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ABSTRACT: Early derisking decisions in the development of new
chemical compounds enable the identification of novel chemical
candidates with improved safety profiles. In vivo studies are traditionally
conducted in the early assessment of acute oral toxicity of crop protection
products to avoid compounds, which are considered “very acutely toxic”,
with an in vivo lethal dose of 50% (LD50) ≤ 60 mg/kg body weight.
Those studies are lengthy and costly and raise ethical concerns, catalyzing
the use of nonanimal alternatives. The objective of our analysis was to
assess the predictive efÏcacy of read-across approaches for acute oral
toxicity in rats, comparing the use of chemical structure information, in
vitro biological data derived from the Cell Painting profiling assay on
U2OS cells, or the combination of both. Our findings indicate that the classification of compounds as very acute oral toxic (LD50 ≤
60 mg/kg) or not is possible using a read-across approach, with chemical structure information, morphological profiles, or a
combination of both. When classifying compounds structurally similar to those in the training set, the chemical structure was more
predictive (balanced accuracy of 0.82). Conversely, when the compounds to be classified were structurally different from those in the
training set, the morphological profiles were more predictive (balanced accuracy of 0.72). Combining the two models allowed for the
classification of compounds structurally similar to those in the training set to slightly improve the predictions (balanced accuracy of
0.85).

■ INTRODUCTION

Small molecule discovery involves identifying and developing
novel chemical compounds with optimized safety profiles across
various target and nontarget species, including laboratory
animals, humans, and environmental species. This complex
process requires the integration of chemical and biological
exploration. Chemists design diverse compounds to interact
with specific biological targets or pathways, while biological
assays assess efÏcacy and safety, guiding further chemical
optimization. Balancing potency with selectivity and minimizing
off-target effects present a significant challenge. To achieve this,
chemists often explore new chemical spaces to discover novel
structures with the desired properties.1,2 Additionally, the
complexity of biological systems poses hurdles, as the interplay
of various factors influences a molecule’s properties. Success in
small molecule discovery hinges on a multidisciplinary
approach, where chemists, biologists, and data scientists
collaborate to navigate the intricate landscape of chemical and
biological interactions, ultimately advancing the development of
new active substances. In agrochemical discovery, early
derisking is crucial involving systematic assessment of
compounds for potential safety issues to be addressed as early
as possible. Addressing genotoxicity and acute oral toxicity is
essential due to established cutoff criteria.3

Traditionally, early genotoxicity evaluations are performed
with in vitro test methods (Ames and Micronucleus assays)
whereas acute oral toxicity profile screening involves laboratory
animal testing in rodents to obtain a first estimate of the LD50
representing the single dose level at which lethality is induced in
at least in 50% of the tested animals. The traditional in vivo
studies for acute oral toxicity assessment are time-consuming,
expensive, and have low throughput, making it challenging to
test a large number of chemicals. Animal studies also raise ethical
concerns and must be reduced or if possible, eliminated. Higher
throughput alternatives are desired, for the ranking of chemical
candidates for their prioritization into the R&D pipeline based
on their toxicological profiles. This minimizes resource waste,
specifically extended R&D efforts for a chemical that is
otherwise only later discovered to not meet required safety
standards.
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Nonanimal alternatives are already available to reduce in vivo
studies, including in vitro approaches and in silico models for
early estimation of the LD50. For instance, the in vitro 3T3
neutral red uptake assay (NRU)4 can serve to categorize
compounds with in vivo LD50 greater or lower than 2000 mg/
kg. However, this LD50 threshold is high and may not
discriminate compounds with lower LD50s. In acute toxicity
testing, a low LD50 value (LD50 ≤ 60 mg/kg) means a high
potential for acute toxicity, which is an unwanted safety profile.3
In silico models are emerging that may close this gap.

Quantitative structure−activity relationship (QSAR) models
rely on machine learning based on structural information on
chemical compounds. One notable example is the Collaborative
Acute Toxicity Modeling Suite (CATMoS), a public QSAR
model built in a collaboration of several research groups.
CATMoS was trained on more than 10,000 compounds and
demonstrated high performance in predicting acute oral toxicity
in rats.5 As a regression model, CATMoS can predict the LD50
and classify chemicals into the five categories of the Global
Harmonized System (GHS). However, it is important to note
that QSAR model predictions are only reliable within their
applicability domain, namely, the chemical space covered by the
chemistry represented in the training set. This represents a
significant limitation when using such models to predict
properties of novel chemistry not represented in the training set.
In this situation, we hypothesized that using in vitro highly

biologically dense profiles could be used instead of chemical
structure information, especially when exploring new chemical
spaces. A similar approach has been explored to expand the
applicability domain of a QSAR model.6 The Carpenter−Singh
Lab at the Broad Institute has developed an in vitro high-content
biologically profiling assay, Cell Painting, which captures the
morphological information on cells perturbed by chemicals.7

The primary advantage of Cell Painting lies in its untargeted
nature, theoretically allowing it to capture any bioactivity that
induces a change in cell morphology. Additionally, this assay is
more cost-effective than other profiling assays such as
transcriptomics.8 Cell Painting has already been used success-
fully, in “hit” discovery and in mode of action (MoA)
prediction.9−11 In the field of toxicology, the US Environmental
Protection Agency (EPA) has explored its use to screen
bioactive compounds for human risk assessment.12 More
recently, Cell Painting has also been utilized for the prediction
of mitochondrial toxicity13,14 and liver toxicity.15

To evaluate if biological information could complement
compound structure predictions for acute oral toxicity especially
when exploring new chemical spaces, classifiers were employed
to predict whether compounds had very high acute oral toxicity
(LD50≤ 60mg/kg) or not (LD50 > 60mg/kg). Initially, a well-
performing public QSAR model, CATMoS, was utilized for the
prediction of a set of Bayer Cros Science compounds. Second, a
simple chemical structural similarity-based classifier (utilizing a
K nearest neighbor16) was employed for the prediction of the
same set of compounds. This approach, also known as the read-
across approach, is commonly used in toxicology specifically in
the case of tox data-poor chemicals, such as REACH compounds
with a limited number of in vivo results.17 To simulate scenarios
where predictions using the models are made on novel
chemistry, a “novel chemistry” holdout strategy was created to
assess the classifier. To verify the efÏcacy of this holdout strategy,
the chemical structural similarity-based classifier was again
evaluated. A Cell Painting assay was conducted on a smaller
subset of compounds using the U2OS cell line to evaluate read-

across morphological profiles. The results of the two similarity-
based classifiers were assessed: one based on chemical structure
and one based on morphological profiles derived from Cell
Painting. Both classifiers were also tested in the context of the
“novel chemistry” holdout strategy. Finally, a decision support
model was constructed to determine which of the two similarity-
based classifiers (chemical structure or morphological profile)
should be recommended for the prediction of acute toxicity.
Overall, our results showed that the classification of

compounds as very acute oral toxic (LD50 ≤ 60 mg/kg) is
possible using a read-across approach, with chemical structure
information, morphological profiles, or a combination of both.
When classifying compounds structurally similar to those of the
training set, the chemical structure was more predictive
(balanced accuracy of 0.82). Conversely, when the compounds
to be classified were structurally different from those of the
training set, the morphological profiles were more predictive
(balanced accuracy of 0.72). Combining both models allowed
for the classification of compounds structurally similar to those
used to train the classifiers to slightly enhance the predictions
(balanced accuracy of 0.85).

■ MATERIALS AND METHODS

Acute Oral Toxicity Compound Classes. The compounds were
divided into two classes. The class designated as “very acutely oral toxic”
(abbreviated VAOT) included compounds with a lethal dose (LD50)
of 60 mg/kg or less. The class designated as “not very acutely oral toxic”
(abbreviated NVAOT) included compounds with a lethal dose (LD50)
greater than 60 mg/kg. (Table 1).

Compound Selection. Compounds with Acute Oral Toxicity
Results in Rats. To select compounds, Bayer internal databases were
queried. A total of 765 compounds with in vivo rat acute oral toxicity
results were found for two doses: 60 and 300 mg/kg. Of the 765
compounds, 109 compounds were identified as acute toxic at a dose of
60 mg/kg, meaning compounds belonging to the VAOT class, and 521
compounds were not toxic at 300 mg/kg, meaning compounds
belonging to the NVAOT class. To create a robust contrast between the
morphological profiles of the VAOT and NVAOT classes, we excluded
135 compounds that were acutely toxic at 300 mg/kg but not at 60 mg/
kg. This resulted in the first data set of 630 compounds, which were
used to test the acute toxicity prediction of the collaborative Acute
Toxicity Modeling Suite (CATMoS)5 and to build a chemical structure
similarity-based classifier.

For the Cell Painting campaign, we checked which of the previous
data set compounds were available in Bayer internal compound
repository, 81 VAOT compounds were found. To complete the list of
VAOT compounds, we queried the chemIDplus public database,18 and
selected 29 compounds that were available in Bayer compound
logistics, making a total of 110 VAOT compounds. To have a balanced
data set, 116 NVAOT compounds were selected. To have a good
chemical structure diversity among them, the Butina algorithm19 was
used to cluster the 521 compounds of the previous data set, based on
the Tanimoto similarity of their Morgan fingerprint and a threshold of
0.7: a maximum of clusters was selected and the number of compounds
coming from the same cluster were minimized (Supporting
Information Figure S1). This selection resulted in a total of 116
NVAOT compounds and 110 VAOT.

To summarize, two sets of compounds were defined. The first one,
called “QSAR only compound set”, was a set of 630 compounds; 109
were VAOT and 521 were NVAOT. The second one, called “Cell

Table 1. Definition of the Two Acute Oral Toxicity Classes

acute oral toxicity classes

very acutely oral toxic − VAOT rat oral LD50 ≤ 60 mg/kg

not very acutely oral toxic - NVAOT rat oral LD50 > 60 mg/kg
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Painting compound set”, was a set of 226 compounds; 110 were VAOT,
and 116 were NVAOT (Figure 1).
Negative and Positive Controls. For the Cell Painting assay, DMSO

(dimethyl sulfoxide) only (0.1%) was used as the negative control.
To monitor the Cell Painting assay’s performance and assess the

quality of the experiment’s replicates, a set of positive controls was used.
These were compounds that inducibly produced reproducible and
distinct morphological profiles in U2OS cells. The selection was based
on published literature and pilot tests in our lab (Supporting
Information, Table S2).
CATMoS QSAR Model. As a first attempt, the acute oral toxicity class

of the compounds was predicted using the collaborative Acute Toxicity
Modeling Suite (CATMoS)QSARmodel, implemented in the OPERA
(version 2.9)5,20QSAR suite. To align with the two classes presented in
this paper (VAOT and NVAOT), three CATMoS predictions were
needed: the EPA classification, the GHS classification, and the LD50
range estimation. All compounds being classified by CATMoS as EPA
category 1 (LD50≤ 50mg/kg), GHS category 1 (LD50≤ 5mg/kg), or
GHS category 2 (5 mg/kg < LD50 ≤ 50 mg/kg) were designated as
VAOT. For compounds being classified as EPA category 2 (50mg/kg <
LD50≤ 500mg/kg) or GHS category 3 (50mg/kg < LD50≤ 300mg/
kg), the lower limit of the LD50 range predictions was considered: if the
inferior limits were smaller than 60, the compounds were classified as
VAOT. For all other predictions, the compounds were classified as
NVOAT.

The Opera implementation of CATMoS provides three prediction
reliability metrics20 that were used to understand the predictions made
by the model. A global applicability domain Boolean value is calculated,
indicating if a compound falls within the training set’s chemical space.
Additionally, an applicability domain index is calculated, ranging from
zero to one, revealing the proximity of the queried compound to the
training set. This index is relative to the similarity of the query chemical
to its five nearest neighbors.20 In particular, a query chemical
compound can belong to the CATMoS AD (global AD = 1) but can
also be in a “gap” of the training chemical space (AD index < 0.6).20 In
such cases, the predictions should be considered with caution.20 Finally,
a confidence index is computed, indicating the accuracy of the
prediction of the neighbors of the queried compound.
Cell Painting Campaign. A Cell Painting campaign was conducted

in our laboratory to obtain the morphological profiles of our “Cell
Painting compound set” (set of 226 compounds). The Cell Painting
Protocol v3 of the Broad Institute was utilized on U2OS human
osteosarcoma cells with four biological replicates.21

A previous Cell Painting pilot conducted at the unique dose of 10 μM
demonstrated that few agrochemical compounds exhibited morpho-
logical changes compared to the negative control (see the
Morphological Change Signal Measure section, and the Biological
Response section). Therefore, in this campaign, to enhance the
likelihood of capturing a morphological response, the compounds were
screened at three concentrations: 10, 31.6, and 100 μM.
Cell Culture and Seeding. Human osteosarcoma cells U2OS have

been purchased from ATCC (ref: HTB-96, lot: 70025046). The
McCoy’s 5A modified medium with GlutaMAX supplement (Thermo
Fisher, ref: 36600021) supplemented with 10% fetal bovine serum
(Gibco, ref: 16000044) and penicillin/streptomycin mix (Sigma-

Aldrich, ref: P4458) was used for culturing cells in T75 or T175 flasks in
a standard humidified incubator (37 °C and 5% CO2). The passages
were performed when the culture achieved about 80% confluency.
Trypsin (Thermo Fisher, ref 25200056) was used to detach the cells
during passage, and the number of live cells was calculated with an
automatic cell counter (Countess II, Thermo Fisher) after staining the
cells with trypan blue (Sigma, ref.: T8154). For the creation of a cell
bank, the vial with frozen cells received from the supplier was thawed
and expanded until internal passage 3 (P3). At this stage, the cells were
cryopreserved in complete media supplemented with 10%DMSO in an
ultralow temperature freezer (−150 °C) creating a master bank. One
vial of themaster bank was then thawed, expanded until internal passage
no. 6 (P6), and cryopreserved as before to create a working bank. Vials
of the working bank were then directly used for seeding the microplates.
One vial of cells (containing 4 million cells) was removed from a −150
°C freezer and thawed in the water bath. The contents of the vial were
immediately added to 10 mL of preheated complete media and
centrifuged (5 min, 120 × g). After removal of the supernatant, the cell
pellet was resuspended in 10 mL of complete medium through
thorough pipetting. The cell suspension was then added to 150 mL of
medium in a round bottle with a magnetic stirrer and immediately used
for seeding the 384-well microplates (Greiner BioONE CELLSTAR
μCLEAR; ref: 781091). Multidrop (Thermo Fisher) was used to
automatically distribute 36 μL of cell suspension per well, resulting in a
seeding density of around 900 cells/well. The cells were then incubated
at 37 °C in an atmosphere of 5% CO2 in an automatized incubator
(Cytomat 2, Thermo Fisher). All experimental replicates were
performed on a different day using a separate cell vial originating
from the same working bank (P6).

Chemical Treatment. The test compounds were received in powder
form in 96-well deep well plates. They were then dissolved in DMSO
(dimethyl sulfoxide) to create 100 mM stock solutions, aliquoted in 96-
well V-bottom plates (V96 PP Plate, Thermo Fisher), and frozen at−20
°C until the day of the treatment. Every biological replicate of the
experiment originates from a separate aliquot of the stock solution plate
so that the compounds undergo only 1 freeze−thaw cycle. On the day
of the treatment (24 h postseeding), the plates containing stock
solutions were thawed and the compounds were diluted in DMSO to
create dose plates containing three concentrations per compound: 100,
31.6, and 10 mM. The dilutions were performed with the use of a Viper
liquid handler (Synchron). The compound solutions from the dose
plates were then administered to the cell plates in a two-step process.
First, an intermediate dilution was prepared: 1 μL of the compound
solution was diluted in 100 μL of complete cell medium (1:100
dilution), and next, 4 μL of the resulting intermediate solution was
administered to the cell plate (4 μL of the diluted compound into 36 μL
of cell media, 1:10 dilution). The final concentrations of compounds
that the cells were exposed to were therefore 10, 31.6, and 100 μM, and
the final vehicle (DMSO) concentration was 0.1%. The treated cell
plates were subsequently incubated with the compounds for 48 h.

Staining. The staining and fixation were performed following the
published protocol21 with the use of PhenoVue JUMP kit
(PerkinElmer, ref.: PING23). Briefly, 20 μL/well of the Mitotracker
solution was distributed to the cell plates with Multidrop (final
concentration: 500 nM). After 30 min of incubation at 37 °C, 20 μL/

Figure 1. Composition of the two data sets by compound class: VAOT (very acutely oral toxic) and NVAOT (not very acutely oral toxic); and by
source: Bayer et al. and ChemIDplus. (a) QSAR is the only compound set. Set used for QSAR classifiers only. (b) Cell Painting compound set was used
for chemical structure and morphological profile classifiers.
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well of 16% PFA solution (Thermo Fisher, ref 28908) was added. The
fixation was performed at room temperature (25 °C). Two washes with
HBSS buffer (Gibco, ref: 14065−056) were performed with the aid of a
Mutlifo washer (BioTek). Twenty μL/well of the staining solution
(HBSS, 1% BSA, 0.1% Triton X-100, 43.7 nM PhenoVue Fluor 555−
WGA; 48 nM PhenoVue Fluor 488−Concanavalin A; 8.25 nM
PhenoVue Fluor 568−Phalloidin; 1.62 μM PhenoVue Hoechst 33342
nuclear stain; 6 μM PhenoVue 512 nucleic acid stain) was added, and
the plates were incubated for 30 min at room temperature before being
washed again three times with HBSS. The plates were then sealed with
aluminum foil, and images were recorded directly.
Morphological Profile Generation. Image Acquisition. ImageX-

press Micro 4 epifluorescent microscope (Molecular Devices) with a
20× air objective was used for recording the fluorescent images (16-
bit). The camera binning was set to 2× 2. The total imaged area per well
spanned 2163 μm × 2163 μm and consisted of 3 × 3 adjacent fields of
view placed in the center of the well. For each field of view, images were
recorded in five channels. The following filter sets were used: DAPI,
GFP, Cy3, Texas Red, and Cy5. The Z-offset and exposure times were
set separately for each channel. A total of 207,360 images were acquired
in this campaign.
Feature Extraction. Morphological features were extracted using

CellProfiler (version 4.2.1), the cell analysis software developed by the
Broad Institute.22 Two CellProfiler pipelines were used: one pipeline
for image illumination correction and one pipeline for image analysis.
The image illumination correction works at the plate level and averages
the intensity of the images of each channel. The image analysis pipeline
segmented objects on each image, they were labeled according to the
channel they were segmented on, and thousands of measurements were
made on those objects at the cell level. It also took measurements at the
image level. A total of 4,761 features were measured and formed the
morphological profile of a given cell.
Aggregation and Normalization. After extracting the cell

morphological profiles with CellProfiler, features were aggregated at
the well level by taking the means of each feature.

The features were then normalized, following the Broad Institute
approach,7 using the “mad robustized” method of the Python
pycytominer package provided by the Broad Institute.23 The normal-
ization process involved calculating the median of all wells on a plate for
each feature, subtracting this value from the median absolute deviation
(MAD) of the wells on the plate, and then multiplying the result by
1.4826 to obtain an unbiased estimator. To avoid a null denominator
when the MAD was null, a value of 10−18 was added to the MAD.

=

+

x

x x

x

median( )

mad( )
norm

well plate

plate

where xnorm is the normalized value of a morphological profile feature.
xwell is the value of a morphological profile feature.
xplate shows the values of a morphological profile feature of a plate.

= × | |x x xmad( ) 1.4826 median( median( ) )plate plate plate

ε an infinitesimally small positive quantity (10−18) to avoid a null
denominator.
Quality Check. To assess the quality of the Cell Painting

experiment, several metrics were calculated. First, the number of cells
of the negative control treatment (DMSO) was monitored, which was
an output of the Cell Profiler segmentation. The cell numbers should
fall within the range of [1800; 3000] cells per well. The coefÏcient of
variation of the number of cells for the negative control treatment
should not exceed 15% per plate. All plates met the initial quality
control standard.

To identify any other potential technical issues with the experiment,
we calculated the Pearson correlations of positive controls across plates
were calculated. The positive controls were selected to elicit very
distinct and reproducible morphological profiles and were included in
each plate. In a well-executed experiment, the replicates of these
treatments should be well correlated. A correlation threshold of 0.8 was
set for the Pearson correlation between replicates. Replicates were
considered nonwell-correlated if the correlation fell below this

threshold. No outlier plates were identified at this stage, and all of
the plates passed this quality control step.

There were 10 missing feature values at the well level in the
morphological profiles. Themajority of these values originated from the
“Cells_AreaShape_FormFactor” feature. This feature was removed
along with two wells, in order to remove all missing values.

Further outliers were identified based on the number of cells within a
group of replicates. Somewells exhibited a significant discrepancy in cell
counts, with values exceeding 1800 cells, compared with other
replicates of the same treatment. Twenty-two wells were identified as
outliers and removed from the analysis.

Unsupervised Feature Selection. To reduce the dimensionality of
the normalized morphological profiles, an unsupervised feature
selection was performed with the “feature_select” function of the
pycytominer Python package.23

This function performed several steps to select the features. First,
highly correlated features were removed. For a pair of features with a
Pearson correlation greater or equal to 0.9, the feature with the smallest
sum of correlations with other features was removed. Second, features
with low variances were removed. For a given feature, if the count of the
second most common feature value divided by the count of the most
common feature value was less than 0.05, the feature was removed.
Furthermore, features with a ratio defined as the number of unique
feature values divided by the number of samples, below 0.01, were
excluded. Third, a list of features (contained in the package) that are
known to be noisy and generally unreliable were removed. Fourth,
features with at least one absolute value greater than 500, values
considered as outliers, were not retained. Finally, within each treatment
group, any features with a standard deviation greater than 1.2 were
removed. This was done to identify and remove any noisy features. This
process resulted in a total of 644 features that were then used for
downstream analysis.

Consensus Profiles. For a given treatment, in our case a chemical
compound at a given concentration, the consensus profiles were
obtained by aggregating the replicates. This was done by taking the
median values of the replicates for each of the remaining features after
unsupervised feature selection.

Morphological Change Signal Measure. We utilized the grit
score,24,25 a metric developed by the Broad Institute, to measure the
morphological changes in a treatment replicate relative to the negative
control treatment (DMSO). To calculate this metric, different Pearson
correlation coefÏcients were calculated. First, the correlations between
the morphological profiles of a given treatment replicate and each of the
negative control treatments were calculated. The distribution of those
correlations was defined by its mean and standard deviation.
Subsequently, the correlations between the morphological profiles of
a given treatment replicate and those of other replicates of this
treatment were calculated. Each of the previous correlation coefÏcients
was z-transformed by using the distribution of the correlations with the
negative controls. The mean was subtracted, and the results were
divided by the standard deviation. The grit scores were then obtained
by taking the mean of the transformed values.

The grit score indicated how much a given replicate profile deviated
from the negative control profiles. A high grit score indicated a high
deviation of the profile from the negative control profiles.

Median grit scores for a given treatment were also calculated, taking
the median of the treatment replicate grit scores. This median grit score
value allowed measuring how much a treatment impacts the
morphology of U2OS cells compared to the negative controls
(DMSO).

A threshold of 1 was set to indicate a treatment that induces a
morphological change compared to that of the negative control. A grit
score of 1 means that the correlation of the morphological profile of a
treatment to its replicates is one standard deviation away from themean
of its correlation with the negative control profiles.

Molecular Fingerprints. The compound structures were extracted
from the Bayer database in SMILES format (simplified molecular-input
line-entry system). To reproduce the case when new chemical
structures fall outside the applicability domain of chemical structure-
based predictive models, the Morgan fingerprints were employed to
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describe the chemical structures of the compounds. To ensure sufÏcient
Butina clusters for our data holdout strategy (see Chemical compounds
Clustering with Butina and Data Set Splits), we selected a Morgan
fingerprint on 1024 bits to provide the most detailed chemical structure
description and thus differentiate more structural differences.19,26,27 To
obtain them from the SMILES, we performed the following steps using
the RDKIT Python package.28

First, the SMILES were cleaned using theMolStandardize module of
RDKIT. This involved removing hydrogens, disconnecting metal
atoms, normalizing and ionizing the molecule, and keeping the parent
fragments when several fragments of a compound existed. The
molecule was then neutralized, and the canonical tautomer was
returned. Finally, the cleaned SMILES were used to compute the
Morgan fingerprints on 1024 bits, with a radius of three.
Chemical Compounds Clustering with Butina. The Butina

clustering algorithm groups molecules based on their structural
similarity.19 The RDKit implementation of the Butina algorithm was
used to cluster the chemical compounds.28 The clustering was based on
the Tanimoto similarity of the Morgan fingerprints of the molecules,
with a cutoff value of 0.7.
Data Set Splits. To assess the performance of the binary classifiers,

the data set was split several times into training and testing sets. Two
types of splits were performed: a random one, which did not consider
the chemical similarities of the compounds, and another split that aimed
to create sets of structurally different chemicals. This was done to
produce cases where the compounds to be classified were novel
structures and therefore outside the applicability domain (Figure 2).

For the random split, called the “known chemistry case”, a stratified
10-fold-cross-validation was performed to split the data set into 10
different training and testing sets. The scikit-learn Python package29

was used to perform those splits with the StratifiedKFold function. The
data set was split 10 times with a 10-fold cross-validation with each
cross-validation having a different random state, resulting in a total of
100 different splits. Each testing set included 22 or 23 compounds.

For the splits based on the chemical structures of the molecules,
called the “novel chemistry case”, the compound structures were
clustered using the Butina clustering algorithm.19 A cluster number was
then assigned to each compound. The StratifiedGroupK-Fold function
of scikit-learn was used to make a 10-fold cross-validation based on the
cluster number.29 Indeed, this function assigned cluster numbers to the
testing sets that differed from those in the training set. Additionally, it
was attempted to maintain a consistent ratio of VAOT and NVAOT
classes within each set. The data set was split in this manner 10 times,
with different random states, resulting in a total of 100 unique splits. If
any of these splits did not include compounds from both classes in the
test sets, then they were discarded.

Binary Classification Classifier. To classify compounds as VAOT or
NVOAT, several algorithms were tested. For this analysis, we decided
to use a K nearest neighbors (KNN) algorithm,16 as it showed good
performances (Supporting Information). The KNN algorithm has also
the advantage of being explainable and functions like a read-across,
technique commonly used for toxicity prediction.30

We used the scikit-learn29 implementation of the K nearest
neighbors (KNN) classification algorithm. Several classifiers were
built depending on the data that were used as the input. When using the
chemical Morgan fingerprints, the Tanimoto (Jaccard) distance was
used, and when using the morphological profiles, the Pearson
correlation-based similarity measure (1-Pearson correlation) was
used. For all classifiers, we set the number of neighbors to one. The
choice of the distances and the number of neighbors were the results of
benchmarking done on both data sets (supplementary data).

Decision Support Model. To aid the decision when the two types of
classifiers (Morgan fingerprint and Cell Painting morphological profile
classifiers) did not predict the same class, a model was built, similar to
the Similarity-based merger model.31 This ensemble model takes as
input the predictions of the two KNN classifiers along with the
distances of the nearest neighbors of each prediction (in total four
values). A classifier was trained in each training set for the cases where

Figure 2. Example on UMAP of the chemical space of training and test sets from the two holdout strategies. For the “known chemistry” case, the
training and test sets are originated from the same space. For the “novel chemistry” case, the training and test sets are originated from different Butina
clusters. Each color on the UMAP corresponds to a Butina cluster.

Figure 3. Decision support model.
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the two KNN classifiers did not agree on the predicted class. In the test
sets, we used this model only when the two KNNs did not predict the
same classes, otherwise the consensual predicted classes of the two
classifiers were set as the final class (Figure 3).

For this decision support model, we used an SVM classifier32
implementation of scikit-learn.29

In the “novel chemistry” case, the training set did not have enough
examples with high distances. To remedy this, synthetic examples of
distant structures were added. To do this, we subset the cases in each
training set where the chemical structure-based predictions did not
match the real class, and we updated the nearest neighbor distances
with a random number between 0.7 and 0.9 and added these synthetic
examples to the data set used to train the model. By doing so, the
decision support model can learn not to favor the class of structurally
distant chemical compounds.
Model Performance Evaluation. To evaluate the performance of

the classifiers, we used different metrics. They were all based on the
number of true positive (TP), true negative (TN), false positive (FP),
and false negative (FN), which were the results of the model
classification of a given testing set in a confusion matrix.

=

+

sensitivity: SN T
TP

TP FN

=

+

specificity: SP
TN

TN FP

=
+

balanced accuracy: BA
SN SP

2

=
× ×

+ + + +

Matthews correlation coefficient: MCC
TP TN FP FN

(TP FP)(TP FN)(TN FP)(TN FN)

=
+

+ + +

accuracy: ACC
TP TN

TP FN TN FP

When using cross-validation, those metrics were averaged over all
testing sets and their standard deviations were calculated.

We performed a corrected t test33 to compare the balanced accuracy
values over the splits of classification models.

Visualization of the Chemical and Biological Spaces. To visualize
on two-dimensional scatter plots the chemical and the biological spaces,
UMAP embeddings were generated using the UMAP Python
package.34 For the chemical space, the chemical compound structure
similarities embeddings were calculated with the Tanimoto distances of
the compound Morgan fingerprints. As for the biological space, the
morphological profile similarity embeddings were computed using their
Pearson correlation-based similarity measures. The plots were
visualized with TIBCO Spotfire software.

■ RESULTS

The objective of our analysis was to assess the predictive efÏcacy
of read-across approaches for acute oral toxicity in rats
comparing the use of chemical structural information, in vitro
biological data derived from the Cell Painting profiling assay on
U2OS cells, or the combination of both. Two distinct types of
inputs were utilized to construct KNN models that classify
compounds as Very acutely oral toxic (VAOT) or Non very
acutely oral toxic (NVAOT).
Initially, we categorized 630 Bayer Crop Science (BCS)

agrochemical compounds with known acute rat toxicity results
using the public QSARmodel CATMoS.5 Additionally, we used
this specific unbalanced set of 630 compounds to build a
structure similarity-based classifier. Subsequently, KNN classi-
fiers were used on a reduced but balanced set of 226 compounds
using either the chemical structures or their morphological
profiles in U2OS cells. A comprehensive analysis of both the
chemical space (represented by the chemical structures) and
biological space (revealed by the U2OS morphological profiles)
was conducted to enhance our comprehension of the classifier
results. Finally, we investigated whether combining the
predictions of the two classifiers could enhance the accuracy
of the predictions.
The analysis demonstrated that a simple read-across approach

based on chemical structure information and biological data
from the Cell Painting profiling assay on U2OS cells can be used
to predict acute oral toxicity, even in the context of new chemical
space exploration.

Table 2. QSAR only compounds set (set of 630 compounds)

a. Classification using CATMoSa

Predicted Class

VAOT NVAOT

True class VAOT 5 104

NVAOT 7 514

Balanced Accuracy MCC Sensitivity Specificity

0.52 0.09 0.05 0.99

b. Prediction Reliabilitiesb

Within Applicability Domain Applicability Domain Index Number of Compounds (percentage) Average Confidence Index

no all 2 (0.3%) NA

yes <0.6 448 (71.1%) 0.5

yes ≥0.6 180 (28.6%) 0.57

c. Performance of the KNN classifiers trained on 630c

Holdout Strategy Balanced Accuracy MCC Sensitivity Specificity

“known chemistry” case 0.81 ± 0.07 0.60 ± 0.12 0.69 ± 0.13 0.92 ± 0.04

“novel chemistry” case 0.61 ± 0.16 0.17 ± 0.24 0.31 ± 0.29 0.92 ± 0.21
aConfusion matrix and metrics for the classification of CATMoS for 630 compounds from Bayer Crop Science. bReliability of the predictions:
Number of compounds outside the CATMoS applicability domain, number of compounds, and average confidence index for compounds within the
CATMoS applicability domain and having an Applicability Domain index below or above 0.6. cMean of 4 metrics assessing the performance of the
KNN binary classifiers built out 630 Bayer CropScience agrochemical candidates, over the 100 splits of the “known chemistry” case where training
and testing sets are split randomly, not taking into account chemical structure similarities, and over the 44 valid splits of the “novel chemistry” case
where training and testing sets are split in order to have structurally different compounds over the two sets.
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Results of the QSAR Classifiers. Initially, CATMoS was
employed to classify BCS compounds as either VAOT or
NVAOT. We used the Opera CATMoS implementation of the
model on the “QSAR only compounds set” (Figure 1 a), with
630 compounds as an external test set. The CATMoS
predictions were mapped to the two classes, with the majority
of compounds being classified as NVAOT. Specifically, 5 of the
109 VAOT compounds, and 514 of the 521 NVAOT
compounds were correctly predicted, resulting in a low
sensitivity of 0.05, a high specificity of 0.99, a balanced accuracy
of 0.52, and anMCCof 0.09 (Table 2a, Table S5). This outcome
may be attributed to the fact that the CATMoS QSAR model
was not trained on Bayer chemistry, but on mostly publicly
available industrial chemical compounds. This indicates a
possible mismatch in the applicability domain of the model for
BCS chemistry.
For the predictions of the set of 630 BCS compounds, we

could determine that most compounds, 628 (99,6%) were
within the CATMoS Applicability Domain (Table 2b). Most of
them, 448 (71%), had an Applicability Domain index below 0.6,
suggesting that the predictions should be considered with
caution (Table 2c). The remaining 180 (29%) predictions
having an Applicability Domain index above 0.6, displayed an

average confidence level of 0.57, indicating a relatively low level
of confidence in the predictions (Table 2b).
Subsequently, we developed a classifier, based on our 630

compound set, using a KNN classifier on Morgan fingerprints of
chemical compounds. The classifier’s performance was
evaluated through cross-validation with two data holdout
strategies: the “known chemistry” case, where compounds
from the test sets resemble those from the training sets, and the
“novel chemistry” case, where compounds from the test sets
differ structurally from those in the training sets.
In the “known chemistry” case, the classifiers achieved an

average balanced accuracy of 0.81, a sensitivity of 0.70, a
specificity of 0.92, and a MCC of 0.61 (Table 2c).
In the “novel chemistry” case, out of 100 theoretical cross-

validation splits, only 44 of the 100 theoretical cross-validation
splits included the two classes (VAOT andNVAOT) in both the
training and testing sets, making them valid. The classifier
demonstrated an average balanced accuracy of 0.61, a sensitivity
of 0.31, a specificity of 0.92, and a MCC of 0.17 (Table 2c).
The “novel chemistry” case demonstrated that chemical

structure-based classifiers perform less well when classifying
compounds that are structurally distinct from those in the
training set. In summary, the chemical structure similarity-based
models demonstrated good performance in handling known

Table 3. Mean and Standard Deviations of Four Metrics: Balanced Accuracy (BA), Matthew’s Correlation CoefÏcient (MCC),
Sensitivity (SN), and Specificity (SP)a

aFour different input data were used to classify compounds as VAOT and NVAOT: chemical structural data (Morgan FP) and Cell Painting (CP)
morphological profiles of U2OS cells exposed to chemicals at three concentrations (MP 10 μM, MP 31.6 μM, and MP 100 μM). Orange highlights
are the best average metric. The decision support (DS) model performance (combining the Morgan Fingerprint and the morphological profile 31.6
μM classifier predictions, supplemented with synthetic examples) is shown in the last row. Section (a) reports the performance of the binary
classifiers, over the 100 splits of the “known chemistry” case where training and testing sets are split randomly, not considering chemical structure
similarities. Section (b) reports the performance of the KNN classifiers, over the 99 valid splits of the “novel chemistry” case where training and
testing sets are split to have structurally different compounds over the two sets
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chemistry. However, as expected by the design of the “novel
chemistry” case, they exhibited a decrease in performance when
confronted with unfamiliar chemical structures. This limitation
becomes apparent when exploring new areas of chemical space.
To address this limitation, we leveraged the biological effects of
the chemical compounds for predictions. The subsequent
section outlines our approach, employing a Cell Painting assay
on U2OS cells to capture the biological effects of the chemical
compounds.
Comparison of Chemical Structure and Cell Painting

Morphological-Based Classifiers.The objective of our study
was to compare two inputs for predicting acute oral toxicity,
utilizing a data set called the “Cell Painting set”, a subset of the
630 “QSAR only compound set”, augmented with additional
public chemical compounds. The Cell Painting set included a
total of 226 compounds (Figure 1b). KNN classifiers were
trained using both types of input and employing two data
holdout strategies: “known chemistry” and “novel chemistry”
cases.
Similarly to the previous chemical structure similarity-based

classifier on the QSAR only compound set (630 compounds),
KNN classifiers were trained on the Morgan fingerprints of the
molecules.
For classifiers based on the morphological profiles obtained

from Cell Painting, consensus profiles were utilized after
normalization, unsupervised feature selection, and replicate
profile aggregation at the treatment level. Regarding the
chemical structure similarity-based classifiers, we used the
KNN algorithm. Classifiers were built for each tested
concentration (10, 31.6, and 100 μM).
Results in the “Known Chemistry” Case. In the “known

chemistry” case, the chemical structure similarity-based classifier
demonstrated superior performance compared to other
classifiers, achieving a mean balanced accuracy of 0.82. This
was followed by the 31.6 μM morphological profile classifier,
with a mean balanced accuracy of 0.74 (Table 3a). The two

other morphological profile classifiers at 10 and 100 μM
demonstrated lower performance (Table 3a).
The distribution of the balance accuracy values over the 100

splits for each input type showed a narrow range (Figure 4a),
which was confirmed by low standard deviations ranging from
0.08 to 0.09 (Table 3a).
A statistical analysis using Nadeau and Bengio’s corrected t

test to compare the balance accuracy values over the 100 splits of
the two top classifiers indicated that the chemical structure
similarity-based classifier significantly outperformed the 31.6
μM morphological profile classifier (p-value = 0.05).

Results in the “Novel Chemistry” Case. In the “novel
chemistry” case, the 31.6 μM morphological profile classifier
demonstrated superior performance, achieving a mean balanced
accuracy of 0.72. This was followed by the chemical structure
similarity-based classifier, with a mean balanced accuracy of 0.60
(Table 3b). The remaining two classifiers demonstrated lower
performance (Table 3b).
The distributions of the balanced accuracies for each classifier

showed that in certain splits, the chemical structure similarity-
based classifier encountered challenges in making accurate
predictions (Figure 4b). This was also the case, to a lesser extent,
for the 31.6 μM morphological profile-based classifiers (Figure
4b).
The Nadeau and Bengio’s corrected t test indicated that the

31.6 μM morphological profile classifier significantly out-
performed the chemical structure similarity-based classifier (p-
value = 0.045).
In summary, for the chemical structure similarity-based

classifiers, we reproduced the results of the previous chemical
structure similarity-based classifier, which was trained on
approximately three times more compounds (630 compounds)
with good performances in the “known chemistry” case, and a
decrease in performance in the “novel chemistry” case (the
balanced accuracy dropped from 0.82 to 0.60).

Figure 4. (a) Violin plots representing the balanced accuracies of the binary classifier for the 10 × 10-fold cross validation splits not considering the
structure similarities (known chemical case). (b) Violin plots representing the balanced accuracies of the KNN binary classifier for 99 valid splits of the
10 × 10-fold cross validation that put in the testing set chemical structurally different from the training set (novel chemical case). Legend: in red, the
classifier using the Morgan fingerprint; in light green, the classifier using the morphological profiles at 10 μM; in midgreen, the classifier using the
morphological profiles at 31.6 μM; in dark green, the classifier using the morphological profiles at 100 μM; in blue, the decision support (DS) model.
Inside each violin plot, the quartiles are indicated as dash lines.
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Overall, our findings emphasize the superior performance of
the chemical structure similarity-based classifier in the “known
chemistry” case. However, the morphological profile-based

classifier remains a valuable tool, particularly in the “novel

chemistry” case, where the classifiers based on the 31.6 μM

Figure 5. Scatter plot of the two-dimensional UMAP embedding of the chemical compound morgan fingerprints. In blue, the chemical compounds
that are NVAOT. In red, chemical compounds that are VAOT. Four clusters of compounds are designated by the letters A, B, C, and D. Cluster A is an
example of a cluster with only VAOT compound. Cluster B is an example of a cluster with only NVAOT compounds. B and C are two examples of
clusters with a mix of VAOT and NVAOT compounds.

Figure 6. Two-dimensional representation of the consensus morphological profile similarities for all treatments and three concentrations, using
uniform manifold approximation (UMAP) embedding on two components with the Pearson correlation-based similarity measure. In red, the
morphological profiles of U2OS cells are perturbed by VAOT compounds. In blue, the morphological profiles of U2OS cells perturbated by NVAOT
compounds. Four groups of compounds are designated by the letters A, B, C, and D. The group A of compounds corresponds to treatment with very
low cell counts. The group B of compounds is an example of grouping with a large number of VAOT compounds. The group C of compounds is an
example of grouping with a high number of NVAOT compounds. The group D of compounds is an example of grouping with a mixture of VAOT and
NVAOT compounds.

Chemical Research in Toxicology pubs.acs.org/crt Article

https://doi.org/10.1021/acs.chemrestox.4c00169
Chem. Res. Toxicol. XXXX, XXX, XXX−XXX

I



Figure 7. Two-dimensional representation of the consensus morphological profile similarities for all treatments at 31.6 μM, using uniform manifold
approximation (UMAP) embedding on two components with the Pearson correlation-based similarity measure. In red, the morphological profiles of
U2OS cells perturbated by VAOT compounds. In blue, the morphological profiles of U2OS cells perturbated by NVAOT compounds.

Figure 8. (top) Chemical space. Scatter plot of the two-dimensional UMAP embedding of the chemical compound morgan fingerprints. (bottom)
Biological space. Scatter plot of the two-dimensional UMAP embedding of the Cell Painting morphological profiles of the chemical compounds at 31.6
μM. In red, the morphological profiles of U2OS cells perturbated by VAOT compounds; in blue, the morphological profiles of U2OS cells perturbated
by NVAOT compounds. On each column, the chemical profiles and morphological profiles of the same compounds are selected. (left) Example of
structurally similar compounds, inducing different morphological profiles. (center) Example of structurally similar compounds (carbamates), inducing
similar morphological profiles. (right) Example of structurally different compounds, inducing similar morphological profiles.
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morphological profile demonstrated the highest performance
(balanced accuracy of 0.72).
Performances of the Classifiers. Comparison of the

Chemical and Biological Spaces. To gain insight into the
performance of the classifiers based on the chemical structures
and themorphological profiles, we investigated the chemical and
biological spaces for the Cell Painting set of compounds.
Chemical Space. Our data set comprises 226 compounds

primarily originating from Bayer Crop Science chemistry and
supplemented with 29 public compounds. The Butina
algorithm, using the Tanimoto distance and a threshold of 0.7,
identified 91 clusters. Of these, 61 were represented by a unique
compound indicating structural diversity.
By plotting the similarity of the structures on a UMAP (Figure

5), using Morgan fingerprints and the Tanimoto distance, it is
possible to visually identify distinct clusters. Notably, certain
clusters exclusively comprised VAOT compounds (e.g., cluster
A), while others were exclusively comprised of NVAOT
compounds (e.g., cluster B). Additionally, several clusters
contained a mixture of both (e.g., clusters C and D).
In summary, the chemical space exhibited diversity in the

form of different clusters. Specific areas demonstrated a
prevalence of either VAOT or NVAOT compounds, while
others presented a combination of both classes.
Biological Space. Figure 6 illustrates the degree of similarity

in the biological response of compounds, as measured by
Pearson correlation-based similarities on a UMAP plot. In
contrast to the chemical space, a limited number of clusters
visually emerged with only two notable clusters observed. An
isolated small cluster (cluster A) was clearly separated from the
other profiles, and upon inspection, these profiles corresponded
to instances with a notably low cell count.
The second cluster exhibited diverse areas: including regions

with a high number of VAOT (e.g., group B), NVAOT
compounds (e.g., group C), and areas with a mix of both classes
(e.g., grouping D).
In Figure 7, we focused on the 31.6 μM concentration, which

yielded optimal performance for the classifier using morpho-
logical profiles. Similar observations were made, with an isolated
cluster corresponding to profiles with a very low number of cells.
Additional distinct areas emerged, showcasing regions with a
high number of VAOT or NVAOT compounds, as well as areas
with a mixed representation of both classes.
Comparison of the Chemical and Biological Spaces.

We compared different groups of compound structures and
groups of morphological profiles to better understand the
chemical and biological space interrelationship. Notably, we
observed that chemicals clustering together in the chemical
space could elicit a diversity of biological responses, emphasizing
that structurally similar compounds may manifest distinct
biological responses (Figure 8, left column). We illustrate a
specific case involving a group of chemicals, the carbamates, that
induce similar morphologies in U2OS cells (Figure 8, center
column). Interestingly, similar morphological profiles induced
by structurally different compounds could also be observed
(Figure 8, right column). This comparison illustrates that (1)
the biological effects of structurally similar molecules may not
necessarily be identical, (2) structurally similar compounds
could trigger different biological effects, and (3) conversely,
compounds with different structures could result in comparable
biological responses.
Biological Response. To analyze the biological response of

U2OS cells to chemical compound perturbations, we employed

morphological profiles, using two metrics: the grit score23 and
the number of cells. The analysis was conducted to better
understand how U2OS cells reacted to our set of compounds,
which, in turn, helped us to understand the results of the
classifiers.

Grit Score. The grit score indicated the extent to which the
average morphology of U2OS cells perturbed by a compound
deviated from the average negative control morphology of
nonperturbed U2OS cells. A high grit score indicated a cell
morphology that was more distinct from that of the negative
controls. For example, the average grit score of the positive
controls was 4.8.
A Mann−Whitney U rank test on the grit scores, for the two

compound groups, VAOT and NVAOT, demonstrated that
VAOT compounds elicited a marginal though significantly
stronger biological response compared to NVAOT (grit scores
of 3 and 2.5, respectively, p-value of 0.004) (Table 4).

Regarding concentrations, on average, the 10 μM treatments
had a grit score of 1.9, the 31.6 μMhad a grit score of 2.6, and the
100 μM treatment had a grit score of 3.7. This aligns with our
assumption that higher concentrations lead to increased
biological responses, a consideration made when designing the
Cell Painting campaign with three concentrations (Table 4).
Identifying compounds with no induced morphological

changes, we set a grit score threshold of 1. Below this threshold,
we considered a treatment that did not induce any
morphological change. Of the 23 compounds falling below
this threshold, 6 were VAOT.

Number of Cells. An additional output of the image analysis
was the number of cells per well. For this analysis, the number of
cells was not normalized, and the median number of cells per
well for a given treatment was computed. The average number of
cells for the negative controls was 2231. We arbitrarily set the
number of cells that defines cytotoxicity as a cell count below
50% of the average negative control cell count, meaning a cell
count per well of below 1115 defined a cytotoxic treatment.
In total, 44 compounds exhibited cytotoxicity: 11 compounds

at 10 μM, 22 compounds at 31.6 μM, and 44 compounds at 100
μM (Table 4).
Categorizing by class, 28 VAOT compounds (25%) and 16

NVAOT compounds (14%) displayed cytotoxicity at least one
concentration. A chi-square test of independence of variables

Table 4. Average Grit Score and Number of Cytotoxic
Treatments for Different Groups of Profiles: VAOT (Very
AcutelyOral Toxic Compounds), NVAOT (Not Very Acutely
Oral Toxic Compounds), 10 μMTreatment Profiles, 31.6 μM
Treatment Profiles, and 100 μM Treatment Profiles

profiles average grit score number of cytotoxic treatments

negative control NA 0

VAOT 3 28

NVAOT 2.5 16

10 μM all 1.9 11

10 μM-VAOT 2.1 8

10 μM-NVAOT 1.64 3

31.6 μM all 2.6 22

31.6 μM-VAOT 2.98 14

31.6 μM-NVAOT 2.17 8

100 μM all 3.7 44

100 μM-VAOT 4.01 27

100 μM-NVAOT 3.20 17
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with the null hypothesis that the number of cytotoxic
compounds is independent of the class (VAOT and NVAOT)
gave a p-value of 0.1. We could not conclude that there was a
higher percentage of cytotoxicity for VAOT compounds (Table
4).
Results of the Decision-Support Model. The decision-

support model aided the decision when the two KNN classifiers
did not predict the same class. The model combined four pieces
of information: predictions from the KNN classifier based on the
chemical structure information and predictions from the KNN
classifier based on the morphological profiles and distances to
the nearest neighbor in each classifier.
In the “known chemistry” case, the model demonstrated an

average balanced accuracy of 0.84, slightly above the chemical
structure similarity-based classifier’s average balanced accuracy
of 0.82 but was not significantly different (Nadeau and Bengio’s
corrected t test p-value of 0.47). In the “novel chemistry” case,
the model had on average a balanced accuracy of 0.65, below the
31.6 μM morphological profile classifier’s average balanced
accuracy of 0.72.
To understand why in the “novel chemistry” case this model

did not yield better performances, we computed the mean
Morgan fingerprint Tanimoto distances between each chemical
compound of the training set and its nearest neighbor in the
training set, and the mean distances between each chemical
compound of the testing set and its nearest neighbor in the
training set.
In the “known chemistry” case, on average, in the training set,

each compound has a distance to its nearest neighbor of 0.50 and
in the testing set 0.48. For the “novel chemistry” case, on
average, in the training set, each compound had a distance to its
nearest neighbor of 0.49, and in the testing set 0.73.
In the “novel chemistry” case, the training set did not have

enough examples of distant chemical structures. To help the
model, we added synthetic examples of distant chemical
structures in the training set. To do so, we subset in each
training set the cases where the predictions of the chemical
structure similarity-based did not match the real class, and we
updated the distances of the nearest neighbors with a random
number between 0.7 and 0.9 and added those as synthetic
examples in the data set used to train the model.
By applying this approach, in the “known chemistry” case the

model achieved an average balanced accuracy of 0.85, slightly
above the chemical structure similarity-based classifier’s average
balanced accuracy of 0.82 but was not significantly different
(Nadeau and Bengio’s corrected t test p-value of 0.12). In the
“novel chemistry” case, the model achieved an average balanced
accuracy of 0.72 (Table 3).

■ DISCUSSION

Our results showed that the classification of compounds as very
acute oral toxic or not, using a similarity-based approach, was
possible using chemical structure information, morphological
profiles of U2OS cells, or the combination of both. When
classifying compounds coming from the same chemical space as
those in the classifier’s training set, the chemical structure
information was more predictive. Conversely, when the
compounds to be classified came from a different chemical
space than those in the classifier’s training set, the morphological
profiles of the U2OS cells were more predictive.
Initial attempts to use the publicly available QSAR model,

CATMoS, for the prediction of acute oral toxicity on a set of 630
Bayer compounds did not yield good predictions.5 The

CATMoS performance is hindered, as Bayer Crop Science
chemistry could be considered to be locally outside its training
set (Table 2b). Although almost all compounds were globally
within the CATMoS applicability domain, most resided in gaps
of the training chemical space. It is well-known that QSAR
models excel when the compounds to be classified fall within the
applicability domain of the models, and can perform poorly
when they do not.35 In summary, CATMoS, which is a QSAR
model trained on more than 10,000 compounds, has very good
performance for the prediction of acute oral toxicity of those
chemicals, but it does not work as effectively with the structurally
diverse BCS chemistry.
To test our hypothesis, we trained a simple KNN classifier,

resembling a similarity-based (or read-across) approach, on this
set of 630 BCS compounds, using their chemical structure
information. Working with two data-holdout strategies to
simulate scenarios within and outside the applicability domain
of a QSAR model, we evaluated our classifiers under two
conditions: the “known chemistry” case, simulating scenarios
within applicability domain case, and the “novel chemistry” case,
attempting to simulate outside applicability domain case. In the
“known chemistry” case, our classifier exhibited strong perform-
ance, comparable to CATMoS:CATMoS achieved a balanced
accuracy of 0. 84, in classifying compounds as very toxic (VT)
(LD50 < 50 mg/kg) whereas our classifier had a balanced
accuracy of 0.81 (Table 2c) for the classification of compounds
as VAOT (LD50 < 60 mg/kg).5

However, as designed, the performance of the classifier
dropped in the “novel chemistry” case due to the data-holdout
strategy, which placed Butina compound clusters, which are not
present in the training sets, into the test sets. This effectively
simulated scenarios outside of the model applicability domain,
although the decrease in balanced accuracy (from 0.82 to 0.60)
(Table 3) was not as drastic as that observed with the Bayer
CropScience chemistry using CATMoS (from 0.84 to 0.52)
(Table 2a).
To overcome this chemical applicability domain limitation,

we explored whether using the compound biological effects
could mitigate this problem. Compound-induced biological
effects characterized by transcriptomics have previously been
used to predict target activities, in association and comparison
with QSAR models.36,37 Here, we utilized Cell Painting to
generate morphological profiles at a more reasonable cost
compared to transcriptomics.
Using a smaller set of 226 compounds, (balanced with 49% of

compounds where LD50 < 60 mg/kg; 51% where LD50 > 60
mg/kg), we trained KNN classifiers based on either chemical
structure information or U2OS morphological profiles at three
concentrations (10, 31.6, or 100 μM).
Morphological profiles at 31.6 μM concentration demon-

strated better performance, compared to the other concen-
trations, in both the “known chemistry” and “novel chemistry”
cases. With a balanced accuracy of 0.74 (Table 3) in the “known
chemistry” case and 0.72 (Table 3) in the “novel chemistry”
case, Cell Painting U2OS profiles demonstrated the ability to
predict acute oral toxicity classes, interestingly, independent of
the structural similarity of the tested compounds.
Cell Painting can indeed identify morphological patterns

associated with specific mode of action (MoA) and molecular
initiation event (MIE) of compounds.38,39 Typically, acute
toxicity involves a limited number of MIEs.40 such as narcosis
(activity at the lipid bilayer of the membrane), acetylcholines-
terase inhibition, ion channel modulators and inhibitors of
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cellular respiration.41 The Cell Painting experiment revealed
morphological profiles (initiated by MIE) associated with acute
oral toxicity, as evidenced by the grouping of the morphological
profiles associated with VAOT compounds. For example, four
carbamates (promecarb, methiocarb, propoxur, m-cumenyl
methylcarbamate) known as acetylcholinesterase inhibitors,
produced similar morphological profiles in U2OS cells (Figure
8, middle row). This partially explains why the morphological
profile-based classifiers were able to correctly classify the
compounds. In the “known chemistry” case, the performance
of the classifiers based on the 31.6 μMmorphological profile did
not surpass the classifiers based on the chemical structure
information but outperformed them in the “novel chemistry”
case.
The comparison of the two chemical structure-based KNNs

for the two data sets showed similar performances, but this
comparison is limited because the two data sets are different.
The QSAR data set consisting of 630 compounds is unbalanced
(109 VAOT, 521 NVAOT), while the Cell Painting data set,
made of 226 compounds, is balanced, but of smaller size.
Capturing the biological effects of compounds had

limitations: the limitation of the cell system to reveal the effects
causally related to acute toxicity, together with technical
limitations of the laboratory experiment itself.
For the limitation of the cell system, we observed, by grit score

analysis, that not all of the compounds induced a biological
response in U2OS cells (10% of the tested compounds),
regardless of the concentration used. Six known VAOT
compounds did not elicit any morphological changes compared
to those of the negative controls. Among these compounds, five
were public compounds and some of them contained
information on their possible mechanism of action. The
warfarin, a vitamin K antagonist, and methamidophos, a potent
acetylcholinesterase inhibitor, did not induce any biological
response in U2OS cells. This suggests that U2OS cells have their
own biological applicability domain and may not capture all of
the bioactivities associated with acute oral toxicity observed in a
whole organism such as a rat in our case study. Nevertheless, for
our set of compounds, Cell Painting on U2OS managed to
capture bioactivities for most of the VAOT compounds.
On the contrary, when analyzing the number of cells, we could

also identify a limitation due to the cytotoxicity of the
compounds: 44 compounds showed cytotoxicity at least at
one concentration, and 12 exhibited cytotoxicity even at the
lowest concentration. The morphological profiles of the
cytotoxic treatments were not informative, as they consisted
mainly of debris and dying cells. It appears that the 31.6 μM
concentration represents a good compromise between inducing
bioactivity and avoiding cytotoxicity. However, building amodel
using only this concentration is a limitation as morphological
profiles coming from other concentrations could also have been
associated with acute oral toxicity. Different rules for selecting
the best concentration per compound, using the grit score to
ensure that the compound was active or the number of cells to
ensure that the compound was not cytotoxic, did not produce
better models.
For the limitations of the experiments, several quality issues

can arise when conducting an experiment in a laboratory.
Experiments are technically demanding and are prone to
variability and error. Seeding variability can affect the cell
morphologies and thus the morphological profiles. There are
other common problems that can occur in laboratory experi-
ments, such as treatment errors, compounds with low purity, or

precipitation at high concentrations. These problems can affect
the quality of the morphological profiles and thus the
performance of a classifier based on morphological profile
similarities.
The chemical structural information did not suffer from these

limitations because this information was not subject to quality
issues, was not cell system dependent, and was not assay design
dependent. This information was intrinsic to the description of a
given compound. This may partly explain why chemical
structure similarity-based classifiers, in the “known chemistry”
case, performed better than biological-based classifiers: the full
structural information is available, whereas the biological
information is partially available and subject to quality issues,
in particular reproducibility.
For both types of input data, the optimal number of neighbors

for the KNN algorithm (Supporting Information, S4) was 1,
indicating that few examples of identified profiles leading to high
acute oral toxicity or not were present in the data set. A larger set
of compounds, such as the CATMoS training set, would help to
identify more examples of cell painting profiles associated with
acute oral toxicity.
In the “novel chemistry” case, the morphological profile-based

classifiers did not experience as large a performance drop as the
chemical structure similarity-based classifiers, suggesting that
the biological space did not cluster in the same way as the
chemical space. This indicates that similar compounds did not
consistently induce the same response in U2OS cells (for
example due to activity cliffs) and vice versa. The presence of
different Butina clusters in the training and test sets did not
necessarily result in different morphological profiles, explaining
why the morphological profile-based classifier performance did
not drop drastically in the “novel chemistry” case.
The use of biological responses of compounds could also be

an advantage with respect to enantiomers. The Morgan
fingerprint used in this analysis does not take the chirality into
account. Enantiomers may have different acute oral toxicity, and
the classifier based on chemical structure will not distinguish
between them, where morphological profiles may be different.
The decision support model combined both predictions along

with the nearest neighbor distances to make the final
predictions, slightly improving the classification performance
in the “known chemistry” case but decreasing in the “novel
chemistry” case. By adding a few synthetic examples in each
training set with higher distances in the chemical spaces, it was
possible to increase the classification accuracy in the “known
chemistry” case, but not in the “novel chemistry” case, where the
model performed like the 31.6 μM morphological-based
classifier. Notably, in the “novel chemistry” case, the classifier
preferred the predictions of the 31.6 μM morphological-based
classifier predictions over the predictions of the chemical
structure similarity-based classifier.
Further results could extend and refine these findings by

employing a broader set of compounds covering additional
molecular initiating events (MIE) associated with acute oral
toxicity. Additionally, a larger set of compounds could facilitate
the identification of additional morphological profiles associated
with acute oral toxicity. A larger data set would also allow the
isolation of a set of compounds as an external data set to further
evaluate the performance of the classifier.
The choice of the KNN algorithm in this analysis was

deliberate due to its simplicity and similarity to the read-across
approach commonly used in toxicology. Since the amount of in
vivo data is often limited, the read-across approach is often the
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only analysis that can be performed. For chemical structure-
based classifiers, other algorithms yielded similar performances
(Supporting Information).
To support the creation of public QSAR models with a wider

applicability domain, representations of compound structures
and results of acute toxicity studies for early candidates that
failed to be placed on the markets could be shared by companies
and organizations to expand the chemical space coverage.
In addition, in this analysis, the Morgan fingerprint was the

only computed chemical fingerprint. The use of additional
fingerprints or descriptors could help to achieve better QSAR
and chemical structure similarity-based classifier performance.
Similarly, hand-crafted morphological features were used in

this analysis. To capture a broader representation of
morphological profiles, other deep learning-based representa-
tions could also be tested.42

The decision support model uses the nearest neighbor
distance to decide which prediction to select. Other metrics,
such as the “distance to model”, which is used to estimate a
prediction uncertainty could also be used to decide on which
prediction to use.43

We have also seen the limitation of theU2OS cell line with not
capturing all of the bioactivities of the compounds. We could
assume that trying different cell lines could allow capturing more
bioactivities linked to MIE leading to acute oral toxicity. Several
cell lines have already been used with Cell Painting44,45 and
could help define a set of cell lines capable of capturing a
maximum, if not all, MIE leading to acute oral toxicity.
Finally, absorption, distribution, metabolism, and excretion

(ADME) properties of compounds were not taken into
consideration in this study, but incorporating such data could
enhance predictive models. We tried to use predicted maximum
concentration in plasma and AUC from a predictive model,46

but this information did not improve our results (data not
shown).
In addition, preincubation of the compounds with liver S9

fractions (the 9000 g supernatant of a liver homogenate),
containing phase I and II metabolic enzymes, to generate the
possible metabolites of a parent compound, could be helpful
when the toxicity is driven by a metabolite, as it is done for
example in the Ames assay to test the mutagenic potential of
chemical compounds.47,48

In conclusion, a combined approach utilizing chemical
structure and Cell Painting morphological profiles-based
classifiers based on chemical and biological space distances
holds promise for predicting acute oral toxicity. These classifiers
could be used in the context of early derisking and in the future
serve in the context of Next Generation Risk Assessment
(NGRA), which aims at refining if not replacing laboratory
animal testing.
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