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Abstract

The Z-value is an attempt to estimate the statistical significance of a Smith and Waterman dynamic programming
alignment score (H-score) through the use of a Monte-Carlo procedure. In this paper, we give an approximation for
the Z-value law deduced from the Poisson clumping heuristic developed by Waterman and Vingron (Stat. Sci. 9
(1994) 367) in the case of independent and identically distributed sequences comparison. As for non-gapped alignment
scores, our approximation is of Gumbel type but with parameters that are sequence independent. This result makes
clear the related experimental results mentioned by Comet et al. (Comput. Chem. 23 (1999) 317). Using ‘quasi-real’
sequences (i.e. randomly shuffled sequences of the same length and amino acid composition as the real ones) we
investigate the relevance of our approximation result. Since the Monte-Carlo approach we use generates a bias for the
Gumbel decay parameter estimation, a correction procedure is proposed. Applications to real sequences are
considered and we show how our results can be used to detect the potential biological relationships between real
sequences. © 2001 Elsevier Science Ltd. All rights reserved.
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and Waterman algorithm finds the best local gapped
alignments between two sequences, leading to an align-
ment score that can be used as a basis for determining
a possible homology. The statistical significance of such
a score, however, is a crucial problem. In this respect,
two ways of research have been explored in the last
years and may be briefly summarized as follows: the
first one is based on known results concerning non-
gapped alignments (Altschul et al., 1990), looking for
possible extensions that mimic these results (Waterman
and Vingron, 1994) or exhibiting relevant score approx-
imation whose properties are related to the ungapped
case (Mott and Tribe, 1999) or developing a structural
relatedness procedure based on extended non-gapped

1. Introduction

Sequence comparison has become a central notion in
modern molecular biology. To evaluate the similarity
between two sequences, many indices are now available,
allowing global alignments and gapped or ungapped
local alignments. The algorithm of Smith and Water-
man (1981) answers exhaustively the question of the
search of the alignments with the best score. Most of
other approaches are based on heuristics. The Smith
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Z-value (McLachlan, 1971; Lipman et al., 1984; Landes
et al., 1992; Slonimski and Brouillet, 1993). In a recent
paper, Comet et al. (1999) proposed an experimental
study of the Z-value statistics. In particular, these
authors surmised that the high Z-value distribution
differs for randomly shuffled sequences and for real
sequences, respectively. In the first case, they showed
that a Gumbel law fits the data well, but it seems that
in the second case, the same law fits poorly. As a
consequence, the introduction of another extreme value
distribution was suggested leading to a biological inter-
pretation of the associated cutoff value (see Comet et
al., 1999 for details). The aim of the present paper is to
precise and to give a new light on these experimental
results.

For independent and identically distributed (i.i.d.)
random sequences, using the Waterman and Vingron
approach (Waterman and Vingron, 1994), we first show
that the asymptotic distribution of the Z-values can be
approximated by a particular Gumbel law, with fixed
parameters. From a practical point of view, the Z-val-
ues for real sequence comparisons are usually evaluated
through a shuffling procedure. Focusing at first on
shuffled sequences comparison (that means alignment
of two sequences coming from a shuffling of two real
ones), we characterize the bias introduced by the shuffl-
ing method and we propose a correction procedure
allowing to interpret the associated Z-value on the
basis of the Waterman and Vingron approach. We
show that the empirical data based on shuffled se-
quences fit the proposed model well.

In the case of real sequences, the Z-value asymptotic
distribution appears to be of the same type as the one
for shuffled sequences (Gumbel law) but with other
parameters. The experimental results of Comet et al.
(1999) then become clear: there is only one type of law
for the Z-value distribution approximation and the
only change from shuffled sequences comparison to real
ones is in fact the change of scale for the approximation
distribution. This result can be used to characterize the
statistical significance of a Z-value when looking for
similarity between real sequences.

This article is organized as follows: Section 2 defines
the Z-value variable following Comet et al. (1999).
Section 3 is devoted to the asymptotic approximation
for the Z-value distribution under the hypothesis of a
sequence comparison between two ii.d. random se-
quences. Section 4 focuses on testing the approximation
law for shuffled sequences comparisons. A correction
procedure for the parameter estimation is proposed in
order to take into account the shuffling induced bias.
This procedure is then applied to real sequences. Sec-
tion 5 gives a general conclusion concerning the use of
Z-value for gapped alignments.

2. The Z-value statistics

Let X and Y be two sequences and consider the
corresponding maximum local alignment score H(X,Y)
based on the Smith and Waterman algorithm (Smith
and Waterman, 1981). We suppose here that the
penalty function for consecutive gaps has been well
chosen in order to characterize aligning subsequences
which have more similarity than random sequences.
Such a kind of score is usually referred as score with
parameters in the logarithmic region (Arratia and Wa-
terman, 1994; Waterman and Vingron, 1994). In order
to evaluate a p-value for the (X,Y) comparison, we
consider the corresponding Z-value variable

H(X)Y) — E(H(X,Y))

T H(X,Y)

Z(X,Y) =

where E(H(X,Y)) and o4y, stand, respectively, for
the expectation and the standard deviation of H(X.Y).

3. Asymptotic approximation for the Z-value
distribution

Suppose that X=X,,..., X, and Y=1Y,,...,Y,, are
two random sequences where X; and Y; are independent
and identically distributed. Waterman and Vingron
(1994) proposed a practical procedure to assign statisti-
cal significance for the X and Y comparison based on
H, which can be summarized as follows: an approxi-
mated p-value for the X and Y comparison can be
achieved using 1 —e "™ where 7 and p are two
parameters to be estimated.

The Waterman and Vingron (1994) result is based on
the approximation:
log nm

—+ c> ~ g~ ! (1
[log p|
which extends the Poisson approximation presented by
Karlin and Altschul for general scoring scheme without
indels (Karlin and Altschul, 1990).
Approximation (1) has been obtained as a result of
the two following stages:
(a) Poisson approximation for the optimal local score
distribution using the Aldous clumping heuristic
(Aldous, 1989): for m and n sufficiently large

P(H(X,Y) <t=

log mn

[log p|
where « = a(X,Y) and p=p(X,Y) are two positive
parameters (this corresponds to assumptions (Al)
and (A2) of the Waterman and Vingron approach).

(b) A normalization related to the different lengths of
the sequences by setting o = ymn. Now, from rela-
tion (2) we deduce that, for m and n sufficiently
large

P(H(X,Y) <t= + c> ~e— )
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which states that the distribution of H(X,Y)—
(log nm/|log p|) can be approximated, for m and n
sufficiently large, by a Gumbel distribution with
parameters ( — log(mn/a)/|logp|) and 1/|logp|, say

loganG( log(mn/o) 1 >

|77\ Jlogp| flogpl

HX.Y) - Tog |

Using well-known results related to the Gumbel distri-

bution we can deduce the following two
approximations:
K+ loga
EHXY) > ——-— (3)
llog p|
where K =0.57721 denotes Euler’s constant and
2
T
“4)

a? &
H(X,Y) 6(10gp)2

It is then straightforward to obtain an approximation
for the law of the Z(X,Y) variable: for m and n
sufficiently large, and under assumption (a), we have:
HX.Y) — E(H(X.Y)) 7 ﬁllogplp( K 1 >
N G| — y
llog p[[log p|
s

T H(X,Y) T

which can be stated as
T

Jo

In other words our approximation is sequence inde-
pendent: in Eq. (6), the approximation of the Z-value
distribution does not depend on sequence lengths and
compositions. It is well known that such a property is
not verified when dealing with the H-score (Comet,
1998, and references therein). While the length depen-
dency of alignment scores has been extensively dis-
cussed in the literature (Arratia and Waterman, 1989,
1994; Arratia et al., 1986, 1989, 1990; Dembo and
Karlin, 1991a,b; Karlin and Altschul, 1990; Karlin et
al., 1990; Karlin and Dembo, 1992; Goldstein and
Waterman, 1992, 1994; Waterman, 1994a,b; Waterman
and Vingron, 1994), there are no results yet available
concerning the sequence composition dependency. In
particular, the normalization described by the first
equation in (b) is an attempt to take into account the
different lengths of the considered sequences, but seems
to be poorly fitted in most of the practical situations
(Waterman and Vingron, 1994). Note that approxima-
tions (2) and (6) are both obtained in the case of i.i.d.
random sequences comparison. But our results do not
need any particular normalization concerning the

Z(X.Y) ~ G(— K.1). 6)

lengths and the amino acid compositions of the in-
volved sequences since both are indeed taken into ac-
count through the evaluation process of the Z-value.
From these different facts, the Z-value is clearly rele-
vant. But the difficulty now comes from a practical
point of view: how can we obtain a direct evaluation of
the Z-values? The idea is to use a shuffling procedure
as presented in Comet et al. (1999) which seems to be
well adapted to simulate random sequences with the
same amino acid composition and length than the
initial ones. Following Comet et al. (1999), we compute
two different Z-values Z,(X,Y) and Z,(X.Y) by shuffl-
ing the first and second sequence, respectively, and use
the minimum value to estimate Z(X,Y). The choice of
the minimum value as an estimator for Z(X,Y) is
argued in Comet et al. (1999) and leads to a conserva-
tive approach for the test comparison.

Remember that the basic assumption here is that X
and Y are both iid. random sequences. The most
natural way to test our approximation law would be to
generate a lot of ii.d. random sequences in order to
work with. Since our approximation is obtained as a
particular consequence of the well-known Waterman
and Vingron (1994) result, but under the only assump-
tions (A1) and (A2), it seems reasonable to think that
our result would be validated for i.i.d. sequences com-
parison. From a practical point of view, the i.i.d.
assumption is clearly unrealistic (and that is why only
very small p-value are considered to characterize signifi-
cant H-score values). But there are no theoretical re-
sults allowing to appreciate how robust is the
Waterman and Vingron approach or how robust is our
Gumbel approximation with regards to this i.i.d. as-
sumption. Even if we know that a deviation from the
Gumbel approximation is systematic for the Z-value
when working on not ii.d. sequences, we also may
hope that the deviation remains still slight in the case of
sequences which do not exhibit particular structure
similarity, as for the i.i.d. case. A lack of robustness for
our approximation result regarding the i.i.d. assump-
tion would clearly be a really major drawback for
practical applications. In order to appreciate the ro-
bustness of our result we decide to test our approxima-
tion on shuffling sequences built from real ones. Such
sequences are not i.i.d. but do not exhibit any particu-
lar structure effect and do not present any more biolog-
ical feature. Since no biological links are present in
these sequences, we clearly hope that our approxima-
tion fits well with the related Z-value observations. A
deviation from our Gumbel law in practical applica-
tions would then indicate significant similarities be-
tween the considered sequences.

In the sequel, we consider two sets of sequences, fully
described in Comet et al. (1999): the set of real se-
quences and the set of ‘quasi-real’ sequences which
designates the set of sequences obtained by shuffling
real ones. Apart from its amino acid composition which
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corresponds to a real case, no particular structure is
introduced in quasi-real sequences. Quasi-real se-
quences will be then shuffled many times to evaluate
the Z-value leading to a set of values for quasi-real
sequence alignments. We shall see first that for such a
set, a direct application of our approximation leads to
a poor fit. Showing that the shuffling approach induces
an estimation bias, we will propose a correction proce-
dure. Having then a good fit for such sequences close to
random sequences, we will apply the whole procedure
on the set of real sequences.

4. Testing the approximation on quasi-real and real
data sets

4.1. Parameter estimation for the Gumbel law

The distribution function F, s of a Gumbel G(4,6)
variable (say T) is given by:

x—2
FA(;(x)zP(TSx)zexp<exp<< 5 >>>, xeR

Usually the first parameter is called the decay parameter
and the second one the characteristic value.

To evaluate the relevance of our Gumbel G(— K ﬁ/
n,ﬁ/n) approximation (Eq. (6)), we consider three
different Z-value samples described below. Parameter
estimations will be performed using the maximum
likelihood method (see, e.g. Johnson and Kotz, 1970)
on different samples.

4.1.1. Data description

A first databank of 16956 sequences is built from five
completely sequenced genomes (see Comet et al. (1999)
for details). Then we build a quasi-real sequence data-
bank containing the shuffled versions of each of the real
sequences. We compute the Z-value between the first
sequence of this databank and the second one, between
the second one and the third one and so on. For each
alignment score, we use the PAM 250 substitution
matrix and the values 5 and 0.3 for gap-open and
gap-extend penalties. We obtain 16955 Z-values. But in
such a sample, there are some dependencies. To break

Table 1
Gumbel maximum likelihood estimations #

A 0
8478 Z-values —0.549 0.789677
8477 Z-values —0.527 0.789987
500 Z-values —0.535 0.796190
Gumbel model fK\/g/rr =—0.45 \/g/n =0.7797

2/ and o are the decay parameter and the characteristic
value of the Gumbel law.

them we divide this previous sample into two smaller

samples:

o The first sequence against the second one, the third
against the fourth and so on. This sample has 8478
Z-values.

o The second sequence against the third, the fourth
against the fifth and so on. This sample has 8477
Z-values.

Table 1 gives the values of the maximum likelihood
estimators for these two samples. Another smaller sam-
ple is considered in order to appreciate the possible
effect of the sample size. This one is built from Saccha-
romyces cerevisiae: we chose 1000 sequences at random
and shuffled each of them. In the same way, we com-
puted the Z-values between the first sequence and the
second one, between the third one and the fourth one
and so on.

4.1.2. Results

The results seem to be slightly different from those
expected, especially for the decay parameter A. Apart
from the bias resulting from the maximum likelihood
estimation, two possible explanations for these some-
what disappointing results may be explored: the first
one deals with the quality of the Gumbel distribution
approximation and the second one concerns the direct
evaluation of the Z-values, in other words the role of
the shuffling process.

Since approximation (5) is nothing more than a
simple consequence of the earlier Waterman and Vin-
gron (1994) approach, there are no particular reasons
to call it into question. However, the shuffling method
may have a particular effect on the required estimations
of E(H(X.Y)) and o3,x.y), A detailed study is presented
in the following paragraphs.

4.2. Shuffling process and estimation bias

The two parameters « = «(X,Y) and p =p(X,Y) con-
sidered in the Poisson approximation (Eq. (2)) are of
different nature. In the i.i.d. case, the p parameter does
depend on the letter positions in each sequence, which
is clearly related to the sequence compositions. Now,
consider some i.i.d. sequences with the same length and
a common amino acid composition. For all the align-
ments of such sequences, the p parameter can be con-
sidered as a unique constant. But some of the
corresponding H-scores may be quite different from the
other ones. As a consequence, when comparing two
sequences, it seems that the o parameter used in ap-
proximation (2) could be dependent not only on the
lengths but also on the structures of the sequences.
Since the shuffling procedure breaks down the struc-
tures but respects the sequence compositions, it seems
natural to consider that a possible effect of the shuffling
procedure should particularly affect the « parameter.
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Consequently, if we suppose that the shuffling process
is applied to Y, for all comparisons (X,Y;);_; », the
p(X,Y;) parameters can be considered as a constant p
while the role of the a(X,Y;) parameters must be taken
into account.

For a particular sequence comparison (X,Y;), under
Eq. (5), we then have

7 log a(X,Y;) A
HX)Y,)~
( s 1) |10gp‘ |10gp|

where A is a Gumbel G(0,1) variable.
It follows that

[log p|E(H,(X.Y)) ~ K + ]i/log< ﬁ oc(X,Y,-))

i=1
where
_ 1Y
H,(X.Y)=— ) HXY)).
Ni =1
Using Eq. (3), we obtain
[log p|(E(H(X.Y)) — E((X.Y)))

~log a(X,Y) — ]i/log< l]_v[ OC(X,Y,-)> @)

i=1
which characterizes the bias estimation for the mean

when shuffling Y.
Since

6 - 6
%Hng (H(X.Y) — Hx(X.Y)) = %HOg PIHX.Y)

6 _
—EHXY)) + %Hogl) (E(HX.Y) — Hy(X.Y))  (8)

we deduce from Eq. (7) that for N large enough
. 6 XY
7~ 7 V6, «X.Y)

0g
< {V: 10((X,Y,-)>

where a, designates a constant value. Note that if
Vi a(X,Y;) = «(X,Y), then a, =0.

When shuffling the sequence X, the same type of
result holds and we finally have

1/,NEZ+L12 ©)]

Z=min(Z,,Z,)~Z+a (10)
where
J6 .
a=-——min
T
2(X,Y) 2(X,Y)

log TN log 7 |
< 1{V= 10((X,Y,-)> < zl'v= 1(1(X[,Y)>

Clearly the observed lack of fit between our Gumbel
model and the results of our approximation may be
simply related to the shuffling process. This problem is

analyzed in the following section and a bias reduction
procedure is proposed.

4.3. Bias reduction

Consider the probability integral transform:

U=exp<—exp<—zgﬁo>>=F(Z) (11)
0

where F=F L0 designates the G(4,,0,) distribution
function with 4,= — K\/é/n and J,=./6/n. U is then
uniformly distributed on [0,1]. Defining the ordered
sample Uy, << Uy, we have U, =F(Z,) and
E(U,)=i/(N+1). The graph {(Uy),(i/(N+1))),i=
1,...,N} is approximately linear and it is common to
plot the graph {(Z;.F~'(i//(N +1))),i=1,...,N}, often
called the quantile plot (or QQ-plot), to test whether
the sample Z,,...,Z, comes from the F distribution (see
Shorack and Wellner, 1986 for details). Briefly, if the
data were generated from the F distribution, the plot
should look close to the line y = x; moreover, the
change of the reference distribution by a linear trans-
formation simply transforms the QQ-plot by the same
transformation.

Below we use a QQ-plot approach to test our Gum-
bel approximation for quasi-real sequences.

4.3.1. Quasi-real sequences
From data on quasi-real sequences a QQ-plot ap-
proach is used to test graphically the F distribution as
the reference distribution for the Z-value data set.
We consider the graph

. i .
(Z(,)’—éo 10g<—10g<N+1>>+/10>, i=1,..,N.
(12

If our approximation is correct, all points are ex-
pected to be close to the line y = x. If the slope of the
QQ-plot is near 1, the intercept of linear regression
gives an approximation q, for the bias a. If the slope is
far from 1, our approximation (5) should be called into
question.

We later present the QQ-plot for only the first sample
composed of 8478 alignments (see Fig. 1A). Similar
graphics are observed with the second and third
samples.

In order to test our G(4,,d,) law we then consider the
Z-value defined by a correction on the shuffling estima-
tions: Z=Z—a0. As shown in Fig. 1B, the Gumbel
distribution G(4,,0,) seems graphically to be a good
approximation of the law of the Z-value.

Table 2 gives the maximum likelihood estimation
results when using the corrected Z-value estimations.

The results now obtained are close to the expected
values, which supports the validity of our asymptotic
approximation.
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Fig. 1. QQ-plot on quasi-real sequences (first sample: 8478 alignments): (A) QQ-plot of Z-values; (B) QQ-plot of the corrected
Z-values: Z = Z — a,. The graphic A allows to approximate the correction g, induced by the shuffling procedure (see text).

4.3.2. Real sequences

The Gumbel approximation concerns the compari-
sons between random sequences, that is, without any
intrinsic structure. As already noted when considering
real sequences, this underlying hypothesis will never be
strictly satisfied, and in real practical situations, devia-
tions from the Gumbel law may be observed even for
real sequences that have no biological relationships.

Consequently, a direct approach such as the one used
for quasi-real sequences should be erroneous and has to
be modified as follows:

A first way is to consider that the bias value q,
obtained from quasi-real sequences can be used for
real sequences comparisons. In such a case, there are
two possibilities: one can use an ‘universal’ value for
a estimated on a very large set of quasi-real se-
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Table 2
Gumbel maximum likelihood estimations — corrected Z-val-
ues *

) 5
8478 Z-values —0.454 0.789668
8477 Z-values —0.432 0.789974
500 Z-values —0.441 0.796196
Gumbel model —K/6/n=—045 /6/n=0.7797

2/ and ¢ are the decay parameter and the characteristic
value of the Gumbel law.

quences or one can implement for the real sequences
under consideration the whole procedure which first
build the associated quasi-real databank on which a,
will be computed. In both cases the variable will be:
7Z=27—a,

o A second way may be to consider that the bias value
a cannot be correctly estimated: the only information
we have is given by the Z-values. But if the shuffling
number is large enough, we have ¢, < 0. The reason
is that the «(X,Y)-function decreases as a function of
the X and Y similarity: under the null hypothesis of
i.i.d. sequences, the closer X and Y are, the lower is
the p-value. Using Poisson approximation (2) one
expects that «(X,Y;) > «(X,Y) for each i. In such a
case our approximation leads to conservative
conclusions.

In the sequel we will consider that tlle bias a is well
approximated and we will compute Z with the value
a=a.

4.3.3. Databank scanning

Several new challenges arise when a query sequence
is used to scan a databank. All general databanks are
built up with sequences that are widely different in
length. These databanks include some sequences of the
same family, and even duplicated sequences. Certainly,
the i.i.d. model for real sequences fails. To remove the
effects of duplication of sequences we constructed a
protein database which includes only one representative
sequence from each protein family. The input data were
taken from the databank described in Park and Teich-
mann  (1998) (http://www.mrc-lmb.cam.ac.uk:80/
genomes/) retaining only one sequence from each
cluster built from E. coli. This bank contains 618
non-redondant sequences.

We choose now one of these sequences (EC1003) and
compare it against all other sequences computing all
Z-values. The QQ-plot of these data is shown in Fig. 2.
The model fits well with the empirical data on real
sequences although the Z-values for a databank scan-
ning does not constitute a sample since the query
sequence is shared by all alignments. This sequence
represents the link between each alignment.

4.3.4. Global genome analysis
Now that many complete genomes have been se-
quenced, one extensive research domain deals with the

6 . . . .
Regression :
4 r Slope =1.011 1
<° Intercept =0.087
SO Correlation = 0.9973 o
d
4
S
o
i of 1
o
S
o
%=]
| .
-2+ 4
4 . . . ‘
-4 -2 0 _ 2 4 6
Z-value

Fig. 2. QQ-plot of Z-values obtained during a databank scanning: comparison of one sequence against a non-redundant databank

of sequences.
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Fig. 3. QQ-plot on two sets built on yeast genome ((B) is a zoom of (A)). Real sequences: 1000 real sequences have been chosen
at random in the complete genome of S. cerevisiae. All pairwise Z-values have been computed (499500 Z- values) Quasi-real

sequences:

1000 quasi-real sequences have been built by shuffling the above real sequences. The 499500 Z-ValuesA have been

computed. For real sequences we observed a behavior different from that for quasi-real ones. For real sequences 94 Z-values are

greater than 50.

classification of sequences from the same or from differ-
ent genomes.

In such cases we are looking for biological links
which are due to the duplication phenomenon. The
hypothesis of independent sequences cannot be verified.
To build clusters of sequences the first stage is to

compute all the pairwise comparison indices, and to
induce a dissimilarity matrix. Since the number of
sequences is too large to simply apply classical classifi-
cation methods, one often separates sequences in a first
level of clusters by single linkage clustering. In each
cluster a hierarchical analysis can be performed.
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For such a goal the most important point is to have
a global index which does not depend on individual
sequences, especially on individual sequence length. In
such problematics the Z-value can be useful.

From the complete genome from S. cerevisiae we
randomly chose 1000 sequences. This database has been
shuffled to build a quasi-real sequences databank. On
both sets of sequences (quasi-real and real) all pairwise
comparisons have been performed and all pairwise
Z-values computed and corrected. Fig. 3 shows the
QQ-plots for both sets of non-independent Z-values.

Despite the dependency between the Z(X,Y) scores,
the Gumbel distribution fits well in the case of quasi-
real sequences. In the case of real sequences one notices
a totally different behavior: the observed Z-values sig-
nificantly deviate from the Gumbel law as earlier no-
ticed in Comet et al. (1999). For smaller values, the
Gumbel model seems to be valid. The cut-off value v
may be related to the 0.9999 quantile of the G( — K\/g/
T \/g/rc) distribution which is about 6.7. Note that this
threshold supports the empirical threshold used by
biologists: in practice the value 8 allows them to deter-
mine if an alignment is biologically significant or not.

5. Conclusions

This article gives a frame to justify the use of simula-
tions to evaluate the significance of gapped alignments.
It is well known that the Smith and Waterman score
law depends on length and amino acid composition of
sequences. This study shows that the asymptotic law of
the Z-value is sequence independent, which is funda-
mental particularly when analyzing complete genomes.

In practical applications, one can observe a deviation
of the Z-values from the initial Gumbel distribution.
This divergence from the asymptotic approximation
law highlights the biological links: if an empirical Z-
value is greater than a cutoff, the null hypothesis of
random sequences is rejected, which means that we may
conclude to the existence of a biological link.

In other words, all conclusions based on simulations
are interpretable, since the asymptotic law of Z-value is
independent of sequences. Only the shuffling process
can introduce a bias, which is evaluated by the exposed
method. This frame gives a new view on the 20 years
old method for achieving the significance of gapped
alignments.
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