements had been divided by 3.3 with a gap
open penalty go = 5 and a gap extension penalty ge
= 0.3. Admittedly, the gap open value is rather high

(corresponding to 16.5 with the original PAM250
matrix) and, with poorly related sequences, will lead to
rather short segments of similarity containing few

gaps. It is, however, our long-standing experience that
the more commonly used value go = 10 (as compared
to 16.5) is much too permissive and frequently leads to
false (longer) alignments. This can be easily checked,

for example, with proteins such as cysteinyl-tRNA
synthetase and leucyl- or isoleucyl-tRNA synthetases
that contain well-de®ned short segments of high simi-

larity, embedded in long runs of highly divergent
sequences. In addition, as stated above, our aim was
to build intra- and inter-genomic clusters of proteins,

and we wanted them to be robust, that is, containing
onlyÐas far as possibleÐtruly related sequences. Our
choice of local (Smith±Waterman) rather than global
(Needleman±Wunsch) alignments has the same origin.

Although Vogt et al. (1995) reported a slightly better
performance for the global alignments, it is our con-
stant experience that these are too often grossly erro-

neous when the overall similarity between sequences is
weak, and that the biologically signi®cant short seg-
ments of higher similarity are frequently missed.

Finally, the use of modern similarity matrices such as
the Gonnet matrix (Gonnet et al., 1992) or the
BLOSUM series (Heniko� and Heniko�, 1992) has

been reported to provide improved sensitivity in data-
bank searches and produce more accurate alignments

(Pearson, 1995; Vogt et al., 1995; Abagyan and
Balatov, 1997). In the present case, however, the use of
a high gap creation penalty makes it most probable

that the choice of a particular matrix is not that im-
portant, as subsequently con®rmed by the fact that the
PAM250 and BLOSUM62 matrices produce similar

results (see below).

2.2.1. Datasets

The present study made use of protein sequences
from several genomes: Escherichia coli (4286
sequences), Methanococcus jannaschii (1735 sequences),

Haemophilus in¯uenzae (1680 sequences), Synechocystis
sp. (3168 sequences) and Saccharomyces cerevisiae
(6087 sequences). The Monte±Carlo process parametri-

zation study has been performed using three sets from
the Saccharomyces cerevisiae (Yeast) genome, as fol-
lows:

2.2.1.1. Real set. This set consisted of 1000 sequences
extracted at random from Yeast. We performed all the
possible pairwise alignments within this set, except the

comparisons of the proteins against themselves. Since
the Smith and Waterman algorithm is symmetrical,
this resulted in 499,500 alignment scores. Then we cal-

culated the Z-values for each pairwise alignment. As it
is not known whether the Z-value has the same prop-
erty of symmetry as the SW scores, each Z-value was
calculated twice, ®rst by shu�ing 100 times one of the

sequences in the pair and then by shu�ing 100 times
the other sequence.

2.2.1.2. Quasi-real set. The second set was composed
of shu�ed versions of the sequences from the real set.
We performed the same comparisons as in the case of

the real set and obtained two sets of SW-scores and Z-
values.

2.2.1.3. High scores set. From all the pairwise Smith
and Waterman alignments of the proteins from the
yeast genome, we randomly retained 3000 of those
pairs whose score S could potentially induce a signi®-

cant Z-value (threshold arbitrarily set to S > 30).
For each of these alignments, we calculated the Z-

values for 20, 50, 100, 200 and 500 randomizations.

These di�erent sets allowed to study the behavior of
the Z-value as a function of the number of randomiz-
ations involved. We also calculated two independant

Z-values obtained from 2000 and 5000 randomizations,
respectively.

2.3. Monte±Carlo process parametrization

Since we use a Monte±Carlo process to estimate the
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Fig. 1. Variation of ~s �ZN�hi �� with ZN: N 2 f20,100,500g. The straight lines are the linear regressions between Z and the estimated

standard deviation of Z�s�Z ��. For each N, and for each hi (set of 3000 alignments), the reference Z-value has been computed with

2000 randomizations (A) and 5000 randomizations (B). For all these regressions the correlation coe�cient is at least 0.98.
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Z-value, we introduce a deviation in our estimations
around the exact Z-value calculated from all the poss-
ible sequence permutations (i.e., if we repeat the com-
putation of a Z-value, we observe di�erent values for

each trial). Since computation time increases with N,
our goal is to ®nd a reasonable value of N that mini-
mizes computation time while leading to Z-values with

an acceptable variance (while N increases, the variance
of Z decreases).
In order to evaluate the behavior of the variance, we

chose 1000 real sequences among all those from the
yeast genome, and computed all the SW-scores
between all pairs of sequences and all the Z-values

with di�erent numbers of permutations. For the pair
of sequences hi � �h1i ,h2i � we computed the SW-score
S�hi � � S�h1i ,h2i �, and several Z-values ZN�hi � where N
was the number of permutations.

Since we cannot compute the exact Z-value, we shall
only consider an empirical variance ~s 2

observed de®ned for
each alignment as:

~s 2
observed�ZN�hi �� � 1

100

X100
j�1

�
Z j

N

ÿ
h1i ,h

2
i

�ÿ ~Z
ÿ
h1i ,h

2
i

��2
for hi � �h1i ,h2i � 2 H and N � f20,50,100,200,500g.

~Z �h1i ,h2i � is the reference Z-value using 2000 and 5000
randomizations. As shown in Fig. 1, we observe a
strong linear relation between ~s �ZN�hi �� and ~Z �hi �.
For each of the ®ve values of N (20, ..., 500), the linear

regressions have correlation coe�cients greater than
0.99. This computation strengthens the notion that the
Monte±Carlo process is justi®ed.

The standard deviation of the Z-value can therefore
be estimated by a linear regression for each value of
N. We approximate ~s �ZN�hi �� by

~s estimated�ZN�hi ��1aN � ~Z
ÿ
h1i ,h

2
i

� �2�

This new expression of the estimated standard devi-
ation is not very useful since there is a strong relation
between the coe�cients aN and N (see Fig. 1). By test-
ing di�erent regression schemes we chose a power

dependence between aN and N (see Fig. 2). We can
express aN as a function of N:

aN � A �NB

where A � 1:26 and B � ÿ0:53.
To test the validity of our ®nal model, we calculated

the correlation between the observed standard devi-
ation of Z and the estimated standard deviation calcu-

Fig. 2. Power Model: Determination of the coe�cients of a global model of the estimated standard deviation of Z-scores. This

®gure presents the regressions over coe�cients aN (see Eq. 2) involved in the estimated standard deviation ~s �ZN�hi �� for the ®ve

values N � 20,50,100,200 and 500.

J.P. Comet et al. / Computers & Chemistry 23 (1999) 317±331 321



lated according to Eq. (2). We also denote delta the de-

viation of the observed standard deviation from our

model de®ned as the mean of the absolute di�erence

between ~s estimated and ~s observed. The results are summar-

ized in Table 1.

This model was tested on the 1692 alignments with

Smith and Waterman score greater than 30, obtained

from the exhaustive comparisons of 578 sequences ran-

domly extracted from Methanococcus jannaschii. These

Z-values have been computed using N � 30, 100 and

300 randomizations. For each value of N, the observed

standard deviation is calculated using 30 Z-values, and

an independent reference Z-value, ZÄ , computed with

2000 randomized sequences. We calculated the corre-

lation coe�cient (see Fig. 3A) and the delta index (see

Fig. 3B) de®ned as above, Table 2 summarizes all

these results.

Since, for a given value of Z, ~sN is a decreasing

function of N, formula (2) can be used to implement a

method which computes a Z-value with an optimal

number of shu�ed sequences N. Indeed, for a desired

variance ~s 2
d, we can iteratively compute ZN, by increas-

ing N, until ~s 2
N< ~s 2

d (or N > Nmax). Note that this

method can be re®ned since the expression (2) of the

estimated standard deviation of the Z-value allows us

to estimate the necessary number of shu�ed sequences

Nd, for a given variance ~s 2
d and a Z-value.

For a number of permutations equal to 100, the esti-

mated standard deviation is about 0.1. This is an
acceptable level leading to reasonable computing times.

Hereafter we shall therefore compute all the Z-values
with N � 100.

2.4. Asymmetry of the Z-value estimation

For the computation of a Z-value between two

sequences A and B according to formula (1), only one
of the two sequences is generally shu�ed. However,
shu�ing the ®rst sequence (Z(A, B )) can lead to Z-

values that are markedly di�erent from those obtained
by shu�ing the second (Z(B, A )). This is illustrated in
Fig. 4. In this example, one of the sequences
(YBR086C) has a normal amino acid composition

while the second (YKR092C) is exceptionally rich in
serine (48%). As a consequence, shu�ing the
sequences YBR086C and YKR092C leads to Z-values

of 11.5 and 2.7, respectively.
A systematic study of the di�erences between Z(A,

B ) and Z(B, A ), calculated on a great number of

sequence pairs from various genomes, indicated that
large di�erences are far from seldom. We therefore
used systematically a conservative approach, taking a

new formula for the Z-value:

Z 0�A,B� � min�Z�A,B�,Z�B,A�� �3�

This allowed to eliminate high Z-values resulting arti®-

cially from sequences of abnormal amino acid compo-
sition.
Note: hereafter we will always refer to this formu-

lation of the Z-value in our computations.

2.5. Length dependency

It is well known that the longer the sequences, the
higher the SW-scores (Waterman and Vingron, 1994).
As a consequence, two long sequences which are not

biologically related can have a higher score than two
short biologically-related sequences. Therefore, one
cannot set easily a cut-o� value in order to decide

whether an alignment is signi®cant or not.
Since the Z-value is essentially the number of stan-

dard deviations exceeding the mean of scores from
sequences with the same amino acid composition and

length, the Z-value decreases the bias due to the
sequence length. In Fig. 5 are depicted the relation-
ships between the lengths of the sequences and the

scores (SW-scores and Z-values), based on 1.5 millions
pairwise comparisons on the proteins from the M. jan-
naschii genome.

It shows clearly that the Z-values are much less
dependent on the lengths of the sequences than are the
SW-scores.

Table 1

Veri®cation of the model for the variance of Z-values (data

from 3000 yeast sequences)a

N 20 50 100 200 500 Global

Correlation 0.993 0.992 0.995 0.995 0.992 0.993

delta 0.600 0.310 0.190 0.130 0.100 0.266

a Correlation and delta value between the observed standard

deviation of Z and the estimated standard deviation calculated

according to Eq. (2). N is the number of sequences shu�ings.

Table 2

Veri®cation of the model for the variance of Z-values (data

from 578 Methanococcus Jannoschii sequences)a

N 30 100 300 Global

Correlation 0.973 0.981 0.980 0.976

delta 0.420 0.230 0.120 0.257

a Correlation and delta value between the observed standard

deviation of Z and the estimated standard deviation calculated

according to Eq. (2). N is the number of sequences shu�ings.
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3. Statistical analysis of the distribution of Z-values

The aim of this study is to ®nd a law of probability
that the experimental Z-values will follow. The idea is
that if we can compute a probability, then we can infer

a dissimilarity index between two sequences. In such a
case, we can build families of related sequences, and
apply classi®cation algorithms on each of them.

A preliminary study indicated that the scores and
the Z-values seem to follow the extreme value distri-
bution (type I ), more precisely the Gumbel distri-

bution, one of the three possible distributions of
extreme values (Johnson and Kotz, 1970; Gumbel,
1958). This has to be correlated with studies by Karlin,
Altschul and coworkers (Karlin and Altschul, 1990;

Karlin et al., 1990; Altschul et al., 1990), which have
shown that the distribution of BLAST scores for
sequences of independent identically distributed letters

follows the Extreme Value Distribution (EVD, type I ).
Brie¯y, for two random sequences A � a1a2, . . . ,an and
B � b1b2, . . . ,bm, given the distribution of individual

residues, and given a scoring matrix, the probability of
®nding an ungapped segment pair with a score greater
than or equal to s is:

P�Xrs� � 1ÿ exp� ÿ K �m � n � eÿls �

where l and K can be calculated from the scoring
matrix and sequence compositions.

In order to determine whether the Z-values follow
the same law, we have to ®nd two parameters, the
characteristic value y and the decay value x, such as:

P�Zrz� � 1ÿ exp
ÿ
ÿ eÿ�zÿx�=y

�
where z is the observed Z-value.
For y and x two estimators exist:

. Estimators based on sample moments (~y and ~x ): Let
m and s be the empirical mean and standard devi-

ation of the sample. These estimators are simply
obtained from the following formulas (Johnson and
Kotz, 1970):

~y �
� ���

6
p

p

�
s

~x � mÿ g ~y

where g is the Euler's constant: g � 0:5772.
. Maximum Likelihood Estimators (~y and ~x ): y is the

solution of the following equation (Johnson and
Kotz, 1970):

ŷÿ m�
"Xn

j�1
Xje
ÿXj=ŷ

#
�
"Xn

j�1
eÿXj=ŷ

#ÿ1
� 0: �4�

x̂ � mÿ g ŷ �5�

ŷ and x̂ are biased estimators of y and x, respectively
(Johnson and Kotz, 1970), but better than the
sample moments estimators. For calculating these
estimators, we initialize the maximum likelihood

estimator y with the value of the estimator based on
sample moments y, and we use a Newton±Raphson
procedure to ®nd the root of Eq. (4). Then x can be
calculated.

The two parameters y and x, have been estimated
with the Maximum Likelihood Estimators (Johnson

and Kotz, 1970), using large datasets of real sequences
extracted from the yeast genome (Real set: 499500 Z-
values) and quasi-real ones (quasi-real set: 499500 Z-

values). We then performed w2 and Kolmogorov±
Smirnov tests on both the distributions of SW-scores
and Z-values as well as on many subsets of SW-scores.
In the case of SW-scores, the hypothesis of ®tting the

extreme value distribution was consistently rejected,
due to the length dependancy of the Smith±Waterman
scores.

The behavior of the Z-values is di�erent and we
observed that:

. in the case of `quasi-real' sequences, the EVD model
is a good estimation of the observed distribution
(Fig. 6A).

. in contrast, for real protein sequences, the EVD
model is not satisfactory for high Z-values, in which
case there are about 1 out of 1000 over-represented
Z-values (Fig. 6B). This over-representation of high

Z-values can lead to wrong values of their signi®-
cance (i.e., the probability P�Zrz0� that one could
obtain a Z-value greater than or equal to a value

z0).

3.1. Cuto� values

The Z-value distribution curve for real sequences

diverges from the curve for `quasi-real' Z-values
beyond a certain Z-value c. This means that Z-values
above c are not obtained by chance. This value, c, will

be called the cuto� value. It is shown in Fig. 7 that we
can adopt the value 8.0 as a conservative estimation of
the cuto�.

This purely formal conclusion has an obvious bio-
logical interpretation. Real protein sequences result
from evolution where gene duplications, mutations,
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(Caption opposite).
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fusions and recombinations take place continuously as

major forces conserving sequence similarities and gen-

erating sequence diversities. It should be kept in mind

that the real protein sequences, those that do exist

actually, and those that did exist during life's history,

represent an in®nitely small fraction of all the possible

random permutations of an average length of 300 with

20 di�erent amino acids (20300). The real protein space

is a microcosm within the macrocosm of quasi-real

sequence space.

Figs. 6 and 7 also show that the EVD model is ade-

quate for Z-values within the twilight zone (5<Z<8).

It may be noted that, although the twilight zone rep-

resents a small fraction of all the pairwise alignments,

the fraction of proteins involved in it may be quite

large. For example, the all vs. all comparisons of the

1735 sequences from the M. jannaschii genome pro-

duced 1504245 pairs. Among them, 1500153 pairs had

a Z-value lower than 5 and 1295 pairs a Z-value

greater than 8. Thus, only 2797 pairs (0.18%) fell

within the twilight zone. However, 1583 sequences (as

much as 91% of the 1735 genomic sequences) were

involved in those pairs.

Fig. 3. Experimental and calculated variance of the Z-values. (A) From a set of 578 sequences extracted from M. jannaschii, all the

pairwise Z-values were calculated 30 times using N � 30,100 and 300 sequence shu�ings. For each sequence pair and for each

value of N, the `observed' standard deviation of Z was obtained from these 30 values and are reported in the ®gure (squares,

crosses and circles for N � 30,100 and 300, respectively). The solid lines represent the linear regressions over the experimental

points. Using Eq. 2, we then obtained directly the `estimated' standard deviation for each point in the set N � 100 using the refer-

ence Z-value from the yeast training set. The `estimated' standard deviations in the set N � 30 (respectively N � 300) were obtained

by interpolation from the values calculated with N � 20 and N � 50 (respectively N � 200 and N � 500), using the same reference

Z-values as above. The dotted lines represent the linear regressions over the estimated values. The close correspondence between

the observed and estimated regression lines indicate that the model given by Eq. 2 is adequate. (B) Variation of the mean di�erence

between the observed and the estimated variance of Z for all Z-values between zero and Z, as a function of Z. Data are obtained

from 1000 sequences from Yeast (dotted lines) and 578 sequences from M. jannaschii (solid lines). One observes only a slight vari-

ation of the di�erences as Z increases, which indicates that the model (Eq. (2)) is practically independent of Z.

Fig. 4. Distributions of Smith±Waterman scores between YEAST_YBR086C and YEAST_YKR092C upon shu�ing one of the

two sequences. The initial score is 383 (matrix PAM250, gapo = 16.5, gape = 1). Shu�ing YEAST_YKR092C leads to a Z-value

Z1 � 2:70, shu�ing YEAST_YBR086C leads to a Z-value Z2 � 11:52. In both cases 10,000 shu�ing processes have been per-

formed.
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3.2. Law of high Z-values distribution

As explained before, one aim of this work was to

®nd whether the Z-values follow a known probability
distribution and, if so, to build families of related

sequences by a single linkage algorithm. In most cases,
it will be desirable to build `robust' families, that is, to

use a threshold Z-value beyond the twilight zone.
Hence, we now try to estimate the law of the Z-values

distribution for Z-values greater than 8.
For most of the very high Z-values, the sequences

involved are strongly related (e.g., more than 80% of
identities on their whole lengths). From a statistical

point of view, these values represent the tail of the Z-
values distribution. If one wants to estimate a law of

distribution for (or from) these values, it must be kept
in mind that this sample is biased, and therefore, esti-

mating methods must be used carefully.

In our case, we considered the Z-values in the range
[8, 50]. First, in the same way as (Waterman and

Vingron, 1994), we used the probability integral trans-
form in order to estimate the x and y parameters of an

EVD ®tting these Z-values. The results are satisfactory

(see Table 3). In a second run, we used linear re-
gression techniques for ®tting the distribution curve in
the range [8, 50]. In that case, the retained model is

the Pareto law (Zajdenweber, 1996). The density func-
tion of the Pareto law is

f�z� � A � zÿ�1�a� if zr8:0

f�z� � 0 otherwise

with ar0

The coe�cient A is just a normalisation coe�cient and
is not informative. a is called the Pareto index.

Table 2 displays the estimated parameters when
using a Gumbel model and a Pareto model, for ®ve
complete microbial genomes, as well as the genomes

taken all together. One can observe that for both
models, the estimated parameters are independent of
the genome size and of the similarity matrix used in

Fig. 5. Length dependency. In¯uence of the lengths of the sequences on the SW-scores and the Z-values. All the possible pairwise

alignments were performed on all the protein sequences from Methanococcus jannaschii. All the SW-scores and Z-values were calcu-

lated and classi®ed by intervals of the smallest sequence length in each pair. Within each interval of size 20, we calculated the mean

and the standard deviation of the SW-scores and Z-values, which are reported in the ®gure. It is clear that the SW-scores increase

together with the lengths of the sequences and have a high variance. In contrast, the Z-values are practically independent of the

sequence lengths.
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Fig. 6. Distribution of Z-values: (A) empirical distribution (rectangles) and Gumbel model (solide line) for quasi-real sequences.

(Insert) the Gumbel model ®ts the experimental distribution for high Z-values. (B) empirical and Gumbel model for real sequences.

(Insert) the Gumbel model (thick line) does not ®t the experimental distribution (thin line) for high Z-values.
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Fig. 7. Cuto� value: Estimation of the cuto� value for splitting the EVD-like Z-values from high Z-values. Let X0B (N,pc) be a

binomial variable, where N is the number of observed Z-values and pc the probability that the EVD variable Z is greater or equal

to c. X is the expected number of Z-values greater or equal to c. This ®gure shows the variation of the probability P�X > Nc
obs� as

a function of c, where Nc
obs is the observed number of Z-values greater than c. The observed distribution for real protein sequences

diverges from the EVD for c > 5.0 and the probability becomes practically zero at 8.0. This study has been carried out for both

the Haemophilus and Methanococcus genomes and the results are basically the same. Solid line: real set; Dotted-line: quasi-real set

(see Section 2.2).

Table 3

Parameters of the curves ®tting the tail of the Z-value distributiona

Number of pairwise comparisons Pareto a w2 EVD w2

x y

Subset of S. cerevisiñ 499500 1.20 28.66 ÿ122.687 19.938 27.83

S. cerevisiñ 18,522,741 0.90 17.66 ÿ162.46 23.8 30.00

Escherichia coli 9,182,755 1.26 18.33 ÿ119.889 18.501 15.33

Haemophilus in¯uenzae

PAM250, go=5, ge=0.3 1,410,360 1.63 25.66 ÿ93.436 14.448 12.66

BLOSUM62, go=10, ge=0.6 1,410,360 1.66 44.66 ÿ90.571 14.392 13.00

Methanococcus jannaschii 1,504,245 1.66 23.33 ÿ127.938 18.682 30.33

Synechocystis 5,016,528 1.05 17.66 ÿ135.259 21.498 20.33

all vs. all 143,744,490 1.16 11.00 ÿ136.921 19.085 23.66

a This table shows that both the Pareto and Gumbel laws are good models for high Z-values, whatever the size of the genome.

All the indices have been computed using the PAM250 matrix divided by 3.3, gap open = 5, gap extend = 0.3. The Haemophilus

in¯uenzae genome has been recomputed using the BLOSUM62 matrix, gap open = 10, gap extend = 0.6. Based on the relative

entropies of the PAM250 and BLOSUM62 matrices (Heniko� and Heniko�, 1992) the two gap open values are equivalent.
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the alignments. In Fig. 8 the experimental distribution
of the Z-values together with the Pareto curve are dis-

played. An interesting feature can be noticed in this
®gure, namely the distribution curves for E. coli and S.
cerevisiae crosses at about Z � 30 where the yeast dis-

tribution jumps over that of E. coli. This suggests that
the yeast clusters are more robust or, in other words,
that the proportion of highly similar paralogous

sequences is greater in yeast than in E. coli. This is
indeed what is observed, as shown in Fig. 9. For a
threshold Z-value of 100, the proportion of sequences
that are still grouped into clusters is 9 and 18% for E.

coli and yeast, respectively. We have no clear expla-
nation at the moment for this observation and further
work is clearly needed.

4. Discussion

The results presented here show that Z-values can

be used to estimate probabilities for gapped alignments
of real protein sequences.
Once a probability has been calculated for a pairwise

alignment, one can induce a dissimilarity index
between two sequences. It is therefore possible to build
clusters of related sequences with di�erent probability

thresholds, and apply classi®cation algorithms on each

of them. That is, the sequences can be grouped in `con-

nective clusters' by a transitive closure algorithm such

that in any given connective cluster, any sequence

shares a Z-value greater than a given threshold (or

shares a probability lower than a given threshold) with

at least another sequence in the same cluster. Indeed, it

has been shown recently (Gerstein, 1998; Park et al.,

1997) that the sensitivity of sequence comparisons is

improved by transitive sequence matching techniques

as compared with more classical direct matching

methods (see also Tatusov et al., 1997; Codani et al.,

1999). Using LASSAP (GleÂ met and Codani, 1997), the

computation as well as the analysis of large sets of

sequence data can be performed e�ciently. Therefore,

complete intra- and inter-genome comparisons and

classi®cations can be carried out as soon as genomes

are sequenced which can lead to intriguing and chal-

lenging biological implications (Slonimski et al., 1998).

While it is beyond the scope of this paper to give

detailed results on genomic sequence comparisons, it

may be of interest to provide some observations about

the clusters that have been built by the Z-value

method. One often asked question is `are there many

false positives or false negatives'? As far as we can see,

the answer is `no'. For example, the study of aminoa-

Fig. 8. Density of Z-values: For the ®ve genomes studied here, the Z-value density has a non-negligible tail that di�ers from the

Gumbel distribution. The observed distributions of two genomes (E. coli and S. cerevisiñ ) are shown here, as well as the observed

distribution of the ®ve genomes taken all together (All vs. All curve). These distributions are similar and can be ®tted by a Pareto

law. The Pareto index a is taken as the mean of estimates for ®ve genomes (see Table 2). One can see again that the EVD strongly

deviates from the experimentally observed one.

J.P. Comet et al. / Computers & Chemistry 23 (1999) 317±331 329



cyl-tRNA synthetases (aaRS) can be considered a test

case since these proteins are well known for being
extremely diverse, yet sharing some well de®ned
characteristics. Here we can compare our results (Diaz-

Lazcoz et al., 1998; Aude et al., this series) with those
of Tatusov et al. (1997) see also http://ncbi.nlm.nih.-
gov/COG. These authors built clusters (called COGs)
on the basis of pairwise Blast scores (as opposed to

SW Z-values). The results for aaRS are rather di�er-
ent: (i) Tatusov et al. obtained 21 di�erent COGs
while we got only 10 clusters; (ii) ®ve of our clusters

grouped synthetases with di�erent speci®cities, that is,
(Cys, Ile, Leu, Met, Val), (Gly, His, Ser, Pro, Thr),
(Asn, Asp, Lys), (Trp, Tyr) and (Gln, Glu) while only

two COGs are composite: (Asn, Asp, Lys) and (Gln,
Glu); (iii) the PheRS alpha and beta chains are
grouped into one single cluster together with the
monomeric yeast mitochondrial PheRS while the last

protein belong to the PheRS alpha COG, the PheRS
beta chains making another COG; (iv) all the Asn-,
Asp- and LysRS are grouped into one single cluster

while the AspRS are split into two di�erent COGs.
These di�erences most probably arise from the fact
that the sets of proteins were di�erent in the two stu-

dies (we used much more aaRS sequences, hence we
bene®ted from more pairwise links). It is also probable
that the Blast score threshold used by Tatusov et al. is

more stringent than our Z-value threshold that was set

to 14. In any case, the clusters built by Diaz-Lazcoz et
al. from 465 aminoacyl-tRNA sequences do not show
any false positive. In addition, all the groupings of het-

erologous aaRS in one cluster (such as Cys, Ile, Leu,
Met, Val) are totally consistent with our current bio-
chemical knowledge of these proteins.
Another clustering procedure has been used by

Teichmann et al. (see http://www.mrc-lmb.cam.a-
c.uk:80/genomes/MG_fams.html). Here the clusters
resulting from various inter- and intra-genomic com-

parisons were built on the basis of pairwise Smith±
Waterman E-values. Then a thorough study of mul-
tiple domains or duplication modules was undertaken

(Park and Teichmann, 1998), leading to the creation of
new clusters containing only related duplication mod-
ules. This procedure is obviously e�cient and sensitive
since, in the case of M. genitalium aminoacyl- tRNA

synthetases, all the class I aaRS were grouped together
into one single cluster through their catalytic domain.
We think, however, that splitting sequences into di�er-

ent clusters according to their modular nature may
lead to a loss of information. For example, such a pro-
cedure would fail to show immediately that the mono-

meric yeast phenylalanyl-tRNA synthetase is a
composite of the alpha- and beta-chains of the stan-
dard dimeric PheRS (Diaz-Lazcoz et al., 1998).

Fig. 9. Proportion of sequences (total number of sequences in clusters divided by the total number of coding sequences in the gen-

ome) that are included into clusters in Yeast and E. coli as a function of the threshold Z-value. The proportion of highly similar

paralogous sequences in Yeast is clearly greater than in E. coli.
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