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  Abstract
  René Thomas’ discrete modelling of gene regulatory networks (GRN) is a well-
known approach to study the dynamics resulting from a set of interacting genes. 
It deals with some parameters which refl ect the possible targets of trajectories. 
Those parameters are  a priori unknown , but they may generally be deduced 
from a well-chosen set of biologically observed trajectories. Besides, it neglects 
the time delays for a gene to pass from one level of expression to another one. 
The purpose of this paper is to show that we can account for time delays of in-
creasing or decreasing expression levels of genes in a GRN, while preserving 
powerful enough computer-aided reasoning capabilities. We designed a more 
accurate abstraction of GRN where  delays are now supposed to be non-null 
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 Simplexus
  Almost nothing in cell biology can be 

understood without considering the de-
tailed interactions of multiple genes and 
proteins within complex genetic regula-
tory networks. It is the highly non-linear 
feedbacks within such networks that 
control and direct communications be-
tween cells, internal changes in response 
to varying environmental conditions, 
such as temperature, or the synthesis of 
new materials from basic molecular 
building blocks in food sources. Built on 
biochemistry, and chemical reactions 
that proceed continuously, regulatory 
networks nevertheless give a digital char-
acter to biology, supporting the discrete 
switching behaviour that enables cells to 
orchestrate abrupt transitions in their 
own interests.

  For 50 years, of course, biologists have 
been building up an understanding of ge-
netic regulatory networks, especially the 
simpler examples, starting with the fa-
mous lac operon, important in metabolic 
control in bacteria. But contemporary re-
search is rapidly pushing far beyond any-
thing in the past, in part because of the 
availability of complete genomic and 
proteomic information for a wide num-
ber of organisms. As new experimental 
techniques make it possible to identify 
large networks of genes, proteins and 
their interactions, however, understand-
ing also requires new methods for dis-
secting the logical dynamics of network 
feedbacks, and for creating theoretical 
models capable of producing insight 
from masses of data. How should regula-
tory networks be modeled?

  Classic work in this area has explored 
two very diff erent approaches. On the 
one hand, some theorists have worked 
with greatly oversimplifi ed models, rep-
resenting genes within networks as  Bool-
ean variables, for example, which have 
only two states – on or off . Such work has 
elucidated basic theoretical properties 
expected in regulatory networks, such as 
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unknown new parameters . We show 
that such models, together with hybrid 
model-checking algorithms, make it 
possible to obtain some results about 
the behaviour of a network of interact-
ing genes, since dynamics depend on 
the respective values of the parame-
ters. The characteristic of our approach 
is that, among possible execution tra-
jectories in the model, we can auto-
matically fi nd out both viability cycles 
and absorption in capture basins. As a 
running example, we show that we are 
able to discriminate between various 
possible dynamics of mucus produc-
tion in the bacterium  Pseudomonas 
aeruginosa .

  Copyright © 2007 S. Karger AG, Basel

  1 Introduction
  Work about modelling for simulation 

and analysis of gene regulatory networks 
(GRN) was initiated by Jacob and Monod 
 [1] . As de Jong  [2]  writes, the idea of Su-
gita  [3]  of interpreting gene interactions 
as logical systems led to further develop-
ments with  boolean networks  and their 
generalization to  discrete networks   [4, 5] . 
Th eoretical models of GRN are useful 
when several feedback loops of gene in-
teractions generate complex behaviours. 
In such cases, understanding the causal-
ity chains which induce some observed 
phenotype is impossible without com-
puter assistance. Using a computer to 
perform simulations can help biologists 
to explore some possible behaviours, 
however only performing simulations is 
unsatisfactory and insuffi  cient to estab-
lish properties of GRN and to validate 

the nature of limit cycles, and how the 
number of such cycles grows with the size 
of the network. Alternatively, other re-
searchers have started instead from the 
more detailed level of basic biochemistry, 
modeling the interactions among genes, 
proteins and other molecules with diff er-
ential equations that follow the evolution 
of chemical concentrations. Th is work 
has led to surprisingly realistic and pow-
erful models for addressing practical 
matters – even the likely infl uence of 
drugs on the human heart.

  But each of these extremes, focusing 
either on the discrete or fully continuous 
dynamics, has its limitations. While the 
former leaves out many details of the real 
workings of gene expression, the latter 
includes so many details that computa-
tional demands preclude their applica-
tion to many larger systems. To move for-
ward, researchers are increasingly intro-
ducing more sophisticated computation-
al methods from computer science, such 
as so-called ‘hybrid’ techniques, which 
aim to mould ideas from both continu-
ous and discrete modeling together into 
one paradigm. Th e idea is to use each 
modeling style where it seems most ap-
propriate and effi  cient, and thereby to 
produce models that match the mixed 
continuous and discrete character of real 
biology more realistically.

  In this paper, Jamil Ahmad and col-
leagues use this hybrid strategy to gener-
alize an infl uential class of models pro-
posed by René Th omas, which have prov-
en useful for logical reasoning about the 
properties of genetic regulatory net-
works. In such models, a regulatory net-
work is a feedback network, with positive 
or negative infl uences linking the various 
elements, as illustrated in the authors’ 
fi gure 2. Each element in such a network 
can be expressed at one of a number of 
discrete levels, in which case it exerts ex-
citatory or inhibitory infl uence on those 
elements to which it is linked. In this 
mathematical framework, a system may 

biological hypotheses. So, it becomes 
necessary to give a  formal  defi nition of 
GRN, as introduced in Bernot et al.  [6] , 
in such a way that the computer can per-
form  model checking  with respect to 
logical formulae expressing biological 
knowledge. We propose here the en-
hancement of this formalization that we 
call  temporal networks  in order to take 
into account delays of gene activation 
and/or degradation of their products.

  According to Th omas and Kaufman 
 [7] ,  regulation can be defi ned as the pro-
cesses that adjust the rate of production 
and decay of the elements of a system to 
the state of the system itself and to relevant 
environmental constraints.  Th us, Th omas 
and Kaufman argued for the logical cari-
cature ( fi g. 1 b), but thus, they had to con-
sider an ‘asynchronous’ option which 
leads to the consideration of 
diff erent dynamics corresponding to 
diff erent choices of the fastest variable 
change.

  One of the main advantages of the dis-
crete  asynchronous approach of Th omas 
is that it has been formalized so that bio-
logical hypotheses can be encoded into 
logical temporal properties and  automat-
ically  validated or refuted using model 
checking techniques  [6] . Th e price to pay 
is the logical caricature ( fi g. 1 b) of the 
sigmoid curve ( fi g. 1 a), which conse-
quently ignores activation delays (and 
degradation delays for decreasing sig-
moids).

  Our approach intends to design a new 
modelling formalism to account for time 
delays in GRN. Intuitively, we simply pro-
pose to caricature the sigmoidal shape of 
interaction ( fi g. 1 a) by a piecewise linear 

a b c

 
   Fig. 1.  A sigmoid curve ( a ), its logical caricature ( b ), and its piecewise linear carica-
ture ( c ). 
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step along a trajectory of states as the el-
ements change their discrete levels at the 
same time. 

  Th ese models are highly schematic, 
however, and do not include, for exam-
ple, the infl uence of time delays in the 
switching of elements from one state of 
expression to another. Ahmad et al. try to 
include such eff ects, at least in a fi rst ap-
proximation, by using hybrid models. 
Th eir idea is to preserve the discrete vari-
ables that refer to distinct qualitative 
states having diff ering expression levels, 
while adding further continuous vari-
ables to follow the smaller variations in 
expression that ultimately trigger transi-
tions between states. For a regulatory 
network in the bacterium  Pseudomonas 
aeruginosa , they show how this hybrid 
approach can be used to build more pow-
erful computational models for real ge-
netic regulatory networks, and off er a 
method for systematically building up 
theoretical models that are consistent 
with known biological reality.

  As an illustrative example, the authors 
focus on a relatively simple genetic regu-
latory network, the mucus production 
system of  P. aeruginosa . Here the main 
regulatory molecule, AlgU, interacts with 
an operon leading to two primary ef-
fects – the stimulus of its own production 
and also that of a protein which then acts 
to inhibit AlgU production. Following a 
number of technical defi nitions (defi ni-
tions 1 through 4), the authors illustrate 
how the network can be modeled using 
both discrete and continuous variables. 
Here the discrete variables, x and y, re-
fl ect the discrete (qualitative) expression 
levels of various genes or proteins (in this 
case, AlgU and its associated inhibiting 
protein). In reality, of course, expression 
levels are continuous; treating them 
within a discrete approximation refl ects 
the biological fact that levels tend to be 
roughly consistent in any biological state 
(such an equilibrium). Th e aim of the 
continuous variables is to improve on 

curve as in  fi gure 1 c. We show that mod-
el checking remains possible for some 
properties, using the model checking 
tool HyTech  [8] . Our aim has been to be 
able to automatically verify the proper-
ties commonly considered by biologists. 
Experimentally, the properties which can 
be observed by ‘wet biology’ are usually 
equilibrium states or periodic behav-
iours. Transitory states are generally dif-
fi cult to catch experimentally. Conse-
quently, stable states, basins of attrac-
tion, circular trajectories and reachabil-
ity are the main properties we have 
considered. Another capability of Hy-
Tech is to manage unknown parameters: 
they are replaced by abstract symbols, 
and then, HyTech provides the con-
straints on these symbols which are nec-
essary and suffi  cient to prove a given 
property. Exact delays being oft en not 
precisely known, this symbolic treat-
ment of our framework is a great advan-
tage.

  Th e proposed framework is based on 
 hybrid system  modelling. Th ese hybrid 
systems are such that discrete events are 
combined with continuous diff erential 
equations to capture the switching be-
haviour of the real life that is observed in 
phenomena inside the cells. Th e idea we 
follow is that the thresholds of corre-
sponding protein (or RNA) expression 
levels of the genes are no longer instanta-
neously triggered. Since a threshold 
crossing actually takes some time, the ex-
pression levels may begin to increase (or 
decrease), and then be suspended and af-
terwards, the previous dynamics can be 
resumed or opposed, and so on. Th is re-
fl ects the ‘feature of  accumulation ’. Fur-
thermore, diff erences in time delay val-
ues determine some precise trajectories 
of the system, which reduce the non-de-
terminism induced by the asynchronous 
semantics of René Th omas. Th ese fea-
tures have to be considered so that we can 
be able to fi nd out the precise parameter 
constraints that are consistent with the 

observed dynamics of gene expression 
levels.

  Other works might be related to ours, 
either because the authors use the same 
idea of hybrid modelling and analysis of 
biological networks, but not with time 
delays  [9–14]  or because they are con-
cerned with time delays but they adopt a 
completely diff erent approach  [15–17] . 
Finally, other authors have an approach 
close to ours: Adélaïde and Sure  [18]  
make a parametric abstraction of GRN 
using hybrid automata but they have a re-
striction in assuming a uniform degrada-
tion rate, and Siebert and Bockmayr  [19]  
deal with time delays using timed autom-
ata (which is a more restrictively expres-
sive model than hybrid automata, since it 
does not deal with non-increasing vari-
ables). Th e time delays incorporated into 
the logical analysis of GRN  [19]  are some-
how similar to ours, but it is not possible 
to deal with accumulation as we do (see 
section 4.4).

  Th e paper is organized as follows. We 
recall in section 2 the principles of dis-
crete modelling for genetic regulatory 
networks. General principles of hybrid 
modelling are explained in section 3, and 
our specifi c approach of hybrid model-
ling for GRN is discussed in section 4. We 
show in section 5 the analysis which can 
be made on the models, and we come to 
a conclusion. Th roughout the paper, we 
show how our approach can be applied to 
the example of mucus production in 
 Pseudomonas aeruginosa .

  
  2 Discrete Modelling for 
Genetic Regulatory Networks
  In this section we present René Th om-

as’ modelling of genetic regulatory net-
works with the example of the mucus 
production system in  P. aeruginosa , an 
opportunistic pathogen, which is oft en 
encountered in chronic lung diseases 
such as cystic fi brosis. Th ese bacteria are 
commonly present in the environment 
and secrete mucus only in lungs aff ected 
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by cystic fi brosis. As this mucus increas-
es the respiratory defi ciency of the pa-
tient, it is the major cause of mortality. 
Th e regulatory network which controls 
the mucus production has been elucidat-
ed  [20] . Th e main regulator for the mu-
cus production, AlgU, supervises an op-
eron which is made of 4 genes among 
which one codes for a protein that is an 
inhibitor of AlgU. Moreover AlgU fa-
vours its own synthesis. Th e mucus pro-
duction regulatory network can then be 
simplifi ed into the regulatory graph of 
 fi gure 2 , where node x represents AlgU, 
and node y its inhibitor.

  Formally the biological regulatory 
graphs represent interactions between 
biological entities (genes via their pro-
teins for instance) which are depicted by 
vertices. Each edge is labelled with the 
sign of the interaction: ‘–’ for an inhibi-
tion and ‘+’ for an activation. Each node 
abstracts the role of a biological entity 
and is usually called a variable.

  Th e sigmoid nature of interactions 
(see  fi g. 3 ) allows us to abstract continu-
ous expression levels by qualitative ab-
stract expression levels: for each positive 
interaction of  i  on  j , if the variable  i  has 
an expression above (respectively below) 
a certain threshold (infl ection point of 
the sigmoid), then the variable  j  is (re-
spectively is not) infl uenced by  i  and 
symmetric for negative interactions.  Fig-
ure 3  assumes that the variable  i  acts pos-
itively on  j  and negatively on  j  � ; each 
curve represents the expression of the 

this approximation by including some of 
the dynamical features, in particular 
those associated with transitions be-
tween states.  

  As the authors state, their aim is to de-
velop an automatic approach for building 
up theoretical models by ‘determining all 
parameters which lead to dynamics com-
patible with the specifi ed properties.’ 
Th eir strategy is to use computation (a 
specifi c program called SMBioNet) to see 
which, of all the conceivable mathemati-
cal networks of the hybrid type, have dy-
namics that can match the key features of 
biological reality. Th e number of such 
models grows rapidly with the size of the 
network, because of the combinatorially 
many diff erent states possible, and the 
many diff erent ways the elements can in-
fl uence one another with positive, nega-
tive interactions. Th e number of possi-
bilities in the continuous sector of the 
model is essentially infi nite; but for sim-
plicity the authors restrict their models 
to involve only piecewise continuous dy-
namics for such variables, using them to 
replace and improve the discrete step 
function approximation of the sigmoid 
shape (fi gure 1).

  For the genetic regulatory network 
controlling mucus production in  P. aeru-
ginosa , the authors in this way discovered 
eight dynamical models consistent with 
the known biological facts (mainly, cy-
cles of expression or fi xed expression lev-
els in equilibrium states, as measured in 
the lab). Th is example illustrates the 
power of this approach to go beyond the 
original mathematics of Rene Th omas, 
by including a little information on the 
transients of changing expression levels. 

  Explained more fully in Section 4.1, 
the hybrid approach yields models with 
greater fl exibility. Without the continu-
ous dynamics, for example, the model 
can only map one state to a unique fol-
lowing state. With such variables, the dy-
namics is considerably richer. As the au-
thors explain in Section 4.2, there are 

target  aft er  a suffi  cient  delay  for the regu-
lator  i  to act on it. Th ree regions are rel-
evant: the fi rst one corresponds to the 
situation where  i  neither activates  j  nor 
inhibits  j  � , the second to the situation 
where  i  activates  j  and does not inhibit  j  � , 
and the last one corresponds to the one 
where  i  activates  j  and inhibits  j  � . Th is 
justifi es the discretization of the expres-
sion associated with  i  into three abstract 
levels (0, 1 and 2) corresponding to the 
previous regions and constituting the 
only relevant information from a qualita-
tive point of view.

  For a variable which has  �    targets (it-
self possibly included),  �    + 1 abstract lev-
els have to be considered if all thresholds 
are distinct, but possibly less in the case 
where two or more thresholds are equal.

  
  Defi nition 1
   A biological regulatory graph is a la-

belled directed graph G  = ( V ,  E )  where 
each vertex i of V is provided with a bound-
ary   �  i   D �  less or equal to the out-degree 
(the number of out-going arcs) of i, except 
if the out-degree is  0  in which case   �  i  = 1.  
Each edge  ( i   ]   j )  is labelled with a pair 
 ( �  ij ,  �  ij )  where   �  ij   D {–, +}  is the sign of the 
interaction and   �  ij ,  called threshold, is a 
natural number between  1  and   �  I .

  For our running example, no informa-
tion is available on thresholds of interac-
tions x  ]    y and x  ]    x. In particular we 
have to consider both situations  �  xy   1     �  xx  
and  �  xy   !     �  xx , but for simplicity we ex-
plain the modelling on the second one.

(2,+)

(1,+)

(1, )

yx

  Fig. 2.  Regulatory graph for mucus produc-
tion in  P. aeruginosa . 

i

j’ j

0 1 2

i i

  Fig. 3.  The discretization is supervised by the 
thresholds of actions on targets.  
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now two kinds of transitions: 1) a con-
tinuous transition, wherein the continu-
ous variables evolve so as to cross impor-
tant thresholds, triggering meaningful 
biological change, and 2) discrete transi-
tions, in which the discrete variables 
abruptly change and the continuous vari-
ables get ‘reset’ and begin evolving again. 
Th is leads to the possibility that a trajec-
tory passing through the state (1,0) may 
go on to either the state (1,1) or to the 
state (2,0), depending on what happens 
to the continuous variables. A complete-
ly discrete model is probabilistic, in other 
words, while the hybrid model is more 
deterministic; or, as the authors argue at 
the end of section 4, this more detailed 
model naturally distinguishes dynamics 
that would appear identical in the Th om-
as scheme.

  Th e authors go on in Section 5 to show 
how such modeling can yield results of 
real biological relevance, which may 
seem surprising given that this work of-
ten looks more like computer science 
than biology. But that’s where biology is 
heading and for good reason; biology is, 
in many respects, computation.

   Mark Buchanan
   
 

  Th e interaction graph is not suffi  cient 
for describing the dynamics of the system 
and then to explain the mucus produc-
tion. To introduce dynamics, we fi rst de-
fi ne the qualitative states of the system.

  
  Defi nition 2
   A state of a biological graph is a tuple 

n  = ( n  1 ,  n  2 , ...,  n  p ) , where p is the number 
of vertices and n  i   is the abstract expression 
level of i with n  i   D �  and n  i   ̂    �  i .

  Th e threshold and sign of an interac-
tion combined with the current state al-
lows us to know if the regulator has an 
infl uence on its targets. Comparing 
threshold  �  ij    of interaction ( i   ]   j ) and a 
state, one determines if  i  stimulates  j : for 
a positive interaction, if variable  i  has an 
abstract level below  �  ij , the interaction is 
not active and  j  is not stimulated, other-
wise, it is. For negative interactions, the 
conditions are symmetrical. But to defi ne 
the dynamics, we need to determine to-
wards which abstract levels the targets 
are attracted. To answer this question, 
one has to know for each state  n  which 
regulators are actually eff ective on the 
considered target  i , in other words, which 
are the ‘ resources ’ of  i  in the state  n .

  
  Defi nition 3
   Given a biological regulatory graph 

G  = ( V ,  E )  and a state n  = ( n  1 ,  n  2 , ...,  n  p ) , 
the set of resources of i is the set 

  
  
  
  

Ri(n) =
{

j ∈ V
∣∣∣ (j

(τ,+)−→i) ∈ E and (nj ≥ τ),

or (j
(τ,−)−→i) ∈ E and (nj < τ)

}
.

 

  R  i ( n ) contains the activators of  i  whose 
abstract level is above the threshold and 
the inhibitors of  i  whose abstract level is 
below the threshold. A resource is either 
the presence of an activator or the  ab-
sence  of an inhibitor.

  Th e abstract level towards which a 
variable  i  is attracted when its resource 
set is  � , denoted by  k  i  ,  � , is called the  focal 

point  of  i  for resources  � . Th e values of 
focal points defi ne in a straightforward 
manner the  synchronous state graph 
 which represents a fi rst dynamics of the 
system. Th e synchronous state graph is 
obtained by setting for the unique pos-
sible successor of state  n  = ( n  1 ,  n  2 , ...,  n  p ) 
the state towards which the system is at-
tracted:  n  �  = ( k  1  ,R  1  (  n  )  , k  2  ,R  2  (  n  )  ,  ...  k  p,R  p  (  n  ) ) 
where  R  i ( n ) is the set of resources of  i  at 
state  n . Th is defi nition has at least two 
drawbacks:
  • First, it allows two or more variables 
to change simultaneously, while the 
probability that several variables pass 
through their respective thresholds at the 
same time is negligible in vivo. But we do 
not know which one will pass through its 
threshold fi rst.
  • Second, it does not prevent that a 
variable passes directly two or more 
thresholds, which is not realistic because 
an abstract expression level should evolve 
gradually.

  An improved semantics is defi ned in 
terms of an  asynchronous state graph 
 which:
  • replaces each diagonal transition of 
the synchronous state graph (transition 
with 2 or more variables changing their 
expression levels) by the collection of 
transitions each of them modifying only 
one of the involved variables,
  • replaces a transition of length greater 
or equal to 2 (which passes two or more 
thresholds at once) by a transition of 
length 1 in the same direction.

  To formally defi ne the asynchronous 
state graph, we now introduce the evolu-
tion operator : for  x, k   D N,  x    k  is 
equal to  x  –   1 if  x   1   k , to  x  + 1 if  x   !   k  and 
to  x  if  x = k .

  
   Defi nition 4
   Let G  = ( V ,  E )  be a regulatory graph 

with p variables. Its asynchronous state 
graph, denoted  ( S ,  ] ) , is defi ned as fol-
lows: 



236 Complexus 2006;3:231–251  Hybrid Modelling and Dynamical Analysis of GRN with Delays  

  –  Th e set of vertices is the set of states  
 �  i   DV  {0, ...,  � }
  –  Th ere is a transition from the state  
 n  = ( n  1 , ...,  n  p )  to m  = ( m  1 , ...,  m  p )  iff  

  
  
  
  
  
  
  
  

• i ∈ [1, p]

{
mi �= ni

mi = (ni � ki,Ri(n))

•
{

m = n
∀i ∈ [1, p], ni = ki,Ri(n)

  
   Th e parameters  k  i  ,  �  play a major role 

for the dynamics of the model. Unfortu-
nately most oft en they are not experi-
mentally measurable. Indeed fi nding 
suitable classes of those parameters con-
stitutes a major issue of the modelling ac-
tivity. Hopefully, several kinds of con-
straints can be taken into consideration 
in order to reduce the set of possible in-
stantiations of these parameters. If  
Th omas’ approach is seen as a discretiza-
tion of a particular class of continuous 
diff erential equation systems, then the 
parameters  k  i  ,  �  refl ect a discretization of 
sums of ratios of positive constants  [21] . 
In such a case, the family of  k  i  ,  �    has to 
verify the lattice constraints:  k  v,  0  = 0 and 
 �     �     �  �  c  k  v  ,  �     ̂    k  v,  �  � .

  Some biological knowledge or hy-
potheses about the behaviour can also be 
used as indirect criteria: homeostasis (re-
spectively multistationarity) is experi-
mentally observable and it indicates that 
a negative (respectively positive) circuit 
is functional  [22–26] , or in other words, 
is responsible for the associated behav-
iour. Necessary conditions for function-
ality of a circuit constrain the values of 
parameters (notion of characteristic 
states in  [23] ).

  Finally, temporal properties formal-
izing biological knowledge or hypothe-
ses can also be used  [6] . Th e behavioural 
properties of the system are fi rst trans-
lated into a formal language like compu-
tation tree logic (CTL) [27] , then all 

models are formally checked against 
those properties, memorizing only 
models which satisfy them.

  Th e interaction graph abstracting the 
mucus production system in  P. aerugi-
nosa  contains a positive feedback cir-
cuit. Th is makes possible a dynamic 
with two stationary states for some val-
ues of the parameters which would al-
low, from a biological point of view, an 
epigenetic change (stable change of phe-
notype without mutation) from the 
non-mucoid state to the mucoid one. 
Th e dynamical hypothesis (epigenetic 
hypothesis) can be translated into a CTL 
specifi cation  [28] : stability of mucoid 
state (respectively non-mucoid state) is 
expressed by ( x  = 2) c  AXAF ( x  = 2) 
(respectively ( x  = 0) c  AG (¬( x  = 2))). 
Th ese formulae mean that, if  x  is equal 
to 2, then it will fi nally be equal to 2 in 
the future, and that, if  x  is equal to 0, 
then it will never be equal to 2.

  We developed an automatic approach 
for determining all parameter values 
which lead to dynamics compatible with 
the specifi ed properties: it consists in 
enumerating all the possible dynamics 
and selecting by model checking only 
those which are consistent with the 
properties. Th is intensive model check-
ing approach, implemented in SMBio-
Net 1   [6] , formally proves that the epi-
genetic hypothesis is consistent because 
8 models satisfy these formulae from 
which one is presented in  fi gure 4 a.

  Th e other model, presented in  fi gure 
4 b, does not satisfy the CTL specifi cation 
since, from any state, it is always possible 
to go from a state with a low level of  x  
( x  = 0) to a state with a saturated level of 
 x  ( x  = 2).

  Th e latter model actually abstracts 
two diff erent kinds of dynamics de-
pending on the precise nature of the ab-
stract cycle  C  = (0, 0)  ]    (1, 0)  ]  (1, 1) 
 ]    (0 ,  1)  ]    (0, 0). On the one hand, this 
cycle can represent an attractive cycle in 
the continuous phase space, that is, a 
cycle where trajectories starting from a 
certain domain tend to a limit cycle or 
possibly to a single point (see  fi g. 5 a). If 
the initial state is in that domain ( � ), 
then trajectories never leave it and they 
go closer and closer to the  limit cycle . In 
that case, some other trajectories ( � ), 
those that start too far from the limit 
cycle, leave the abstract cycle  C  and go 
into the domain associated with the 
state (2 ,  1). On the other hand, the cycle 
can derive from a discretization of out-
going spiral trajectories around an un-
stable steady state (see  fi g. 5 b). In that 
case, if the initial point is the steady 
state, the system does not evolve ( 	 ), 
but at the fi rst tiny change, the system 
goes away from the steady state and ( 
 ) 
trajectories will fi nally reach the do-
main (2 ,  1). Th e previous specifi cations 

  1  
  http://smbionet.lami.univ-evry.fr/ 

(0,0)

y

x

(0,1) (1,1) (2,1)

(2,0)(1,0)

x

y

(0,0)

(0,1)

(1,0)

(1,1) (2,1)

(2,0)

a b

  Fig. 4.  Two asynchronous state graphs for mucus production in  P. aeruginosa . Presence ( a ) 
or absence ( b ) of validation of the CTL specifi cation is shown. 
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are satisfi ed only in cases ( � ) and ( 	 ). 
Since the model of  fi gure 4 b abstracts 
diff erent situations that do not all sat-
isfy the specifi cations, it is not selected 
by the intensive model checking ap-
proach. Th e modelling of Th omas, be-
cause it does not consider time, is too 
coarse to distinguish these diff erent sit-
uations.

  We introduce in this paper delays in 
the modelling to separate these diff erent 
classes of behaviours. It is expected that 
 under certain constraints on delay param-
eters , the model presents both a cyclic 
trajectory, representing the mucoid state, 
and one attractive basin representing the 
non-mucoid state. Under other con-
straints, the system presents only the at-
tractive basin. Biological knowledge is 
then taken into consideration to choose 
between the models with or without cy-
clic trajectories.

  
  3 Principles of Hybrid 
Modelling
  Hybrid models allow the joint repre-

sentation of both discrete and continu-
ous dynamics. Th ey have been success-
fully used in the last decades, in particu-
lar for the verifi cation of embedded and 
real-time systems.

  One of the simplest and most natural 
formalisms for hybrid systems is the 
timed automaton formalism  [29] . In this 
modelling framework, the state of the 

system is described by a discrete location 
and the values of continuous variables 
which evolve synchronously with time. 
Th ese variables, called  clocks , can be test-
ed for the satisfaction of given constraints 
and reset when passing from one dis-
crete location to another. Th is modelling 
framework has been extensively studied 
in the last decade for it enjoys nice prop-
erties of decidability and complexity. In 
particular, the study of the state space of 
hybrid systems relies heavily on the 
 reachability problem , which allows one to 
say if, starting from an initial state, some 
given state can be reached by executing 
the semantics of the model. Th e reach-
ability problem is decidable in PSPACE 
for timed automata  [29] .

  However, the relative simplicity of the 
analysis of timed automata comes at the 
price of some limitations in the expres-
sive power. We will add fi xed rates in such 
a way that the values of variables either 
stay constant, or decrease synchronously 
with the elapsing of time. By doing this, 
we are not in the class of timed automata, 
but in the more general framework of lin-
ear hybrid automata (LHA) for which 
reachability (and most of the other inter-
esting properties) is undecidable  [30] .

  We now give a more formal defi nition 
for our underlying modelling frame-
work: we defi ne it as a timed automaton 
augmented with the possibility of having 
0, 1 or –1 as derivatives for ‘clocks’ (and 

these may be negative). Th is is actually a 
subclass of the LHA  [30] .

  Given a set of variables  X , let  C ( X ) 
be the set of conjunctions of ‘simple’ 
constraints i.e. of the form  x  –  y  #  c  or 
 x  #  c  with  c   D  �,  x, y   D  X  and #  D  {=,  ! , 
 ̂  ,  6 ,  1 }.

  
  Defi nition 5 (Linear Hybrid 
Automaton)  [30, 31] 
   A  Linear Hybrid Automaton  is a 

6-tuple  ( L ,  l  0 ,  X ,  E ,  Inv ,  Dif )  where 
  •  L   is a fi nite set of  locations.
  •  l  0   is the  initial location.
  •  X   is a fi nite set of real-valued vari- 
ables .
  •  E   �   L   !   C ( X )  !  2 X   !   L   is a fi nite 
set of edges. If e  = ( l ,  	 ,  R ,  l  � )  D  E ,  e   is the 
edge between the locations l and l  �  , with 
the guard   	   and the set of variables to be 
reset R .
  •  Inv   D  ( C ( X )) L   maps an  invariant  to 
each location .
  •  Dif   D  (� X ) L   maps an  evolution rate 
 to each (continuous) variable in each 
location,   dX/dt   being the set of derivatives 
of the variables wrt. time .  dX / dt  =  (Dif 
( l ,  x )) x  DX .

  For short, given a location  l , a continu-
ous variable  x  and  n   D  �, we will denote 
 Dif ( l ,  x ) =  n  by  dx/dt  =  n  when the loca-
tion considered is not ambiguous. Note 
that in our GRN models,  Dif ( l ,  x ) will al-
ways be 0, 1 or –1.

  To illustrate the use of a hybrid model, 
we give the toy example below.
  

  
  
  
  
  

  y >= 0

dx/dt = 1

x <= 3

l0

dx/dt = 1

dy/dt = 1

l1

dy/dt = −2

y == 0

x :=  0

x == 3 

  
  
  

x

y

(0,0) (1,0)

(1,1) (2,1)

(2,0)

(0,1)

x

y

(1,1) (2,1)

(2,0)(1,0)

(0,1)

(0,0)a b

  Fig. 5.  Continuous trajectories compatible with asynchronous state graphs of fi gure 4b: cyclic 
trajectory ( a ) and divergent trajectory ( b ). 

  Fig. 6.  A toy example of hybrid automaton.
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  L = {l0, l1},  X  = { x ,  y },  E  = {( l 0, { x  = = 
3}, { x },  l 1),   ( l 1, { y  = = 0}, {},  l 0)},

  Inv = {(l0 ,  {x  ̂     3}),   (l1, {y  6    0})}, 
 Dif  = {( l 0 , dx/dt  = 1 , dy/dt =  1) ,  ( l 1 , 
dx/dt =  1 , dy/dt =  –2)}.

  From such a model, we are interested 
in the executions which are the sequenc-
es of states  q   D Q  (see defi nition 6) such 
that  q  = ( l  i ,   ( x ,  y )) where  i   D  {0, 1}   and 
( x ,  y )  D  � 2 . Th e relation between these 
states, one with its successor, is either a 
discrete or a continuous transition, which 
are defi ned as follows.

tools exist, either off ering better reach-
ability algorithms than HyTech but hav-
ing insuffi  cient analysis command lan-
guage  [32] , or limiting LHA to the re-
stricted class of timed automata  [33] .

  
  4 Hybrid Modelling for GRN
  Th e aim of this section is to show how 

we take into account the  delayed thresh-
old triggering  (according to the schema of 
 fi g. 8 ), in order to go from the purely dis-
crete modelling of Th omas et al.  [23]  to a 
hybrid modelling taking into account the 
temporal behaviour (with durations) in 
the expression space. Principles are illus-
trated with the example featuring the 
mucus production in  P. aeruginosa , 
which was introduced in section 2.

  
  
  4.1 From Expression Space to 
Temporal Zones
  Th e discrete modelling of the run-

ning example, as we already explained 
(see section 2), is given in the graph of 
 fi gure 7  where each discrete states of the 
system stands for the values of the cou-
ple of genes (x,y). For example, the state 
(1,0) represents the situation where, un-
like x, y has not yet triggered the thresh-
old 1. Green arrows indicate the transi-
tions between the states.

discrete value of x

actual value of x

value of hx

hx = dx-

discrete value of x

value of hx

actual value of x

hx = 0

hx = 0

hx = dx+

  Fig. 8.  Modelling of time delays. 

0, 1

0, 0 1, 0 2, 0

1, 1 2, 1

  Fig. 7.  Example of a GRN discrete model (see 
fi g. 4b). 

  
  Defi nition 6 (Semantics of an LHA)
   Th e semantics of an LHA H   is defi ned as a Timed Transition System  SH = (Q,  q  0 ,  ] ) 

 where  Q =  L   !  � X ,  q  0   is the initial state and   ]   is defi ned, for   t   D � 6  0 , by:
  •  discrete transitions:  ( l ,  � )  ]  ( l  � ,  �  � )  iff   �( l ,  	 ,  R ,  l  � )  D  E   such that 

  
  
  
  
  

⎧⎪⎨
⎪⎩

γ(ν) = true, (γ is the guard that must be true for the value ν)
ν ′(x) = ν(x) if x �∈ R, 0 otherwise, keep the value ν of x, except if it must be reset

Inv(l′)(ν ′) = true (the invariant must be true in the target location)
( )

  
  •  continuous transitions: 

  
  
  
  
  

(l, ν) t→ (l, ν ′) iff

{
ν ′ = ν + dX

dt × t,

∀t′ ∈ [0, t], Inv(l)(ν + dX
dt × t′) = true

  
  Note that, even if  t   D R 6  0 , the values  �  of the variables may be positive or negative 

according to the signs of  dX/dt .
  Among the possible executions in the toy example of  fi gure 6 , it can be checked 

that the following (closed) path is an infi nite cycle:
  
  
  (l0, (1, 0))

2−→ (l0, (3, 2)) −→ (l1, (0, 2)) 1−→ (l1, (1, 0)) −→ (l0, (1, 0)) 2−→ . . .

  
  
  A Linear Hybrid Model Checker: HyTech 
  For the implementation and analysis of LHA, a suitable model checker plays an 

important role. HyTech  [8]  is a general tool for LHA that was originally developed for 
the formal verifi cation of embedded or real-time systems. HyTech provides a handy 
set of  analysis commands  (a manipulation language), which are suffi  cient for the 
analysis algorithms we want to implement. We also make use of the  parameter syn-
thesis  peculiarity of HyTech for the core results of this article. Other model checking 
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  4.1.1 Delays and Clocks
  Since we now consider that the delays 

for a gene to actually move from the value 
n to the value n + 1 is not null, we have to 
switch from a model based on an expres-
sion space to a new one which superpos-
es it. Th is space deals with time intervals. 
Th ese additional intervals are those of the 
 clocks  which measure time instead of ex-
pression levels. A value belonging to such 
an interval measures the time elapsed 
since the last change of discrete expres-
sion level.

  In  fi gure 8 , h x  is the time elapsed since 
this last change and d x  is the boundary 
delay aft er which the discrete expression 
changes again. Th ere are in fact two de-
lays d +  

x  and d –  
x , respectively, for produc-

tion or degradation of the product of the 
variable x. Th e  delay  for x to increase up 
to the next discrete level is a real param-
eter d +  

x  ( 1 0) and similarly, the delay for 
x to decrease is  � d –  

x  �    (with  d  –  
x   !  0, in or-

der to avoid the confusion between a ten-
dency to increase and a tendency to de-
crease).

  As a matter of fact, for each discrete 
state (x,y), we expand x and y: x is ex-
panded in the red segment of length 
 � d –  x  �    +  � d +  

x  �    which is the model of h x  (the 
clock of x) (fi g. 9a).

  Th e relation between h x  and x is: if 
the discrete value of x is equal to 1, when 
x increases, h x  evolves from 0 to d +  x ; 
when x decreases, h x  evolves from 0 
down to d –  

x .
  Since y is expanded in the same way, 

we get ( fi g. 9 b): 
  Th e state (1, 0) in the standard Th om-

as discrete state space is now equipped 
with a zone (the blue rectangle) which 
is the (1, 0) location of the temporal 
model. Th us, the point at the intersec-
tion of these red segments stands for the 
state (h x , h y ) = (0, 0) in the zone (x, y) = 
(1, 0).

  Hence, we are now mostly concerned 
with the (h x , h y )  temporal zones  and sec-
ondarily with the (x, y) abstract expres-
sion space.  Th e consequence is that we 
rather deal with the linear dynamics of the 
 h x  -clocks than with the non-linear dy-
namics of the expressions of  x.

  
  4.1.2 Temporal Zones
  As we mentioned, rectangles repre-

sent no longer only a unique symbolic 
state (e.g. (1, 0), etc.). Th ey stand for a set 
of states and they are called  temporal 
zones , i.e. some regions where time elaps-
es until one of the blue lines is reached 
(which means that the discrete value of 
one variable is changed).

  Th en, when crossing one threshold 
(e.g. that of x) and thus entering a new 
location, there is an immediate jump to 
the red segment origin of the correspond-
ing clock (e.g. h x  : = 0, the values of the 
other clocks are kept), and the dynamics 
of the clocks are the new ones associated 
with the new location (these dynamics 
will be detailed below).

  Th e coordinates of any given point 
P in a zone are the values (hx, hy) of the 
two clocks which measure times to reach 
the limit values d –  

x  10 
 or d +  

x  10 
 for h x  and, 

respectively, d –  
y  10 

 or d +  y  10 
 for h y . 2 

  For example, in  fi gure 10 , the point 
P = ((1 ,  0) ,  h x  P 

,   h y  P 
) represents a state of 

the system where 0  !  h x  P 
  !  d +  

x  10 
 and 0  !  

h y  P 
  !  d +  y  10 

. It means that, in the future 
(i.e. for the successors  P  �    of  P ), either h x  P  �  

 
 will reach d +  

x  10 
 or h y  P  �  

  will reach d +  y  10 
 , 

leading to the following location where 
the state (x ,  y) is either (2 ,  0) or (1 ,  1).

  Hence, we will now discuss the dy-
namics inside zones, since it is determin-
istic for the prediction of the future of a 
point  P .

  

  2  
  Indices of d x  and d y  are related to the name of the location 

(1, 0). 

9a

9b

  Fig. 9.  Expansion of the location (x, y) = (1, 0) in the temporal zone (h x , h y ). 
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  4.1.3 Dynamics in the Temporal 
Zones
  According to the LHA defi nition (see 

defi nition 6 in section 3), the hybrid au-
tomaton ( L ,  l  0 ,  X ,  E ,  Inv ,  Dif ), which is the 
model of the regulatory network, is built 
from the discrete automaton ( S ,  ] ) in 
the following way.

  Th e locations  l  of the former automa-
ton are the states  s  of the latter ( L = S ).  X 
 is the set of real-valued variables h i  for 
each gene i. Th us, if  n  is the number of 
genes, the discrete space is the set  L  of 
locations  s , the  temporal space  is the set 
of points P s  = h i  D[1 ... n]   D  � n  in each loca-
tion s.

  Dynamics of the clocks in each loca-
tion  s  give a view of the tendency for each 
gene in this location. Th ey are given by 
the values of dh i /dt and they belong to the 
set {–1, 0, +1}, which means that the 
clock of the gene  i  is either decreasing, or 
staying at the same level, or increasing. 
Th is tendency takes into account the next 
discrete transitions, each of which re-
fl ecting the closer future dynamics for 
each gene. Indeed, since these dynamics 
were abruptly desynchronized for the 
discrete modelling (so that only the most 
immediate change was kept), we now 
have to look several steps ahead in order 
to get the whole actual tendency of all the 
genes. Th is means that we have to take 

care of the next  n  transitions of the dis-
crete model (with priority for the closer 
transitions).

  Formally, if  S   �   L  is any set of loca-
tions,  post ( S ) is the set of the next loca-
tions from any location of  S  (the target 
locations of each outcoming transition 
of all the states of  S ) and  S  k    is the set 
 post  k ( S ) =  post ( post  k   – 1 ( S )). We note  S  = 
{ s } the set with the single location  s , the 
derivatives of the clock variables (vector 
 dh  ] / dt ) in  s  are given by:

  
  

  for (k := n –   1 down to 0) do:
  
  { C( s  k   D S k    and  s  k   + 1   D post(S k ) such that 

        s  k   ]   s  k   + 1 ): dh i /dt  [  ( s  k   + 1 [ i ] –  s  k [ i ])}       (1)
  

  where  s  k [ i ] denotes the  i -th component of 
vector  s  k , i.e. the abstract expression level 
of gene  i  associated with the location  s  k   
 (and similarly for  s  k   + 1 [ i ]).

  Th e edges between locations are the 
transitions of the discrete model together 
with their respective guards (the reached 
time delay) and the reset statements (the 
corresponding clock reset). Th us, for any 
edge  e  = ( s ,  	 ,  R, s  � ) in  E :

  
     � i   D [1.. n ] such that 

        ( s [ i ] =  k  and  s  � [ i ] =  k   �  1 (  �     D {+, –}) ):
  
  

 

 

⎧⎪⎨
⎪⎩

γ is : hi == dα
is

and

R is : hi ← 0

  Th e whole space of the temporal zones, 
together with the speed directions of 
clocks, is thus supplemented in  fi gure 11 , 
where the direction in the zone (2 ,  1) is the 
null vector (drawn as a green asterisk).

  
  

  Fig. 10.  Example of ‘temporal’ modelling for a GRN (partial sight). 

  Fig. 11.  Example of ‘temporal’ modelling for a GRN (full sight) 
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  Defi nition 7 (Temporal State 
Space)
   Th e set of all the temporal zones derived 

from the discrete model of a GRN is called 
the temporal state space of a GRN  
( fi g. 11 ).

  
  4.2 Hybrid Model of the Running 
Example
  We now come back again to the regu-

latory network of the example of  P. aeru-
ginosa  (see section 2,  fi g. 2 ) and we show 
the hybrid model it leads to, according to 
the procedure explained above.

  As we have already explained, we as-
sociate a clock h v  to each variable v  D 
{x, y} of the example. Th e clock speeds in 
the locations and the discrete transitions 
are set according to the rules (1) and (2) 
given in the previous section. More pre-
cisely, the vector of derivatives of the 
clocks is found in the discrete transition 
system in  fi gure 7 . For example, in loca-
tion (0 ,  1), since we know that the next 
two discrete transitions are respectively 
(in the increasingly close order) such that 
x increases and y decreases, we get (ac-
cording to the formula (1)) that:  d h x / dt  = 
1 and  d h y / dt  = –1. Also, in location (1 ,  0), 
since there is an immediate tendency for 

x and y to increase, we get that:  d h x / dt  = 
1 and  d h y / dt  = 1. Finally, in location 
(2 ,  1), since the tendency is to stay in this 
location, we have:  d h x / dt  = 0 and  d h y / dt  
= 0.

  Note that, in  fi gure 12 , there might be 
some indeterminism if, for example in 
loc_10, h x  becomes equal to d +  x  10 

 at the 
same moment when hy becomes equal to 
d +  

y  10 
. Th ere can be either the translation 

towards loc_20 or towards loc_11.

  4.3 Trajectories
  Th e dynamics of expression levels are 
made of a sequence of transitions in the 
temporal state space. It can be explained 
in the following way. Th ere are two types 
of progression which alternatively take 
place: 
  •  a continuous transition , which stands 
for time elapsing in a zone (along one 
direction which is the same for any point 
in the zone), until one of the blue bor-
ders of the zone is reached
  •  a discrete transition , which stands for 
the instantaneous change of zone, and 
which leads to the appropriate clock re-
set (and which gives the new values of 
the discrete expression levels).

  Any sequence of points related by 
such transitions makes up what is called 
the  trajectory .

  An example of trajectory is given in 
 fi gure 13  (layout is thick purple) to show 
the whole behaviour from a given point 
P in the zone (1,0). Th e point P is un-
specifi ed but arbitrarily such that 0  !    h x  P 

 
 !  d +  x  10 

 and 0  !  h y  P 
  !  d +  y  10 

. Th e time elaps-
ing (according to the diagonal segment 
(plain line)) at fi rst brings to the cross-
ing of the threshold of y with passage in 
the zone (1,1) and jump to the 0 h  y 

-axis 

loc_00
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  Fig. 12.  Hybrid model for the example of  P. aeruginosa  (bold arrows represent the transi-
tions of the discrete model). 

P

(0, 1)

1 2

y

(0, 0)
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0

0
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  Fig. 13.  Trajectory starting from a temporal point P and showing its tem-
poral behaviour. 
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it  may exit  by the eastern side, otherwise 
(situation (c)).
  • Finally, some parts of a blue rectangle 
may be unreachable. For example, in the 
zone (1 ,  0):  
   
  
  
  hx=dx

+

(1, 1)

(1, 0)

x = 1,  hx = 0

y = 0,  hy = 0

hy=dy
+

1

0

(2, 0)

hy=dy −

y

x

10

1010

10

hx=dx

(0, 0)

−

  Th e left  subzone of the rectangle is not 
reachable for both reasons: (1) the only 
entry into the zone (1 ,  0) is from the west 
and it was done together with an imme-
diate switch to the h x  = 0 red segment, 
and (2) the dynamics are such that  h  x    is 
rising (as well as  h  y ).

  Also, even if the GRN does not indi-
cate a decrease in a substance on the low-
est level, there is nevertheless a part 
where h y   !    0, but obviously, this subzone 
will never be reached (since h y  increases 
and it was not negative in the previous 
zone).

  
  4.3.2 Divergences and Invariance 
Kernels
  Th e aim is now to look at some inter-

esting features of the possible trajecto-
ries. Indeed, as it was introduced at the 
end of section 2, we are interested in tra-
jectories which are either cyclic or di-
verging.  Figure 14  illustrates these diff er-
ent types of trajectories on slightly diff er-
ent models (the diff erence lying in the 
values of the parameters d �  i  ). We observe 
now that some behaviours are  cyclic  (the 
green ones), i.e. they are confi ned in what 
we call a  closed path  (more precisely, they 
go infi nitely oft en and sequentially in the 

  3  
  Without loss of generality, we only look here at a zone such as 

(1, 0), with the frontier reaching the upper right corner, and the 
entry in this zone is done by the left most side. 
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(with resetting of h y ): instantaneous transition drawn as a dashed line, and so on 
( fi g. 13 ).

  Th is alternation of continuous temporal transitions with instantaneous discrete 
transitions (which correspond to the change of zone) is actually underlying an LHA 
in which locations are temporal zones, and continuous variables embodies the ex-
pressions which are modeled by  ‘clocks’  that can be either suspended or going onwards 
or backwards, and measure the times needed to reach the related thresholds.

  
  4.3.1 Various Types of Behaviours
  As one can see in  fi gure 13 , some trajectories passing through the zone (1, 0) will 

exit through the zone (1, 1), and some other trajectories will exit through the zone 
(2, 0). Indeed, since they depend upon the a priori unknown delay parameters, we 
neither know the shapes of the blue rectangles nor their dimensions nor the exact 
position of these rectangles with respect to the red lines. However, these shapes, di-
mensions and positions have a direct impact on the trajectories, i.e.   on the dynamics 
of the modelled system and this is therefore a major clue in the analysis of the system. 
Some issues have then to be discussed:
  • Even if the dynamics inside a rectangle are diagonal, the fact that this rectangle be 
very elongated (horizontally or vertically) may cause trajectories much more likely 
to exit through one zone or through the other zone: 

   • Moreover, in many zones, the position of the diagonal frontier reaching some 
specifi c corner of the zone is a deterministic feature and several cases may occur 
(various combinations of which the most interesting ones are recapitulated below 3 ):
  –  the black diagonal (and the dashed line continuation) intersects the southern 

border of the zone (case  (a) ):  all the trajectories will leave by the northern side
  –  the black diagonal (and the dashed line continuation) intersects the western 

border of the zone 
   *   either in the part  h y   !    0  (case  (b) ) 
   *   or in the part  h y   1  0  (case  (c) ) 
  In these cases, some trajectories will exit through the northern side, others by the 

eastern border.

  Th e only diff erence between case (b) and case (c) in the fi gure above is that, in the 
situation (b), the trajectory  must exit  by the northern side if h y  is non-negative, and 



243Complexus 2006;3:231–251 Ahmad   /Bernot   /Comet   /Lime   /Roux   

  

 

states (1, 1), (0, 1), (0, 0), and (1, 0)). Oth-
er behaviours escape from this cycle to 
move away eventually defi nitively to-
wards the state (2, 1) (the purple ones). 
In this last case, we speak of  divergence , 
with respect to a cycle.

  As we will see in section 5 on auto-
matic analysis of the trajectories, we are 
able to establish these specifi c sets of tra-
jectories. More precisely, the greatest set 
of points such that any trajectory, start-
ing from one of these points, remains in 
this set is of great interest and it is called 
the  ‘invariance kernel’   [34] . Th is kernel is 

expressed as a constraint on the delay pa-
rameters, which can be algorithmically 
synthesized. In contrast, the outside of 
this kernel is composed of divergent tra-
jectories which lead towards another re-
gion, which we call a  ‘capture basin’ . Th ese 
phenomena are illustrated with the ex-
amples of  fi gure 14 , and they are further 
analyzed in subsection 5.1.

  
  4.4 Discussion
  We come now to a short discussion 

about our approach of hybrid modelling 
for temporal networks. A biologically im-

portant advantage of our approach, which 
has been a technically rather diffi  cult fea-
ture to preserve, is that it takes into ac-
count all accumulated increasing and de-
creasing phases in the behaviour of a sys-
tem.

  
  Accumulation
  An important feature of our model-

ling approach is that it records the ac-
cumulations along trajectories. Th ese 
accumulations can be monotone or not. 
It means that one can successively pass 
through a set of states leading to the 
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  Fig. 14.  Invariant trajectories (thin green) and divergent trajectory (thick purple). 

  Fig. 15.  Accumulations for one clock associated with one specifi c gene (activation/decay rates  � ,  � ,  	  are intermediate 
values which are deduced from the delays and thresholds). 
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progress of a variable in one direction, 
then immediately aft erwards in another 
direction, or temporarily stable (see 
 fi g. 15 ). Th is corresponds to the fact 
that, when x has a given value, it is in 
one of the various zones which corre-
spond to this value. But it can pass 
through several zones because of the 
changes of other variable values, and 
thus, it may have an behaviour which is 
not always the same (e.g. in  fi g. 15 : at 
fi rst, h x  increases, then it remains stable, 
and then it increases again). Anyway, 
the reached expression level is not lost.

  It can be noted, however, that the 
compensation of a beginning of synthe-
sis (thus, a decrease) is not done at the 
appropriate speed of degradation, since 
it is indeed at exactly the opposite speed 
of this previous synthesis. Th is issue ac-
tually constitutes a kind of small inac-
curacy.

  
  5 Analysis
  In this section, we show that the ma-

jor advantage of modelling regulatory 
interactions between genes with delays 
is that it makes it possible to algorithmi-
cally analyze more precisely the behav-
iours of a system. We fi rst present the 
notion of invariance kernel along with 
an algorithm to fi nd such kernels. Th en, 
we give the results of the analysis of the 
hybrid model of the running example of 
 P. aeruginosa . Th ese results are the com-
puted intervals of initial conditions such 
that a trajectory starting from any initial 
region eventually converges to a cycle.

  For the sake of simplicity, from now 
on, we only deal with fewer delay pa-
rameters, assuming that all d �  

x  ij  are 
equal, whatever the actual value of j is, 
and similarly for all d �  y  ij , whatever the 
actual value of i is. Th e major conse-
quence is that, from now on, zones are 
adjacent (see adjacent blue rectangles in 
 fi g. 16  and  17 ).

  
  

  5.1 Cycles and Invariance Kernels
  Th e introduction of delay parameters 

and clocks in the GRN modelling can 
help to fi nd the stable and unstable cy-
cles, the results of which have been shown 
 [35]  where delays have not been taken 
into account. Th omas and D’Ari  [36]  af-
fi rm: ‘the set of initial conditions that 
lead to stay in the cycle plays a vital role 
in the dynamics of the network’, and it 
was the former work of these conditions 
to stay in a cycle. Th e solution of this gen-
eralized problem of fi nding conditions 
for the infi nite cycle was addressed later 
 [34, 37] , when the authors introduced 
the idea of  invariance kernel  which is the 
set of initial conditions of which all exe-
cutions remain in the constrained set for-
ever.

  Th e initial conditions of the clock vari-
ables in the temporal state space might 
not be in the cycle. It is therefore impor-
tant to analyze which initial values can 
lead the system into the cycle, to deter-
mine the constraints on the time delays 
and clocks which will eff ectively allow 
the system to enter the cycle and then to 
verify that these constraints are compat-
ible with the conditions for remaining in 
the cycle.

  Th ese studies lead us to the theory of 
viability.

  
  5.1.1 Viability and Invariance
  Viability theory is an area of mathe-

matics concerned with the viable behav-
iour of controlled dynamic systems  [38] . 
A system execution is considered viable 
if the system trajectory remains within a 
prescribed region, the  viability domain 
  [34] . Roughly speaking, the viability do-
main is a set of states such that there exits 
at least one execution, from all the initial 
conditions, that remains viable in this 
set. Th e basic problem that viability the-
ory attempts to solve is whether a control 
strategy exists that prevents the system 
from leaving the viability domain. Th e 
invariance kernel  [39]  for such a problem 
is the set of all initial conditions, for 
which such a strategy exists.

  
  Defi nition 8 (Invariance Kernel)
   Let K be a subset of the temporal state 

space of a GRN. A set K is invariant if for 
any x   D  K, every trajectory starting in x is 
viable in K. Given a set K, its largest invari-
ant subset is called the invariance kernel 
of K. 
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  Fig. 16.  Phase portrait for invariance kernel. 
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  5.1.2 An Algorithm to Find the 
Invariance Kernel
  We defi ne here two sets of conditions 

(constraints upon the coordinates of or-
igin points) for the trajectories leading 
to infi nite cycles: the  necessary condi-
tions  and  the suffi  cient conditions . Th ese 
sets of conditions defi ne specifi c re-
gions.

  First, the set of necessary conditions 
is any region which is a subset of a tem-
poral zone associated with a location of 
a closed path (see section 4.3.2), be-
cause some trajectories having origins 
outside this set will neither remain in-
variant nor converge to an infi nite cycle. 
Of course, it is not a suffi  cient condition, 
since additionally, some trajectories, 
starting from some points in this zone, 
may not remain within the invariance 
kernel. Th e set of suffi  cient conditions is 
therefore a subset of the previous set, 
such that all the trajectories from all the 
points in this set always converge to in-
variant cycles. It can be any arbitrarily 
selected subregion of the chosen initial 
zone as soon as it is greater or equal 
(w.r.t. inclusion) than the searched re-
gion of the invariance kernel in this 
zone, but some regions may not inter-

sect with the invariance kernel. It is a 
good idea to take as initial region a set 
of states which is orthogonal to the di-
rection of the reset of the immediate 
previous discrete transition. For exam-

ple, in  fi gure 16 , the region where h y  = 
0 in the zone (1 ,  1) is appropriate since 
h y  has just been reset.

  Algorithm 1 (below) fi nds the set of 
conditions that leads to a region standing 

(a)
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  Fig. 17.  Plain and nested cycles within the phase portrait for invariance kernel. 

  Algorithm 1.  Set of conditions that leads to a cyclic region

 1:   Zini : = <Arbitrary initial zone> 
 2:   Znew : =  Zini  
 3:  repeat 
 4:      Zold : =  Znew  
 5:      Znew : =  pre ( Znew ) 
 6:  until ( Znew  =  Zold ) V   empty( Znew ) 
 7:  if not empty( Znew ) then 
 8:      Iini : = <arbitrary region in the initial zone> 
 9:      Inew : =  Iini  
 10:       Preg : =  Inew  
 11:     repeat 
 12:          Iold : =  Inew  
 13:        repeat 
 14:             Preg : =  pre ( Preg ) 
 15:        until (not empty ( Iini  �  Preg )) V empty( Preg ) 
 16:          Preg : =  Preg  �  Iini  
 17:          Inew : =  Inew  �  Preg  
 18:     until ( Inew  =  Iold ) V empty( Preg ) 
 19:  end if 
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for an invariance kernel. Th us, it pro-
ceeds in the following way. First, it checks 
the necessary condition for one arbitrari-
ly chosen zone  Z  ini , and then, it iterative-
ly fi nds the predecessor regions,  P  reg , of 
the initial region. Th e fi xpoint,  I  new , is 
therefore a subregion that stands for the 
 suffi  cient conditions  for an invariance 
kernel. Any trajectory from a point in 
this subregion converges to an infi nite 
cycle.

  
  Illustration of the Algorithm 
Execution
  Let us illustrate the execution of algo-

rithm 1, according to its HyTech imple-
mentation (see Appendix 7.2).

  We arbitrarily choose the initial zone to 
be (1 ,  1) and, according to the fi rst part of 
the algorithm (lines 3–6), the closed path 
reveals to be: (1, 1)  ]  (0, 1)  ]  (0, 0)  ]  
(1, 0)  ]  (1, 1) ... Th e results of these com-
putations are given in  table 1 .

  Th en, we arbitrarily set the initial re-
gion to be: h y  = 0  %  (–2  ̂     h x   ̂   3) and 
the computations of the nested iterations 
(lines 11–18) are recorded in  table 2 .

  Here, C1 = (not empty( I  ini   1   P  reg )  5  
empty( P  reg )) and C2 = (( I  new  =  I  old )  5  
empty( P  reg )).

  Now we have an algorithm to fi nd out 
cycles, we are interested in the generaliza-
tion to get the set of all the cycles which is 
called the  phase portrait for invariance ker-
nel .

  
  Defi nition 9 (Phase Portrait for 
Invariance Kernel)
   A phase portrait is a plot of multiple tra-

jectories corresponding to diff erent initial 
conditions leading to cycles. 

  As a matter of fact, a phase portrait for 
invariance kernel is the union of all trajec-
tories which have their origins in the larg-
est initial interval. We show in section 5.3 
the results of invariance kernel computa-
tions from some initial regions, each of 
which is the greatest interval in some ar-
bitrary direction in the diff erent zones.

  Th e green area (with labels  A s and  B s) 
of  fi gure 16  shows the phase portrait for 
the invariance kernel. Here, it appears to 
be a non-convex polygon with a hole in the 
centre. Diff erent subregions of the phase 
portrait are labelled with letters  A  and  B , 
which respectively show the continuous 
(inclined) and discrete (rectangular) sub-
regions within the phase portrait. Hence, 
in  fi gure 16 ,  A  followed by  B  demonstrates 
that continuous transitions are followed 
by discrete transitions and vice versa. Re-
gions labelled with the letter  C  show the 
region from where the trajectories will 
converge to the invariance kernel.

  
  5.2 Types of Cycle Trajectories
  It appears that invariance kernels con-

sist of two exclusive types of cycles. We 
called these cycles  plain  or  nested  cycles.

  
  Defi nition 10 (Rotation)
   A rotation is a closed path in the tempo-

ral zone space which begins in any zone and 
later comes back for the fi rst time in this 
zone (not necessarily at the same point). 

  Th e diff erence between a rotation and 
a cycle in the temporal state space is that 
rotation does not take clock values into ac-
count.

  An example of a rotation is the piece of 
trajectory: (1, 1)  ]  (0, 1)  ]  (0, 0)  ]  
(1, 0)  ]  (1, 1), whatever the values of hx 
and hy are in the fi rst and in the second 
passage in the zone (1 ,  1).

  
  Defi nition 11 (Plain Cycle and 
Nested Cycle)
   A plain cycle is a single rotation trajec-

tory that starts from a point in a phase por-
trait and then fi nally arrives at the same 
point. 

  A nested cycle is a more than one rota-
tion trajectory that starts from a point in 
a phase portrait and then fi nally arrives 
at the same point.

   Figure 17 a shows a plain cycle, and  fi g-
ure 17 b shows a nested cycle in the phase 
portrait of the invariance kernel.

  5.3 Model Checking of the Running 
Example
  We do the HyTech  [8]  analysis of the 

hybrid model of  fi gure 12  by using algo-
rithm 1 to fi rst check that the chosen ini-
tial zone is a necessary condition for the 
invariance kernel and then to fi nd the suf-
fi cient condition for the invariance kernel 
in the form of clocks and delay constraints. 
Th e HyTech fi le of the model in Appendix 
7.1 and the HyTech fi le of the analysis 
commands in Appendix 7.2 show the im-
plementations of the hybrid automaton 
and the algorithm, respectively.

  Th e results obtained when choosing 
the initial interval in diff erent zones of the 
temporal model are shown in the follow-
ing two sections.

  
  5.3.1 Results with Unvalued Delay 
Parameters
  As already mentioned,  parameter syn-

thesis  is one of the peculiarities of HyTech. 
Parameters in HyTech are treated as un-
known constants. Th e HyTech results, as 
shown in the ‘constrained region’ column 
of  table 3 , have been synthesized with de-
lays as parameters.

  Th ese rough results may seem hard to 
understand, but they give some hints 
which are of interest about the achieved 
relations between the delay parameters 
that cycles exist. Th ey become more legi-
ble when we know the values of at least 
some parameters (see subsection 5.3.2).

  Th e columns ‘Z ini ’ and ‘I ini ’ of  table 3  
give some initial zones and some initial re-
gions, respectively. Th ese initial condi-
tions were arbitrarily selected. Th e ‘con-
strained region in the phase portrait’ col-
umn shows the constraints obtained when 
selecting some initial intervals in the dif-
ferent zones. Th e constraints represent a 
region which is a set of initial conditions 
leading to trajectory cycles of the invari-
ance kernel. Th e last column of  table 3  
shows the execution time in seconds on a 
Pentium(R)-4 3.20 GHz machine.
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  Table 2.  An example of the execution of the second loop of algorithm 1 for Iini = (hy = 0 # (–2 ^ hx ^ 3)) and Zini = (1,1)

 Pass  Iold  Preg  C1  Inew  C2 

 1  loc_11 :
  h y   =  0 # (–2 ^   h x  ^ 3) 

 loc_10 :
  h y   ̂   5 # h y  6 h x    + 2 # h y    ̂    h x    + 7 

 false  loc_11 :
   h  y   =  0 #   (1 ^  h  x    ̂    3) 

 false 

 loc_00 :
  h x    ̂    4 #   h y    ̂    h x    + 1 #   h x    ̂    h y    + 2 

 false 

 loc_01 :
  h y    + 5 6   0 # 0 6   h x    + h y    + 3 #   h x    +  h  y    + 6 6   0 

 false 

 loc_11 :
  hx   + 2 6   0 #  h  x    ̂   h  y    + 3 #  h  x    6  h  y    + 1 

 true 

 2  loc_11 :
   h  y  = 0 #   (1 ^  h  x    ̂    3) 

 loc_10 :
   h  y    ̂    5 #  h  y    6  h  x    + 2 #  h  y    ̂   h  x    + 4 

 false  loc_11 :
   h  y   =  0 #   (1 ^  h  x    ̂    3) 

 true 

 loc_00 :
   h  x    ̂    4 #  h  y    ̂   h  x    #  h  x    ̂   h  y    + 2 

 false 

 loc_01 :
   h  y    + 5 6   0 #   0 6  h  x    +  h  y    + 3 #  h  x    +  h  y    + 5 6   0 

 false 

 loc_11 :
   h  x    + 2 6   0 #  h  x    ̂   h  y    + 3 #  h  x    6  h  y    + 1 

 true 

  Table 3.  Table of constraints (unvalued parameters)

 Zini  Iini  Constrained region in the phase portrait  Time 

 (0,0)   h  y   =  0 #  d –  
x 0 ^  h  x    ̂   d + x 0   h  y   =  0 #  h  x    6   0 #  h  x    +  d + y 0 +  d–  

y 1 ^  d + x 0 +  d–  
x 1 #  h  x    +  d–  

x 0 +  d + y 0 +  d–  
y 1 ^  d + x 0 +  d–  

x 1 #  
    h  x    +  d–  

y 1 ^  d–  
x 1 #  h  x    +  d–  

y 1 ^ 0 #  h  x    +  d + y 0 ^  d + x 0 +  d + x 1 #  d–  
x 1 ^  h  x    +  d + y 0 +  d–  

y 1 #
 d–  

x 1 ^  h  x    +  d + x 1 +  d–  
y 1 #  d + x 0 +  d–  

x 1 ^  h  x    +  d + y 0 #  d + x 0 ^  h  x    +  d + y 0 

 0.79 

 (0,1)   h  x   =  0 #  d–  
y 1 ^  h  y    ̂   d + y 1   h  x   =  0 #  h  y    ̂    0 #  d + x 0 +  d–  

x 1 +  d – y 1 ^  h  y    +  d + y 0 #  h  y    +  d + y 0 ^  d + x 0 +  d–  
x 1 #  h  y    ̂   d + x 0 +  d–  

y 1 #  
    h  y    +  d + y 0 ^  d + x 0 +  d + x 1 +  d–  

y 1 #  h  y    ̂   d–  
x 1 #  d + x 0 +  d–  

x 1 +  d–  
y 1 ^  h  y    +  d + y 0 +  d + y 1 #  

d + x 0 +  d–  
y 1 ^  h  y    +  d + y 0 #  d–  

x 1 ^  h  y    +  d + x 1 #  d–  
x 1 ^  h  y    +  d + y 0 

 0.76 

 (1,0)   h  x   =  0 #  d–  
y 0 ^  h  y    ̂   d + y 0   h  x   =  0 #  h  y    6   0 #  h  y    +  d–  

x 1 ^  d + x 0 +  d + y 0 +  d–  
y 1 #  h  y    +  d–  

y 0 +  d–  
x 1 ^  d + x 0 +  d + y 0 +  d–  

y 1 #  
    h  y    +  d–  

x 1 ^  d + x 0 +  d + x 1 +  d–  
y 1 #  h  y    ̂   d + x 0 #  h  y    +  d–  

x 1 ^  d + y 0 #  d + x 0 +  d–  
y 1 ^  h  y    +  d–  

x 1 #  
    d + x 0 +  d–  

y 1 ^  h  y    #  d + y 0 +  d–  
y 1 ^  h  y    +  d–  

x 1 #  d + y 0 ^  h  y    +  d + x 1 

 0.69 

 (1,1)   h  y   =  0 #  d–  
x 1 ^  h  x    ̂   d + x 1   h y  =  0 #  h  x    6   0 #  h  x    +  d + x 0 +  d–  

y 1 ^  d + y 0 +  d–  
x 1 #  h  x    +  d + x 0 +  d–  

y 1 ^  d + y 0 #  h  x    ̂   d + y 0 #  
    h  x    +  d–  

y 1 ^  d–  
x 1 #  d + y 0 ^  h  x    +  d + x 0 #  d–  

x 1 #  h  x    +  d + x 0 +  d–  
y 1 #  d + y 0 +  d–  

x 1 ^  h  x    +  d + x 0 +  d + x 1 +  d–  
y 1 

 0.64 

 (2,0)   h  x   =  0 #  d–  
y 0 ^  h  y    ̂   d + y 0 

 0/: (2,0) is not within a closed path  0.46 

  Table 1.  An example of the execution of the fi rst loop of algorithm 1 for Zini = (1,1)

 Pass  Zold  Znew = Pre(Znew)  ( Znew  =  Zold ) 3 empty( Znew ) 

 1  {(1,1)}  {(1,0)}  false 
 2  {(1,0)}  {(0,0), (1,0)}  false 
 3  {(0,0), (1,0)}  {(0,1), (0,0), (1,0)}  false 
 4  {(0,1), (0,0), (1,0)}  {(0,1), (0,0), (1,0), (1,1)}  false 
 5  {(0,1), (0,0), (1,0), (1,1)}  {(0,1), (0,0), (1,0), (1,1)}  true 
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  5.3.2 Results with Delay Values
  In this section, we present in  table 4  

the HyTech results with valued delay pa-
rameters, in order to give a clear picture 
of the work presented in this paper. Th e 
delay values are shown in the following 
table 

  

  
  (the values of the delays  d  –  

x  2 
 and  d  +  

x  2 
 are 

not useful since we know that there is no 
invariance kernel involving the zones (2, 
0) and (2, 1)).  Th ey correspond to the ex-
act height and width of the rectangles in 
  fi gure 16 .

  Th e phase portrait, as shown in  fi gure 
16 , is drawn according to the results of 
 table 4 . Th e meaning of columns Z ini , I ini , 
‘Constrained region in the phase portrait’ 
and ‘Time’ of  table 4  is explained in the 
previous section.

  
  6 Conclusion
  Our modelling framework is a modest 

contribution to the theory of GRN as in-
troduced by René Th omas (based on dis-
crete mutivalued expression levels and 
with purely qualitative predictions). We 
have shown how to go further than the 
formal modelling framework proposed 
by Bernot et al.  [6] , while entirely pre-
serving the computer-aided method of 
qualitative mathematical model discov-

ery. Our modelling approach takes into 
account delays in gene interactions. One 
of our main goals was to preserve the 
ability to perform automated model 
checking (using HyTech), with a sensible 
treatment of delays in addition to the 
usual treatment of expression levels. Lin-
ear approximations have been necessary 
to achieve this goal; nevertheless, the 
proposed approach constitutes a valuable 
improvement since it provides more ac-
curate abstractions of biological phe-
nomena: some models which are ne-
glected by the purely discrete approach 
without delays have been shown to be ac-
ceptable models. We illustrated the com-
plete process through the example of  P. 
aeruginosa  and we got some interesting 
results for discriminating between diff er-
ent behaviours: infi nite cycles or absorp-
tion inside a capture basin.

  Other case studies have been done 
 [40] , among them the well-known En-
terobacteria phage  �  example which 
deals with 4 genes and leads to a model 
of 48 zones. Using the hybrid modelling 
depicted in this paper, we were able to 
establish conditions regarding the delays 
which are associated with the ‘lysogenic 
pathway’ or with the ‘lytic cycle’. Another 
experiment about the evolution of  Esch-
erichia coli  bacteria is at present being 
performed, which reinforces the biologi-
cal relevance of the model.

  Th e major feature of our modelling ap-
proach is 3-fold: (1) it is consistent with 
that of René Th omas (it leads even strict-
ly to the same model if we set the values 

of the delay parameters appropriately ei-
ther to zero or to infi nity); (2) we can de-
termine more precise trajectories of the 
expression levels than with a discrete 
model, since it takes care of the relations 
between the production or decay delays, 
and (3) furthermore, we can account for 
accumulations of these productions and 
decays. 

  Table 4.  Table of constraints (valued parameters)

 Zini  Iini  Constrained region in the phase portrait  Time 

 (0,0)   h  y   =  0 #  d–  
x 0 ^  h  x    ̂   d + x 0   h  y   =  0 #   0 ^  h  x    ̂    2  0.28 

 (0,1)   h  x   =  0 #  d–  
y 1 ^  h  y    ̂   d + y 1   h  x   =  0 # − 5 ^  h  y    ̂   − 3  0.26 

 (1,0)   h  x   =  0 #  d–  
y 0 ^  h  y    ̂   d+  

y 0   h  x   =  0 #   2 ^  h  y    ̂    4  0.26 

 (1,1)   h  y   =  0 #  d–  
x 1 ^  h  x    ̂   d + x 1   h  y   =  0 #   1 ^  h  x    ̂    3  0.25 

 (2,0)   h  x   =  0 #  d–  
y 0 ^  h  y    ̂   d+  

y 0 
 Ø: (2,0) is not within a closed path  0.28 

  d –  
x 0 

 –3   d–  
y 0 

 –3 
  d +  

x 0 
 +4   d+  

y 0 
 +5 

  d –  
x 1 

 –2   d–  
y 1 

 –5 
  d +  

x 1 
 +3   d+  

y 1 
 +2 
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7.1 Hybrid Automaton
-- pseudomonas.hy
--Valued parameters
define(dpx0, 4)
define(dnx0,-3)
define(dpy0, 5)
define(dny0,-3)
define(dpx1, 3)
define(dnx1,-2)
define(dpy1, 2)
define(dny1,-5)
var
hx,hy :analog; -- Clock variables
k,n: discrete; -- Discrete variables which are used to describe the discrete model of pseudomonas
--The define statements must be removed or commented while using unvalued parameters
--dpx0,dnx0,dpy0,dny0,dpx1,dnx1,dpy1,dny1: parameter; -- unvalued parameters
--/ Hybrid model
-- Discrete transition takes place in the discrete model when the same guard is satisfied in the following
-- temporal model. Here, this transition is identified by assigning a discrete value to the variable k.
automaton auto
synclabs: ;
initially loc_11;
-----------------------------
--/ for the location 00
loc loc_00: while hx<=dpx0 & hy<=dpy0 wait {dhx=1,dhy=1}
when hx=dpx0 do {hx’=0,k’=k+1} goto loc_10;
when hy=dpy0 do {hy’=0} goto loc_01;

-----------------------------
--/ for the location 10
loc loc_10: while hx<=dpx1 & hy<=dpy0 wait {dhx=1,dhy=1}
when hx=dpx1 do {hx’=0,k’=k+1} goto loc_20;
when hy=dpy0 do {hy’=0,k’=k+1} goto loc_11;

-----------------------------
--/ for the location 01
loc loc_01: while hx<=dpx0 & hy>=dny1 wait {dhx=1,dhy=-1}
when hx=dpx0 do {hx’=0 } goto loc_11;
when hy=dny1 do {hy’=0,k’=k+1} goto loc_00;

-----------------------------
--/ for the location 11
loc loc_11: while hx>=dnx1 & hy>=dny1 wait {dhx=-1,dhy=-1}
when hx=dnx1 do {hx’=0,k’=k+1} goto loc_01;
when hy=dny1 do {hy’=0} goto loc_10;

-----------------------------
--/ for the location 20
loc loc_20: while hy<=dpy0 wait {dhx=0,dhy=1}
when hy=dpy0 do {hy’=0,k’=k+1} goto loc_21;

-----------------------------
--/ for the location 21

loc loc_21: while asap wait {dhx=0,dhy=0}
-----------------------------
end -- of automaton

 7 Appendix

  In the subsequent sections we present the HyTech fi le. Th e HyTech fi le 
consists of two parts: (1) the automaton part that implements the hybrid 

model of  fi gure 12  and (2) the analysis command part that implements 
algorithm 1. 
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7.2 Analysis commands
-- Analysis commands
var
ini_zone,new_zone,old_zone,pre_zone,ini_reg,I_old,I_new,I_ini,pre_reg: region;
-------------------------------------------------------------------------------------
-- To find a region of the initial conditions that lead to a cyclic region :
-- * we suppose the initial region to be a delay axis in the initial zone
-- * we verify the initial zone to be the location of a closed path
-- * and finally, we find the intersection of the initial region with the
-- predecessor images of this region until the fixpoint of iteration
-------------------------------------------------------------------------------------
--ini_zone and ini_reg represent the initial zone and the initial region respectively
--ini_zone:=loc[auto]=loc_00;
--ini_reg:=loc[auto]=loc_00 & hy=0 & hx>=dnx0 & hx<=dpx0;--horizontal axis in the zone (0,0)
--ini_zone:=loc[auto]=loc_01;
--ini_reg:=loc[auto]=loc_01 & hx=0 & hy>=dny1 & hy<=dpy1;--vertical axis in the zone (0,1)
--ini_zone:=loc[auto]=loc_10;
--ini_reg:=loc[auto]=loc_10 & hx=0 & hy>=dny0 & hy<=dpy0;
ini_zone:=loc[auto]=loc_11;
ini_reg:=loc[auto]=loc_11 & hy=0 & hx>=dnx1 & hx<=dpx1;
--ini_zone:=loc[auto]=loc_20;
--ini_reg:=loc[auto]=loc_20 & hx=0 & hy>=dny0 & hy<=dpy0;
I_ini:=ini_reg; -- initial interval is equal to initial region
old_zone:=ini_zone;
pre_zone:=hide k,n in hull (pre(ini_zone & k=n) & ~k=n) endhide;
new_zone:=pre_zone;
while not empty(new_zone) and not new_zone = old_zone do

old_zone:=new_zone;
pre_zone:=hide k,n in hull(pre(new_zone & k=n) & ~k=n) endhide;
new_zone:=(new_zone | pre_zone);

endwhile;
-- To verify that the initial zone is accessible from itself
if not empty (new_zone & ini_zone) then

-- if accessible
I_new:=I_ini;
pre_reg:=hide k,n in hull(pre(I_new & k=n) & ~k=n ) endhide;
I_old:=I_ini & ~I_ini; --empty region initialization
while not empty(pre_reg) and not I_new=I_old do

I_old:=I_new;
while not empty(pre_reg) and empty(pre_reg & I_ini) do

pre_reg:= hide k,n in hull(pre(pre_reg & k=n ) & ~k=n) endhide;
endwhile;
pre_reg:=hull(pre_reg & I_ini);
I_new:=hull(pre_reg & I_new);
pre_reg:=hide k,n in hull(pre(I_new & k=n) & ~k=n ) endhide;

endwhile;
if not empty (I_new) then

prints "============================================================";
prints "Region of initial conditions for the invariance kernel";
print I_new;
prints "============================================================";

else
prints "No initial condition exists in the defined initial region";

endif;
else

-- if not accessible
prints "The initial zone is not accessible from itself therefore ";
prints "there is no initial condition that leads to an invariance kernel.";

endif;
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