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Abstract

Existing methods for alignments are based on edition costs computed additionally position by position, according
to a fixed substitution matrix: a substitution always has the same weight regardless of the position. Nevertheless the
biologist favours a similarity according to his knowledge of the structure or the function of the sequences considered.
In the particular case of proteins, we present a method consisting in integrating other information, such as patterns
of the PROSITE databank, in the classical dynamic programming algorithm. The method consists in making an
alignment by dynamic programming taking a decision not only letter by letter as in the Smith & Waterman algorithm
but also by giving a reward when aligning patterns. © 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Sequence comparison has become a central notion in
modern molecular biology. It aims at generating by
induction information by comparing a new sequence to
all sequences in annotated databanks. The pairwise
alignment highlights the different zones of similarity.
To evaluate a score of similarity, many methods are
now available, allowing global alignments (Needleman
and Wunsch, 1970) and gapped or ungapped local
alignments (Smith and Waterman, 1981a,b). The Smith
& Waterman algorithm uses the method of dynamic
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programming to give one of the best local gapped
alignments. It leads to an alignment score that can be
used as a basis for determining a possible homology.
Most of the other approaches are based on heuristics
(Altschul et al., 1990; Karlin and Altschul, 1990;
Altschul et al., 1997).

All of these algorithms use a substitution matrix
independent of the position. The similarity score is
additive position by position with a fixed substitution
matrix and a fixed function for gap penalties. But when
the biologist makes an alignment without a computer,
he favours some similarities depending on his knowl-
edge of the structure and/or the function of the se-
quences. In the case of proteins he tries to put in
correspondence patterns which are known to be perti-
nent for the considered sequences. To explore this
direction, various extensions of the dynamic program-
ming algorithm of Smith & Waterman have been devel-
oped in order to simulate a non-homogeneous
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substitution matrix. Wilbur and Lipman (Wilbur and
Lipman, 1984) have presented a general framework for
evaluating substitution depending on the context. The
main reason for introducing the context dependence is
that biological mutations appear in a non-uniform way
along the sequences (Lewin, 1997). This implies a non-
uniform distribution of the exact matches in the se-
quence alignments: there are regions where exact
matches are more concentrated. On the other hand, if
we align two random sequences which are independent
and uniformly distributed, one observes that the exact
matches are uniformly distributed (Huang, 1994). Then
an alignment with five consecutive exact matches is
more significant than another alignment with five non-
consecutive exact matches. Huang also presents an
algorithm taking into account the context favouring
exact match if this appears in a well conserved region.
Another idea has been developed by Barton (Barton
and Sternberg, 1987) who used estimates of the sec-
ondary structure for each of the two sequences in order
to limit the number of gaps inserted in regions of
secondary structure.

In the context of multiple alignment several methods
try to guide the multiple alignment process with the
determination of conserved regions or patterns. The
patterns do not come from a fixed library like
PROSITE but rather are directly derived from the
sequences to be aligned themselves, (see for example
Smith and Smith, 1992; Posfai et al., 1994; Miller et al.,
1994; Parida et al., 1998, 1999). If one wants to apply
this idea to pairwise alignments, one has to focus
directly on known functional patterns to be certain to
take into account significant pairwise pattern
alignments.

We present here an alignment method which takes
into account the non-homogeneity of sequences and
more precisely information linked to biological ‘pat-
terns’. Typically one thinks of protein sequences and
functional patterns like those described in the databank
PROSITE (Hofmann et al., 1999). One would like to
favour the alignment of patterns. But in the case of an
inversion process during evolution, two sequences can
share two different patterns but in different order. Then
it is impossible to find an alignment of sequences,
preserving the order of letters, in which both pairs of
patterns are matched. Then one cannot impose the
alignment of all the patterns. The usual similarity score
comparing the sequences letter by letter is modified to
give a reward when patterns are matched. The new
similarity score remains additive and the optimization
problem can be solved by a dynamic programming
approach.

Our method proceeds like the Smith & Waterman
algorithm (Smith and Waterman, 1981b) by dynamic
programming: subsequences increased letter by letter
are compared and one attributes a supplementary

bonus/reward when patterns are matched. The first step
is to determine the occurrences of databank patterns in
both sequences with a classical ‘pattern-matching’ al-
gorithm. If one or more patterns are shared by both
sequences, the second step implements a new dynamic
programming algorithm for which the computation of
the score has been modified: for each couple of position
indices (i, j ) which corresponds to the end of an align-
ment of two occurrences of the same pattern, it is also
possible to align patterns weighting this new path.

In the first section we show that the Smith & Water-
man algorithm does not always align patterns. Several
behaviors are observed depending on the status of the
occurrences. The second section focuses on the al-
gorithm called SWP (Smith & Waterman algorithm
with Patterns). We decompose the algorithm into two
parts: the first one consists in aligning two occurrences
of the same pattern respecting the matches in the motif,
the second one is the general dynamic programming
loop in which the objective function has been modified
to take into account the possibility of aligning occur-
rences of patterns. The third section shows results of
our algorithm in a large scale environment: the ob-
served distribution of aligned occurrences respects our
expectation. The larger the weight, the more occur-
rences are aligned. We tested also our algorithm in
databank scanning, and observed that SWP makes
clearer some relationships between sequences. This al-
gorithm has been tested on all patterns from the data-
bank PROSITE which are present in the protein
databank Swissprot Rel. 35. When both sequences
share several patterns the algorithm makes it possible
to bind two similarity zones which are very far from
each other.

2. Smith & Waterman alignments and Prosite patterns
2.1. Prosite patterns

PROSITE is a database of biologically significant
protein sites and patterns formulated in such a way that
with appropriate computational tools one can rapidly
and reliably identify to which known family of proteins
(if any) a new sequence belongs. The PROSITE func-
tional patterns are represented by regular expressions.
In this databank there are also other descriptions of
biological functions (Matrix, Rules). In the PROSITE
databank Rel. 14.0 one can find 1275 patterns, 56
matrices and four rules. But here we will only consider
pattern data.

We eliminated some of the many patterns because
they appear very frequently in the protein databank
Swissprot Rel. 35. The non-informative patterns which
have been eliminated are:
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Pattern Occurrence Associated
PROSITE number in regular
Swissprot  expression
PS00001 141147 N-P-[ST]-P
PS00004 42117 [RK](2)-x-[ST]
PS00005 332212 [ST]-x-[RK]
PS00006 377147 [ST]-x(2)-[DE]
PS00008 372978 G-{EDRKHPFYW}-x(2)-
[STAGCN]-{P}
PS00009 23386 x-G-[RK]-[RK]

PS00013 7969 {DERK}(6)-[LIVMFWSTAG](2)-
[LIVMFYSTAGCQJ-[AGS]-C
R-G-D

L-x(6)-L-x(6)-L-x(6)-L

PS00016 4152
PS00029 4007

Some of them are very short and often appear with-
out the associated biological function. After elimination
the databank consists of 1266 patterns.

To manipulate the PROSITE databank several tools
are available. For example ProfileScan uses the method
of Gribskov et al. (Gribskov et al., 1988) to find
structural and sequence motifs in a protein sequence.
ProSearch (Kolakowski et al., 1992) searches protein
sequences for PROSITE database patterns. ScanProsite
makes it possible to scan sequences from Swissprot or
TrEMBL (Bairoch and Apweiler, 1997) for the occur-
rences of a particular pattern stored in the PROSITE
databank.

Patterns are a certain characterization of biological
properties shared by all sequences in a protein family.
Nevertheless a pattern can appear in a protein without
the associated biological property being expressed. Se-
quences which share the regular expression but not the
biological property are called false positive, they are
indexed in the PROSITE databank. In the same way
some sequences share the biological property but do
not present the regular expression. These sequences are
called false negative, they generally are not indexed in
the databank.

In the sequel, we will use the UNIX syntax for
regular expression and the classical algorithm for regu-
lar expression recognition, regexp. To specify an amino
acid one uses its representative character alone. The
character “.” stands for any character, the logical ‘or’ is
written ‘|, ‘[...] stands for every character present
inside the brackets and ‘[~ ...]" stands for every charac-
ter not present inside the brackets. The symbols *” and
‘$’ represent the beginning and the end of the sequence.
Finally “*’, 4+’ have the classical meaning: “*’ stands
for any number of occurrences of the previous charac-
ter including none and ‘4’ stands for at least one
occurrence of the previous character.

For example, the regular expression
‘A~ A]IBCJA*B’, describes strings which are at the
beginning of the line, of which the first letter is not ‘A’
followed by ‘B’ or ‘C’ and by a certain number of ‘A’
and ending with a ‘B’ followed by another letter.

2.2. Does the Smith & Waterman algorithm align
patterns?

Since we are looking for sequence alignments taking
into account the information given by PROSITE pat-
terns, we naturally show first that the classical Smith &
Waterman alignment does not always match patterns
shared by both sequences.

In order to test this fact, one has to distinguish five
types of sequences sharing a particular pattern. All five
of these types are annotated in the DR line of each
entry of PROSITE:

1. The true positives (annotated by T) are sequences
presenting the regular expression modeling the pat-
tern and which belong also to the biological family
associated with the pattern.

2. The false negatives (annotated by N) are sequences
which belong to the family under consideration, but
which do not contain the regular expression. Se-
quences which do not belong to the set under con-
sideration and do not contain the regular
expression, will be called true negatives.

3. The false positives (annotated by F) are sequences
sharing the regular expression but which do not
belong to the family.

4. The potential sequences (annotated by P) are the
false negatives which do not contain the regular
expression because the region(s) that are used as a
‘fingerprint’ (pattern or profile) is not yet available
in the data bank (partial sequence).

5. Finally the wumknowns (annotated by ‘?°) are se-
quences for which one does not know whether they
belong to the family or not.

For each type which contains the regular expression,
we present the statistical behavior of the Smith &
Waterman algorithm.

2.2.1. True positives
We want to know whether the classical dynamic
programming algorithm does or does not align true
positives. Fig. 1 shows the distribution of patterns from
databank PROSITE Rel. 14 according to the number
of non-aligned patterns divided by the total number of
pairwise comparisons. In other words for each pattern
of the databank,
e one computes the Smith & Waterman alignment for
all pairs of true positives,
e one tests whether the Smith & Waterman alignment
puts both occurrences of the regular expression in
front of each other,
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e one computes the number of alignments which do
not align both patterns,

o finally the index r is the ratio of this number to the
number of computed alignments.

The closer the index r is to 0, the more numerous are
the aligned occurrences of the regular expression. If
r=20, then for all pairs of true positives, the classical
dynamic programming does align the occurrences of
the pattern. At the opposite if r=1, for all pairs of
sequences sharing the regular expression, the Smith &
Waterman algorithm does not align instances of the
pattern.

Generally the Smith & Waterman algorithm aligns
occurrences of the same pattern when occurrences are
close to the region of the highest similarity. The al-
gorithm does not align them when occurrences are not
similar or when they are very short and do not belong
to the most similar region.

One can note that for many patterns the classical
dynamic programming allows to highlight a region
including the pattern. There are 556 patterns for which
the classical dynamic programming aligns the pattern in
all cases. These patterns are not very informative be-
cause the alignment regroups naturally these regions. In
fact, either the pattern is very restrictive (the set of
strings described by the regular expression is reduced to
one element) or the occurrence of the pattern appears
always in a region of high similarity. In the later case,
one may ask whether the pattern is well defined. Since

556

1504

Number of patterns

50

i lnlh
0 01 02 03 04 05 06 07 08 09 1
Number of non aligned patterns / number of alignments

Fig. 1. Distribution of patterns from PROSITE Rel. 14.0 (true
positives) according to the number of patterns which are not
aligned by dynamic programming. The databank is Swissprot
Rel. 35. For the first coordinate value 0, one observes 556
patterns. For these 556 motifs, the classical dynamic program-
ming aligns by default both occurrences of patterns (both
sequences are true positives).

in all cases the region of high similarity is larger than
the regular expression, it may be possible to extend the
definition of the regular expression.

In some other cases the dynamic programming does
not align the pattern. However, for all true positives of
Swissprot Rel. 35, the dynamic programming does align
at least in one case the occurrences of the regular
expression. In other words one cannot find one single
pattern for which the index r is equal to 1. For a value
of r close to 1 the histogram of Fig. 1 has some classes
absolutely empty.

2.2.2. False positives

2.2.2.1. False positives versus false positives. In the same
way, we want to know if the Smith & Waterman
algorithm tends to align the same pattern in the case of
two false positives. Generally it does not align patterns.
Fig. 2 shows the distribution of patterns.

2.2.2.2. False positives versus true positives. In this case
the results are similar to the case of two false positives
(Fig. 2).

In such cases even if the biological function is not
shared, the dynamic programming algorithm does align
some patterns (Fig. 2, r =0). This peak is much higher
in the plot concerning two false positives than in that
concerning a false positive versus a true one. One can
align two false positive occurrences of the same pattern
when they occur in the most similar zone between
sequences. For example for the pattern PS00881 the
Smith & Waterman algorithm aligns false positive oc-
currences in TIE1_BOVIN, TIE1_HUMAN and
TIE1_MOUSE. All three of these sequences belong to
the same family and the pattern occurs in the character-
istic region of this family. This phenomenon does not
happen in the case of aligning a false positive versus a
true one. These homologies of two false positives could
result from common biological properties different
from the one related to the PROSITE motif.

3. The Smith & Waterman algorithm with pattern:
Swp

Since the Smith & Waterman algorithm does not
always align occurrences of the patterns, the alignment
of these motifs can be a guide for an improvement of
the sequence alignment. A better match between the
occurrences is sought. This is an intermediate solution
between the Smith & Waterman algorithm and the
method used by biologists which consists in forcing the
alignment of occurrences of motifs.

If there is only one pattern shared by both sequences,
or if one seeks to align only one pattern, it is possible
to impose the alignment of the motif and then to extend
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Fig. 2. Distribution of patterns from PROSITE Rel. 14.0 (false positives) according to the number of unaligned motifs. (A) False
positive versus false positive. (B) False positive versus true positive.

the alignment on both sides with the Smith & Waterman
algorithm.

However, if both sequences share several motifs which
appear in different order, one can no longer force the
alignment of the patterns. Let us consider that both
sequences share two motifs in a different order:

MOTIF-1 MOTIF-2 |XXXXXXXXX

XXXXXXX]|

XXXXXXXXXXXX|

If a biological relationship between these sequences
exists, one is confronted with an inversion process.
Classical algorithms are not able to align both motifs
simultaneously, and one has to use algorithms which deal
with inversion processes (Holloway and Cull, 1994).
Note that our algorithm does not solve this inversion
problem but chooses which pattern will be aligned.

The first stage is to determine all patterns which are
shared by both sequences. Different programs make it
possible to find in a sequence all occurrences of a set of
patterns. After having two lists of the patterns present
in both sequences, an intersection of the two lists gives
the result. Another solution consists in taking advantage

XXXXXXX] MOTIF-2 |XXXXXXXXXXXX XXXXXXXXX

barl_yeast:
60:

284

tryp_astfl:
194

of the list given in PROSITE of all occurrences of a
pattern in the databank Swissprot.

3.1. Alignment of two instances of the same pattern

The problem comes from the fact that a pattern can
contain insertions/deletions. For example, if the regular
expression contains the term ‘x{6, 8}’, there is then at
this place a string of which the length is between 6 and
8. Two instances of this pattern can have two different
lengths. In that case the alignment has to contain an
insertion/deletion in the zone defined by the term
‘x{6, 8}’

On the other hand if the motif has a constant length,
the alignment is very simple because there is no insertion/
deletion. For example the pattern named ASP-Protease
is defined by the following regular expression:

[LIVMFGAC]-[LIVMTADNJ-[LIVFSA]-D-[ST]-G-
[STAV]-[STAPDENQ]-x-[LIVMFSTNC]-x-
[LIVMFGTA]

The sequences barl_yeast and tryp_astfl share this
motif. The pattern has two instances in barl _yeast at the
positions 60 and 284 and one in tryp_ astf1 at the position
194:

(V) (LY (F)D(TIG(S) (A)x(F)x(V)

SQSLT V L FDTGS ADFWYV MDSSN
(V) (L)Y L)ID(S)G(T) (S)x(L)x(A)

TIKYP V L LDSGT SLLNA PKVIA
(4) (4) (S)D(TIG(S) (T)x(L)x(G)

SGGPL A A SDTGS TYLAG IVSWG
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Alignment of the first occurrence in barl_yeast with
the instance in tryp_astfl will be:

60 VLFDTGSADFWYV
L
194 AASDTGSTYLAG

If we decide to align the second instance in barl_
yeast, one will obtain:

284 VLLDSGTSLLNA
oo I
194 AASDTGSTYLAG

We define the score of the alignment as the sum of
the substitution costs:

Score (Word,, Wordy)

long — 1

= ) S(A[B4+kl BlBs+k])
k=

0

where

— Word, and Wordy are the occurrences of the same
pattern in sequence 4 and B, respectively;

- B, and p, are indices of the beginning of
occurrences;

— long is the common length of both instances;

— S(AJ[i ], B[j]) is the substitution cost between amino
acids A[i ] and B[ ].
Nevertheless the alignment of occurrences of non-

constant length patterns is tricky. For example the

pattern Snake—Toxin is defined as:

CPx {6, 8} (L,ILV,Y,S,T)xCC

This pattern occurs in the sequences hcy _octdo and
nx12_bunfl with two different lengths:

hey _octdo: CP x{6} (Y)xCC
CP SPEEPK Y ACC
nx12_bunfl: CP x{8} (L)xCC
CPEFTSRYKS L LCC

So one cannot simply apply the Needleman &
Wunsch algorithm since insertions/deletions have to
occur in a well specified position. The Needleman &
Wunsch algorithm does not guarantee that the inser-
tion would take place at the right position. However,
the alignment makes sense if one tries to align first
the brackets and braces: (, ), { and }. The idea is to
align the sequences

{CP{SPEEPK }(Y)A(CC)}

and

{CP{EFTSRYKS}(L)L(CC)}

on an alphabet composed of 24 letters (20 letters for

the amino acids and four for the brackets and

braces). A new substitution matrix is then built on
this new alphabet:

e the values of substitution of two amino acids do not
change;

e perfect matches (*{", *{"), (}", °}"), (C, *() and ()", °)’)
are imposed (i.e. their edition cost is arbitrarily
high);

e substitutions (‘{°, o), (‘C, o), (‘}’, o), (°)’, o) where o
is an amino acid are impossible (value at — o0);

e and substitutions (*{", °C), ({", ), (1), (7, °0)s
(‘}’, °Y) and (°C, °)’) are also impossible.

The Needleman & Wunsch algorithm on this alpha-
bet and with this substitution matrix gives a good
alignment of patterns preserving insertion/deletion area.
For the previous instances of the Snake—Toxin pattern,
one has the following alignment:

{CP{--SPEEPK}(Y)A(CC)}

I (IR

{CP{EFTSRYKS}(L)L(CC)}

The score of alignment is the score obtained by the
previous method excluding the edition costs of brackets
and braces.

CP--SPEEPKYACC
that is || I
CPEFTSRYKSLLCC

A better solution

During the scanning of sequences for hypothetical
pattern matching, one can seek possible positions of
insertions/deletions. For example if the motif Snake—
Toxin appears in the form CPSPEEPKYACC, the
possible insertions/deletions introduced during the
alignment with another occurrence of the same pattern,
will take place in the region SPEEPK and only in this
zone. When aligning two instances of the same pattern,
there are two stages:
1. Search for possible positions of insertions/deletions.

The following information is stocked:

(a) the number of insertion/deletion areas;

(b) foreach insertion/deletion area, the indices (b, ¢;)
representing the beginning and the end.

Two tables are built, one for the sequence A4
(indices (b#, e;')) and the other one for sequence
B (indices (b2, e8)).
2. Alignment of occurrences of the pattern: let (i, j ) be
the current indices of alignment.

(a) If (i, j ) does not belong to any insertion/deletion
area, the letter A; faces the letter B; in the
alignment and the indices are set to (i+1,j+1).

(b) If (i,j) belongs to the insertion/deletion area
number k, the Needleman & Wunsch algorithm
is used on subsequences A[bf,ef] and B[bZe?],
and one goes to (a) with the indices (ef +
L,ef+1).

This second solution is actually implemented.
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3.2. Local alignment with pattern

After having defined an alignment for two occur-
rences of the same pattern, we present an algorithm for
aligning sequences that takes into account the different
patterns shared by them. For simplicity we consider
here only linear penalty functions for gaps (gap-open
penalty and gap-extend penalty are considered to be
equal to ). In the case of an affine penalty function the
modifications are similar.

M@i—1,j)—,
M@GE—1,j—1)+S(A[i ], B[j D,
M(i,j ) =max M@, j—1)—6,
0,

consists in the choice of substitution, insertion, deletion
of letters or in the alignment of a pattern. Let us
suppose now that sequence 4 contains a pattern at
position (i —long, + 1, i ) and that sequence B contains
the same pattern at the position (j—long,+1,;),
where long,, and long, are lengths of pattern instances
in sequences 4 and B, respectively.

We consider another path besides substitution, inser-
tion and deletion: this new path is just the alignment of
the pattern. The recurrence is then:

(M

M (i —long,, j — long,) + Score(Word ,, Word ) + Reward

The Smith & Waterman algorithm consists in com-
puting for each pair of indices (i, j ) the score M(i, ;)
for aligning the beginnings of sequences A[l, ..., i ] and
B[l ..., ]. This is done with the following recurrence:

M@Gi—1,j)—9,
S M@Gi—1,j—D+S([i ], B[j ],
M(i,j ) = max M j—1)—o.
0

A first method to favor the alignment of motifs
consists in giving an additive reward (bonus) to the
score when motifs match. With this new definition of
the score, the dynamic programming algorithm can be
applied but now at each step the decision variable

Motif 1 Motif 2
1 D H Vo
: M H H
<4 I
2 :
3 T ST L. S,
N H H
D '
e D Nt H teeeee- I R LLTEEEEE
=
= v

Fig. 3. Competition between patterns: If both sequences share
two different patterns which are incompatible, the algorithm
chooses which motif will be aligned according to the weight of
each pattern. Lines with M correspond to the alignment of a
motif, lines with H, D, or V to the insertion, substitution and
deletion of the last character.

where

e Score (Word,, Wordy) is the score of the pattern
alignment.

® Reward is a positive value rewarding the pattern
alignment.

e M(k,I) is the best score obtained when aligning

A[l, ..., k] and BJ[1 ..., 1].

In this new recurrence the score at the position (i, j )
depends on the three neighbors like in the classical
dynamic programming algorithm and also on another
cell which can be far away from the current position:
the score at the position corresponding to the beginning
of pattern alignment.

In this method the alignment of motifs is not impera-
tive and incompatible situations as in Fig. 3 can be
dealt with.

3.3. The basic recurrence of SWP

The SWP algorithm is a modification of Eq. (1)
taking into account the case when several patterns end
at the current position.

Let 4 and B be two sequences of length n and m,
respectively. A couple of subsequences (word ,, wordy)
will be called a pattern pair if word ;, and word belong
to sequence 4 and B, respectively and if they are two
occurrences of a same pattern.

Both sequences A4 and B can share several patterns.
The same pattern can appear several times in the same
sequence, and a position (i,j) can correspond to the
end of several patterns. In this case the algorithm has to
take the maximum among all alignments ending at the
current position.

The general recurrence of the SWP algorithm is the
following:
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Table 1
Complexity of the SWP algorithm

Complexity

Search for shared
patterns
Motif alignment

O((n+m)xt)

O(IpA + lpB+ I (e =bf)
x (e~ bf)

Dynamic programming  O(m x n)

t stands for the motif databank size.

M@, j)
r N
MG—1,j—1)+SA[i], B[j D,
MGi—1,j)—0,
M(i,j—1) =9,
= max 2)
05
M(Gi— longllr,jf longg) +
p, motif
max{ } Score (Wordr , Word?)
ending at (i, j) “ 4
L x Reward(p) Y,
where

o Score(Word”, Word?) is the alignment score of two
occurrences of the motif p,

o Reward (p) is a coefficient associated to the motif p
weighting alignments of occurrences of this motif.
Previously we introduced an additive weight (Eq.
(1)) but here we use a multiplicative coefficient in
order to try to weight according to the similarity of
both instances of the motif. This multiplicative
model will then favor the alignment of occurrences
which are the most similar or the longest, that is
which have the highest alignment score.

By this modification of the Smith & Waterman al-
gorithm, not only the score is modified but as a result,
the aligned subsequences. Throughout the sequel we
make use of the multiplicative model with a reward
coefficient independent of the motifs. However, short-
comings of this model will be discussed later.

3.4. Complexity

The algorithm is composed of three different steps:
searching for all patterns shared by both sequences,
aligning occurrences of patterns, and maximizing the
score by the dynamic programming algorithm (Eq. (2)).

For two sequences of length m and n, respectively,
the complexity of the pattern matching algorithm is
linear in O(m + n) because the search has to be done in
both sequences. When all patterns from a databank are

taken into account, the complexity of this stage in-
creases proportionally to the size of the databank.
The complexity for the dynamic programming stage
is quadratic that is in O(m x n) although a supplemen-
tary maximum operation has to be done for some cells.

For the alignment of the occurrences of a motif, two
cases have to be considered:

e If the pattern has a fixed length, the algorithm is
linear: the score is simply the sum of the substitution
costs corresponding to each position of the
alignment.

o On the other hand if the length of the pattern is
variable, the computation of the score needs the
knowledge of possible insertion/deletion areas. Then
the dynamic programming is used for each insertion/
deletion area. The complexity is:

N
0<,~21 (e —b) x (ef — b?)) +04,,+1,)
where N is the number of insertion/deletion areas
defined by indices (b, e/);cin and (b7, €)icping 1,
and /, , are the lengths of occurrences of the pattern p
in sequences 4 and B, respectively.

Table 1 sketches the complexity of the different

stages of the algorithm SWP.

4. Discussion

4.1. Weight influence on alignments

Generally one expects the algorithm SWP to align
more patterns than without weighting. Fig. 4 shows
distributions of patterns according to two different
weights, for true positive versus true positive or for
false positive versus false positive. For true positives
one observes the concentration of the distribution near
zero. The higher the weight, the higher the peak of the
distribution. For false positives the distribution also has
a peak near zero (Fig. 4), but the proportion of non-
aligned motifs is higher.

4.1.1. Sequences sharing only one pattern

When there is only one pattern shared by the se-
quences, the behavior of the SWP algorithm is simple.
If the motif is not aligned by classical dynamic pro-
gramming, then increasing the weight for the pattern
tends to favor all paths which align occurrences of the
pattern. An exception is when the occurrences are not
similar to each other (see further).

Fig. 5 gives an example where the occurrences of the
motif do not belong to the most similar region. When
the weight is set to 2, the similarity area changes, the
algorithm retains only the similarity region containing
the pattern.
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Generally if the patterns do not belong to the most
similar region, increasing the weight for a pattern can
produce an alignment including two similarity zones:
one corresponding to the pattern alignment and the
other one to the region highlighted by the Smith &
Waterman algorithm. The reward can compensate for
the gap cost necessary to connect the two distant
similarity regions. For the previous example (Fig. 5) the
gap cost is so important that the pattern weight cannot
compensate for it to connect both similarity regions.

When there are several occurrences of the same pat-
tern in both sequences, each corresponding to a distinct
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similarity region, tuning the weight can make it possible
to align simultaneously these similarity zones in the
same alignment. The maximum number of aligned pat-
terns is also equal to the minimum of the two numbers
of pattern occurrences in each of the sequences 4 and
B.

4.1.2. Sequences sharing several patterns

As remarked before, the region containing the occur-
rence of a pattern can appear far away from a highly
similar region. Let us suppose that there are two simi-
larity zones very distant from each other. In other
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Fig. 4. Distribution of patterns form PROSITE Rel. 14.0 (true positive and false positive) according to the number of unaligned
motifs. (A) (True positive): value for pattern weight = 2. (B) (True positive): value for pattern weight = 3. (C) (False positive): value
for pattern weight =2. (D) (False positive): value for pattern weight = 3.
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Motif PS00841

Weight = 1

12

@«

VTPEMAWKLIIALREHGIESIVAPYEADAQLVYLEKENIIDGIITEDSDM
1 N R R A P

797 VTGQMCLESQELLQLFGIPYIVAPMEAEAQCAILDLTDQTSGTITDDSDI

~

176 LVFGAQTVLFKMDGFGNCITIRRNDIANAQDLNLRLPIEKLREMAIFSGC
e | (I N
847 WLFGARHV-YK-NFFSQNKHVEYYQYADIHN-QLGLDRSKLINLAYLLGS

22

o

DYTDGVAGMGLKTALRYLQKYP

Il ol
894 DYTEGIPTVGYVSAMEILNEFP

Score : 141
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[VI][XRE]P.[FYIL]VFDG.\{2\}[PIL].[LVCIK

Weight : 2
1 GIKGLLGLLKPMQKSSHVEEFSGKTLGVDGYVWLHKAVFTCAHELAFNKE

(N L I I U I I
1 GVQGLWKLLECSGRPINPGTLEGKILAVDISIWLNQAVKG-ARDRQGNAI

51 TDKYLKYAIHQALMLQYYQVKPLIVFDGGPLPCKASTEQKRKERRQEAFE
| | | I ] I O B B
50 QNAHLLTLFHRLCKLLFFRIRPIFVFDGEAPLLRRQTLAKRRQRTDKASE

101 LGKK

100 DARK

{
Score : 150
SW Score : 119
Motif alignment Score : 31

Fig. 5. Weight influences on alignments. For sequences XPG_XENLA and EXO1_SCHPO, the Smith & Waterman algorithm does
not align the motif PS00841. Weighting the path corresponding to the pattern alignments makes it possible to highlight another
similarity region with SW score (119 =150-31) slightly lower than the SW score. The frame corresponds to the only aligned

occurrences of pattern PS00841.

words a very long insertion/deletion is needed to vizual-
ize in the same alignment these two regions. If a pattern
is present in each of these regions, the SWP algorithm
makes it possible to connect these regions in the same
alignment.

Let us choose a motif from PROSITE for which the
proportion of non-aligned occurrences among true pos-
itives is far from one.The motif PS01288 has four true
positives in Swissprot Rel. 35: RTCB_ECOLI, Y682_
METJA, YQO01_MYCTU and YT6J CAEEL. Six
alignments are possible. The Smith & Waterman al-
gorithm does not align the occurrences of the pattern
for three possible pairs (for example alignment between
RTCB_ECOLI and Y682_METJA). The index r is
then equal to 0.5. The sequences RTCB_ECOLI and
Y682_METIJA also share other patterns:

NAME PROSITE  Regular expression
PKC_PHOS- PS00005 [ST]-x-[RK]
PHO_SITE
CK2_PHOS- PS00006 [ST]-x(2)-[DE]
PHO_SITE
MYRISTYL  PS00008 G-{EDRKHPFYW}-x(2)-
[STAGCN]-P
UPF0027 PS01288 Q-[LIVM]-x-N-x-A-x-[LIVM]-

P-x-1-x(6)-[LIVM]-P-D-x-
H-x-G-x-G-x(2)-[IV]-G

Alignment without weight does not align pattern
UPF0027 since the more similar region is far away

from occurrences of this pattern. This region contains
two patterns PS00006 and PS00008. The Smith & Wa-
terman alignment is given in Fig. 6. Weighting pattern
alignment leads to an alignment which contains clearly
two similar zones separated by a long gap. The weight
has been sufficient to compensate for the penalty due to
the long gap.

The higher is the weight, the greater is the number of
aligned motifs (Fig. 7). But how many occurrences can
be aligned? Fig. 7 shows that at most 12 aligned
patterns are found by our algorithm. In the following
paragraph we compute the maximum number of occur-
rences which could be aligned.

4.2. Computing the maximum number of aligned motifs

The following table shows the number of occurrences
of all patterns present in both sequences RTCB_
ECOLI and Y682 METIJA.

RTCB_ Y682 Symbol
ECOLI METIJA
PKC_PHOSPHO _ 8 11 P
SITE
CK2_PHOSPHO _ 2 6 C
SITE
MYRISTYL 11 13 M
UPF0027 1 1 \%
Total 22 31
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Some of these occurrences overlap each other and the
SWP algorithm is not able to align simultaneously such
occurrences. On the other hand one has to consider
also the order of patterns. If two motifs occur in both
sequences in a different order, it is impossible to align
them.

The following procedure gives a method to know the
maximum number of motifs that can be aligned.

1. An alphabet with as many letters as different pat-
terns shared by sequences is created. In the last
example the alphabet is &/ ={P, C, M, V} (cf.
previous table).

2. For each sequence one builds the series of letters
corresponding to the orders of occurrences of differ-
ent patterns. There can be several series of letters in

Coeflicients
Below 1.0
Right 8.0

7

GHOALGTALTAEDLPENLAELRQAIETAVPHGRTT-GRCKRDKGAVENPP
| et ] ol (|
586 GVRLIRTELIKEEVQSKIKELIKTLFKBVPSGLGSKGILKFSKSVEDDVL

127 VEVDAKWAELEAGYQULT-----—-===-= QKYPRFLETOEYKH----L)
I Il |
636 E-EGVRVAVK-EGYGWKEDLEF IEEHGCLKDADASYVSDKAKERGRVQ

161 GEHFIEICL----- DESD---=—==-~ QUVINLHSGSRGIGOAIGT
i il I P
GUHFLEVQYVEKVFDEEAAEIYGIEENQVVVLVHTGSRGLEGHQICT

684

19

~

YFIDLAQKERQETLETLPSRDLAYFEEGTEYFDDYLKAVAWAQLFASLER
| I | 11l [
734 DYLRINEKAAKDYGIKLPDRQLACAPFESEEGQSYFKAHCCGANYAWANR

247 DAREEBVVTALQSITQKTVRQPQILAREEINC-HHEYVQKEQHFGEEI--
| [ [
784 QEITHWVRESFEEVFKINA---EDLERNIVYDVAHNIAKKEEKIIDGRKV

294 --YVIRKGAVSARA--—---------~ 6QYGIIPGSHGAKSFIVRELG -
A RN L O A I B

831 KVIVHRKGATRAFPPKHEAIPKEYWSVGQPVIIPGDEGTASYLERGTEIA

-

327 HEESFCSCSHGAGRVESRTKAKKLFSVEDQIRATAHVE--CRKDAEVID-
[ N A A A A A I |

881 EKETFGSTAHGAGRKLSRAKALKLUKGKEIQRRLAENGIVANSDSKAVEA

-

376 -EIPEAYKDIDAY
[ B N B A

931 EEAPEAYKSVDLV

-

case of overlap. In such a case only one pattern can
be aligned. For the sequence Y682_METIJA, one
has two sequences:

VPPMPCPPMMCPPMPPMCCMPMMMCMMP

PPMPCPPMMCPPMPPMCCMPMMMCMMP
since motifs V' and M overlap at the beginning of
the sequence. These two sequences compose a first
databank of motif series.A second databank is built
for the second sequence RTCB_ECOLI. It contains
12 possible series of letters corresponding to the
orders of occurrences of different patterns.

3. For each pair of sequences (4, B) where A belongs
to the first databank and B belongs to the second,
the longest common subsequence (with insertion
and deletion) is computed. The result can be ob-

22 EADARQPLIDTAKEPFIFKHIAVEPDVHLGKGSTIGBVIPTK---GAIIP
| LI I I B A | e et (|
39 EPEVLEQIANVACLPGIYKYSIARPDVHYGYGFAIGEVAAFDQREGVISP

69 AAV
|
89 GGVGFDINCLISESKILTDDGYYIKLEKLKEKLDLHIKIYNTEEGEXSSH

74 VDIGC
[
289 ASIIYSIIIBVEI!IAYGDEYISLCBDISIII!SIAFALFIHILEIPIGI

78 GHE
339 KTEQIYKIPEWIKKAPKWVKREFLAGLFGADGSRAVFKNYTPLPIOLTES

81 ALGIALIAEDLPEILABLIQAIEIAVPlGlIT-GICKIDlGAHEIPPVIV
[ I I [ |
589 LIRTOLFKEEVQSKIKELIKILFKEVPSGLGSKGILKFSKSVEDDVLEE-

130 DAKWAELEAGYQWL QKYPRFLOTEEYKHL
i | |
638 GVRWAVKE-GYGWKEDLEFIEEHGCLKDADASYVSDEKRKE-—--R6RVQL

160 |GTLGTGEHFIEICL~—-—-! DESD------—-~ QURIELHSGSRGIGHAIG
et I 1 (R NN
GSLGSGEHFLEVQYVEKVFDEEAAEIYGIEERQVVVLVHIGSRGLGHQIC

683

196 TYFIDLAQKEHQETLETLPSRDLAYFEEGTEYFDDYLKAVAWAQLFASLE
| | il [ [y I
733 TDYLRIEEKAAKEYGIKLPDRQLACAPFESEEGQSYFKANCCGANYAWAR

246 RDANEENVVIALQSITQKTVRQPQILAREEINCHHEYVQKEQHFGEEIY-
| | oI
783 RQEITHWVRESFEEVFKIHAEDLENRIVYDVAH--DIAKKEEHIIDGRKV

295 ‘-'VTIKEAVSAEL ------------- GQYGIIPGSHGAKSFIVRGLGNE
L [ I N O B
831 KVIVHRKGATRAFPPKHEAIPKEYWSVGQPVIIPGDEGTASYLHER-

329 [ESFLSCS—---HGAGRVESRTKAKKLFSVEDQIRATAHVECR--KDAEVI
e e [ |
879 [IANKETFGSTAHGAGRKLSRAKALKLVKGKEIQRRLAENGIVARSDSKAY

373 D--EIPEAYKDIDAVEAAQSDLVEVIYTILR
RN I R |
929 NAEEAPEAYKSVDLVADIC---HEKAGISLK

Fig. 6. Weight influences on alignments (sequences RTCB_ECOLI and Y682_METJA). Increasing pattern weight makes it possible
to introduce long gaps to connect distant similarity regions. Frames correspond to the pattern alignments.
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tained by the Smith & Waterman algorithm using
the following parameters:

e the substitution matrix is the identity matrix,

e gap-open and -extend penalties are set to 0.

. The maximum score of all possible pairwise com-
parisons gives the maximum number of motifs
which can be aligned. For the previous example
there are 12 x 2 = 24 possible pairwise comparisons
for which the maximum score is 15. Several align-
ments have this maximum score:

1 VPPMPCPPMMCPPMPPMCCMPMMMCMMP
I I I T O A B
i V--M-CPPMM-PP-P-M--M-M--C--P

1 VPPMPCPPMMCPPMPPMCCMPMMMCMMP
[N R N B A N I 111 s=15 I
1 V--M-CPPMM-PP-P-----P-MMC--P

3 PMPCPPMMCPPMPPMCCMPMMMCMMP
e feer
1 PM-CPPMM-P--P-----PMMMC--P

For the sequences RTCB_ECOLI and Y682_
METIJA, at most 15 patterns can be simultaneously
aligned. But we noticed before that our algorithm
aligns at most 12 patterns. Why is our algorithm not
able to align more than 12 patterns? The reason is that
the multiplicative way of weighting is not well suited
when the pattern alignment score is negative. We dis-
cuss this point in the following section.

S=15 (|

Alignment with weight = 8

©
L

Number of aligned patterns

24 Alignment with weight = 1

0 T T T
10 15

T T

20 25 30 35 40 45 50

Multiplicative weight

Fig. 7. Weight influence on the number of aligned occurrences
of patterns (sequences RTCB_ECOLI and Y682 METIJA).
The higher the weight, the greater the number of aligned
patterns. The saturation point seems to occur for 12 aligned
motifs.
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4.3. Shortcomings of the multiplicative model

When the regular expression is slack, that is when
there are a lot of strings which match the regular
expression, it may be possible to find two occurrences
of the pattern for which the score is negative. In such
case the multiplicative weight will never favor the align-
ment of occurrences. For example the pattern PS00011
is defined by the following regular expression:

3 PMPCPPMMCPPMPPMCCMPMMMCMMP
eer i
i PM-CPPMM-PP-PP------ MMC--P

| Il 1 s=15

1 MPPMPCPPMMCPPMPPMCCMPMMMCMMP

1 11 1 | s=18

1 M--M-CPPMM-PP-P-M--M-M--C--P

1 MPPMPCPPMMCPPMPPMCCMPMMMCMMP

(RERRIE
1 M--M-CPPMM-PP-P-----P-MMC--P

I I 111 | s=15

{12}E.{3}E.C.{6}[DEN].[LIVMFY].{9}[FYW]

The beginning of the pattern consists of 12 undefined
letters. Biologically that means that the useful pattern
‘E.{3}E.C.{6}[DEN].[LIVMFY].{9}[FYW] cannot oc-
cur at fewer than 12 positions from the beginning of the
sequence. Let us consider occurrences of the pattern
PS00011 in OSTC_MACFA and FA10_BOVIN:

OSTC_MACFA: WLGAPAPYPDPLEPKREVCE-
LNPDCDELADHIGFQEAY

FA10_BOVIN: FLEEVKQGNLERECLEEACSL-
EEAREVFEDAEQTDEFW

With the blosum62 substitution matrix and the gap-
open and gap-extend penalties equal to 10 and 1, the
pattern alignment is:

{12} E .{3} E.c .{6} [E].[F1 .{9} [wW]
43 FLEEVKQGNLER E CLE EAC SLEEAR E V F EDAEQTDEF W

I I I I I
4 WLGAPAPYPDPL E PKR EVC ELNPDC D E L ADHIGFQEA Y
{12} E .{3} E.c .{6} [E].[L] .{9} [Y]

and the alignment score is — 1. This final score is the
sum of the prefix alignment score (‘FLEEVKQGN-
LER’ and ‘WLGAPAPYPDPL’) and of the alignment
score of the useful pattern. The first one is — 14 and the
second is + 13. The prefixes are at the origin of the
negative score of the alignment: the prefixes do not
bring any information to the motif. To favor this
alignment one could implement an additive reward. But
with the additive model two similar occurrences of a
pattern would receive a reward equal to the one re-
ceived by two distant occurrences. For example for the
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pattern ‘[DEN]. [LIVMFYT, the pattern alignment

DLL
|:DML:| is probably more interesting than the align-

ment :| The scores of these alignments with

DL
|:NGY
the blosum62 matrix are respectively, 12 and —4.
With an additive model they receive the same reward,
while with a multiplicative model the reward is pro-
portional to the pattern alignment score and only the
first one is favored.

4.4. Data-bank scanning with SWP

The problem consists in finding all known sequences
from a databank which are similar to a query se-
quence. The different algorithms give a score which
makes it possible to rank sequences from the most
similar to the most distant. Is the SWP algorithm able
to improve the ranking of the sequences? Is the infor-
mation given by the pattern alignment sufficient to
improve this databank ranking?

Since the SWP algorithm differs from the Smith &
Waterman algorithm only for pairs of sequences
which share at least one pattern, we present the re-
sults of databank scanning with a query sequence hav-
ing a maximum number of patterns. If the query
sequence does not contain any pattern, the SWP
scores are strictly the same as those of the Smith &
Waterman algorithm.

Table 2 gives the distribution of PROSITE patterns
in Swissprot.

For example we choose the sequence FA12_HU-
MAN which has seven different motifs. We then com-
pared all sequences from Swissprot which share at
least one pattern with FA12_HUMAN: PS00021,
PS00022, PS00023, PS00134, PS00135, PS01186 and
PS01253. Table 3 shows for each pattern present in

Table 2
Distribution of PROSITE patterns in sequences from Swis-
sprot

Number of Number of sequences from Swissprot
PROSITE patterns  Rel. 35 with n patterns
(n)

1 24 176

2 7610

3 2605

4 563

5 173

6 140

7 38

8 4

FA12_HUMAN, the number of sequences from Swis-
sprot which share these patterns and also the total
number of occurrences.

The patterns PS00022 and PS01186 have been put
aside for complexity reasons since the number of oc-
currences was too large. Pattern PS00134 has not been
retained because it was not so informative: [LIVM]-
[ST]-A-[STAG]-H-C. Only patterns PS00021, PS00023,
PS00135, and PS01253 have been retained. The data-
bank of sequences sharing at least one of these four
patterns has been created and contains 321 sequences.

Table 4 gives the 20 highest scores when comparing
sequence FA12_ HUMAN against one of the 321 con-
sidered sequences. Several coefficients for weighting
have been tested. Globally one observed a stability of
the order in which sequences appear. But with a
weight greater than one the algorithm ranks some
sequences at a higher position (see sequences FINC_
HUMAN, FINC_BOVIN, FINC_RAT, and EL3B_
HUMAN). For example, the sequence
FINC_HUMAN occurs at the rank 273 with pattern
weight equal to one and is ranked at position 87 with
coefficient equal to three. Increasing the weight has
made it possible to connect two similarity regions
(Fig. 8).

The advantage of the SWP algorithm lies not only
in the improvment of the ranking but also in the
alignment itself. It makes possible in a large measure
to correct the lack of sensibility of the Smith & Wa-
terman algorithm, permitting the creation of long in-
sertions/deletions.

4.5. Weighting problem

The main recurrence 2 uses coefficients to favor
pattern alignment. The Reward (p) depends on the
aligned pattern p since the information given by a
pattern depends on its length and on its grammar. It
remains hard to assign a numerical value to a pattern
of the PROSITE databank.

Table 3
Number of pattern occurrences present in FA12_ HUMAN

PROSITE Number of sequences Pattern
pattern with pattern occurrence
number
PS00021 44 135
PS00022 321 1045
PS00023 29 55
PS00134 288 288
PS00135 287 287
PS01186 337 1071

PS01253 21 69
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Table 4

Databank scanning with SWP (extract)
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Coefficient =1 (SW)

Coefficient = 2

Coefficient = 3

Sequences Scores (1) Sequences Scores (1) Sequences Scores (1)
1 FA12_CAVPO 2507 4 FA12_CAVPO 3019 4 FA12_CAVPO 3531 4
2 FA12_BOVIN 2425 4 FA12_BOVIN 2935 4 FA12_BOVIN 3445 4
3 HGFA_HUMAN 1193 4 HGFA_HUMAN 1485 4 HGFA_HUMAN 1777 4
4 UROT_HUMAN 712 3 URT2_DESRO 852 3 URT2_DESRO 997 3
5 URTI1_DESRO 708 2 URT1_DESRO 850 3 URT1_DESRO 993 3
6 URT2_DESRO 707 3 UROT_HUMAN 849 3 UROT_HUMAN 986 3
7 UROT_RAT 694 3 UROT_RAT 832 3 UROT_RAT 970 3
8 UROT_BOVIN 687 3 UROT_BOVIN 826 3 UROT_BOVIN 965 3
9 UROT_MOUSE 675 3 UROT_MOUSE 808 3 UROT_MOUSE 941 3
10 URTB_DESRO 666 2 URTB_DESRO 769 2 URTB_DESRO 872 2
11 UROK _BOVIN 663 2 UROK _BOVIN 763 2 UROK_BOVIN 863 2
12 UROK_RAT 656 2 UROK_HUMAN 754 2 UROK_HUMAN 854 2
13 UROK_HUMAN 654 2 UROK_RAT 750 2 UROK_RAT 844 2
14 UROK_PIG 639 2 UROK _PIG 739 2 UROK _PIG 839 2
15 UROK _PAPCY 628 2 UROK _PAPCY 728 2 UROK_PAPCY 828 2
16 UROK_MOUSE 623 2 UROK_MOUSE 718 2 UROK_MOUSE 813 2
17 PLMN _PIG 587 2 PLMN_PIG 687 2 PLMN_PIG 787 2
18 PLMN_BOVIN 582 2 PLMN_BOVIN 682 2 PLMN_BOVIN 782 2
19 PLMN_HUMAN 582 2 PLMN_HUMAN 682 2 PLMN_HUMAN 782 2
20 URTG_DESRO 571 2 URTG_DESRO 674 2 URTG_DESRO 777 2
87 CFAD_RAT 347 1 ENTK_MOUSE 412 1 FINC_HUMAN 475 2
88 TRY2_ANOGA 345 1 TRY2_ANOGA 412 1 FINC_RAT 474 2
100 EL2_BOVIN 334 1 TRYA_HUMAN 397 1 FINC_BOVIN 462 2
218 COGS_UCAPU 247 1 FINC_HUMAN 304 2 CTRB_GADMO 379 1
219 SNAK_DROME 247 1 FINC RAT 301 2 TRYZ_DROME 377 1
224 NKP1_RAT 237 1 FINC_BOVIN 295 2 EL3B_HUMAN 372 1
273 FINC_HUMAN 147 1 TRYP_CHOFU 243 1 GRAB-MOUSE 305 1
274 FINC_BOVIN 147 1 MPRI_MOUSE 240 1 MCP1_PAPHA 303 1
279 FINC RAT 142 1 GRL2_RAT 229 1 MCP2_MERUN 285 1

Sequence FA12_ HUMAN has been compared with all sequences from Swissprot Rel. 35 which share at least one of the following
patterns: PS00021, PS00023, PS00135 and PS01253. When the coefficient is one, the SWP coincides with the SW algorithm. Columns

(1) give the number of aligned patterns.

The weight has to depend on the information level of
the pattern. The more informative the pattern, the
greater the associated weight. The information given by
a pattern is inversely proportional to the probability of
observing an occurrence of the pattern in a random
sequence.

Information theory says that the information of an
event is equal to — log,(¢) (McEliece, 1977) where ¢ is
the probability of the event. One has to compute or
estimate the probability of observing a pattern in a
random  sequence. Nicodéme and co-workers
(Nicodéme et al., 1999, 2002) presented a complete
analysis of the statistics of the number of pattern
occurrences in a random text. The characteristics of the
distribution of the number of pattern occurrences are
effectively computable, both exactly and asymptoti-
cally. These results would be a great help for evaluating
the weight for each pattern from PROSITE.

5. Conclusion

We have proposed a new algorithm based on the
dynamic programming approach which takes into ac-
count the information coming from the occurrences of
PROSITE motifs. The similarity score of the Smith &
Waterman algorithm has been modified to incorporate
the presence of PROSITE patterns. The aim is to guide
properly the alignment algorithm when patterns are
present in both sequences. In databank scanning our
algorithm SWP can reveal similarities between se-
quences which otherwise would be hidden. The reward-
ing method remains one possibility among others for
improving the Smith & Waterman algorithm, allowing
the creation of long insertions/deletions. For each pat-
tern the weight has to be chosen. This point remains
tricky, further work is needed to give a method for
evaluating the weight according to the statistical
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Weight : 1

394 DQKYSFCTDHTVLVQTQGGESNGALCHFPFLYNNHEYTDCTSEGRRDEM|

I N | e I
27 EHKYKAE-EHTVVLTVIG----- ERCHFPFQYHRQLYERCTHKGRPGPQ

)

444 WCGTTQNYDADQKFGFC
R N A
71 [WCATTPNFDQDQRWGYC

Motif 1 :

c.{2}PF. [FYWI].{7}C.{8,10}WC.{4} [DNSR] [FYW]
.{3,6}[FYW]. [FYWI]C

Motif 2 :

c.{6,8}[LFY].{6}[FYW]. [RK].{8,10}C.C.{6,9}C

Score : 147
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444
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103

544
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Weight : 3
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1 I | (ARNN [T
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Score : 475
SW score : 133

pattern alignment scores : 34 and 137

Fig. 8. Alignment of sequences FA12_ HUMAN and FINC_HUMAN with two different weights.

behavior of the number of occurrences of a pattern in a
random text.

In this study, we have focused on patterns from the
PROSITE databank, but other biological information
(e.g. the secondary structure, chemical characteriza-
tion, ...) could be incorporated instead of, or in addition
to, the patterns.
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