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A B S T R A C T

Endocrine disrupting chemicals raise a lot of interest and concern regarding their risk for human health and the
environment. They represent a broad variety of natural and synthetic chemicals with different levels of endo-
crine activity evaluation. In particular, for high production volume chemicals, new methods are required to
enable the evaluation of the vast number of chemicals for their potential to alter the endocrine system and
prioritize them for deeper characterization. The ToxCast program from the US EPA provides data from high
throughput screening assays to develop computational tools aimed at rapid in vitro bioactivity screening and
prioritization.

Using publicly available data (ToxCast and ToxRef databases), we evaluate whether in vitro assay evaluations
could predict in vivo outcomes observed in rat long-term studies for more than 400 chemicals. We focus on effects
observed in three endocrine and two sex accessory organs and 42 in vitro assays related to pathways associated
with endocrine related toxicity.

First, using simple statistical correlation we demonstrate that there is no mutual linear correlation between
the selected in vitro assays and any in vivo outcome, with balanced accuracies around 50% for each assay-
outcome pair. Then, by applying machine learning to investigate potential non-linear correlations, we show that
the combination of different in vitro assays is not correlated with the long-term in vivo effects and cannot help to
predict them since balanced accuracies are also around 50%. Moreover, the prediction based on in vitro assays is
not better than the one based on classical QSAR methods. This study highlights that the selected in vitro assays do
not provide information about in vivo outcomes observed in endocrine and associated organs in long-term rat in
vivo studies and stresses the need for the development of in vitro assays that reflect the compounds’ pharma-
cokinetic properties.

1. Introduction

Since the 1990s, endocrine disrupting chemicals (EDCs) have raised
a lot of interest and concern regarding their risk for human health and
the environment [1]. These substances were defined by the World
Health Organization as “exogenous substance or mixture that alters
function(s) of the endocrine system and consequently causes adverse

health effects in an intact organism, or its progeny, or (sub)popula-
tions” [2]. If sufficiently potent, these functional disruptions can lead to
different adverse outcomes at the whole organism level such as devel-
opmental and reproductive effects, neurobehavioral troubles, immune
disorders or cancers [3]. There are numerous and diverse mechanistic
pathways that result in these effects, including activation of nuclear
receptors (e.g. estrogen receptor (ER), androgen receptor (AR)),
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alteration of steroid pathway enzymes and neurotransmitter receptors
[4]. EDCs represent a broad variety of chemicals, ranging from natural,
such as mycotoxins and phytoestrogens, to synthetic, such as pesticides,
drugs, household products or plastics. However as of today, most of
these chemicals are still lacking assessment regarding their potential
endocrine activity [5]. Therefore, there is a need for new methods to
enable the evaluation of the vast number of chemicals, in particular
high production volume ones, for their potential to alter the endocrine
system and prioritize them for deeper characterization.

For this purpose, the US Environmental Protection Agency (EPA)
created the Endocrine Disruptor Screening Program (EDSP) in 1999 in
which they proposed to test chemicals in a battery of five in vitro and six
in vivo Tier 1 tests (EPA EDSP link – https://www.epa.gov/endocrine-
disruption/endocrine-disruptor-screening-program-tier-1-battery-
assays). The in vitro tests focus on ER, AR and steroidogenesis pathways.
The first in vivo ED screens include the uterotrophic assay (UTA), the
Hershberger assay and male and female pubertal assays. Moreover, in
vivo multigenerational Tier 2 tests were also proposed to further char-
acterize compounds that were active in the Tier 1 tests. However, since
the battery of assays proposed in the EDSP program is animal con-
suming, they are low-throughput and do not allow the evaluation of
potential endocrine disruption (ED) effects of a large number of com-
pounds.

In 2007, the ToxCast program was established by the US EPA in
order to generate and use data from high-throughput screening (HTS)
assays and develop computational tools. The main goal of this project is
to rapidly screen compounds for in vitro bioactivity and prioritize for
further testing. The targets of the HTS assays are diverse and cover a
large number of biological pathways, including ER, AR and ster-
oidogenesis pathways. In particular, high-throughput alternatives to
parts of the EDSP testing battery are available including the ER and AR
binding assays, the ER transactivation assay, the aromatase assay and
the steroidogenesis assay performed in H295R cells.

In total, 18 and 12 in vitro assays have been implemented within the
ToxCast program to target key events along the ER and AR pathways,
respectively. Researchers have integrated these assays into two com-
putational linear additive models in order to discriminate between
chemicals that are true agonists or antagonists of the pathways and the
ones that are false positives because of assay-interference and cyto-
toxicity [6–8]. They compared the results obtained from their models to
existing in vitro and short-term in vivo public data for the UTA and
Hershberger studies and obtained 84–93% accuracy for the ER model
and 95–97% for the AR model. Thus, they were able to validate both
models and conclude that there is a high correlation between the pre-
dictions based on ToxCast assays and the short-term in vivo effects ob-
served in estrogen and androgen dependent tissues.

To go a step further, we decided to assess the potential of com-
pounds to act as EDCs in long-term in vivo studies, based on the in vitro
ToxCast assay data. Among the in vivo data publicly available, the
Toxicity Reference Database (ToxRefDB) provided by the EPA captures
results from thousands of in vivo toxicity studies performed in labora-
tory animals for hundreds of compounds [9].

In the last decades, in silico models have been developed to link
compounds' structure to in vitro activity [10] but the relationship be-
tween in vitro results and in vivo outcomes has not been fully explored,
especially for specific toxic outcomes such as ED.

In this work we study the link between in vitro bioactivity from
ToxCast assays and adverse outcomes observed in rat long term studies,
obtained from ToxRefDB. We focus on in vitro assays related to ER (E),
AR (A) and steroidogenesis (S) pathways and in vivo effects observed in
adrenal glands and reproductive tract tissues (testes, ovaries, prostate
and uterus). First, we look at the correlation between each in vitro assay
and the in vivo outcomes and compare it with the correlation between
the published ER and AR model results and the same in vivo outcomes.
This analysis demonstrates that there is no mutual linear correlation
between the in vitro assays and any in vivo outcome. Then, as an

extension of the first order correlation, we built machine learning (ML)
models to predict the in vivo outcomes, either based on the in vitro as-
says alone, the chemical structure alone or a combination of both. Our
results highlight that, based on the results of more than 400 com-
pounds, ToxCast in vitro assays that are related to pathways altering
endocrine activity do not discriminate compounds which actually lead
to long-term in vivo toxicity in the selected endocrine-related organs.

2. Materials and methods

2.1. Data sources

Three types of datasets were used in this study: an in vitro dataset,
an in vivo dataset and the chemical structure of the compounds. All data
are publicly available and were accessed through the EPA website:
https://www.epa.gov/chemical-research/toxicity-forecasting.

2.1.1. In vivo toxicity data
In vivo data were obtained from the Toxicity Reference Database

(ToxRef DB) released in October 2014 which gathers data from in vivo
toxicological studies performed on hundreds of compounds in several
species of laboratory animals and for different time periods. Results are
provided as the NOAEL or LOAEL (No/Lowest Observed Adverse Effect
Level) for each type of toxic effect reported.

In our study we focused on outcomes observed in rat long term
studies, referred to as “CHR” studies in ToxRefDB. Of the CHR studies,
80% are 2-year rat carcinogenicity studies and 20% are 13-week to 31-
month studies. We only used studies that have been referred to as
“acceptable guideline” in the database (i.e. studies are complete and
meet official guideline requirements), therefore retaining studies for
445 compounds. We focused on outcomes observed in five endocrine
related organs: adrenal glands, ovary, testis, prostate and uterus. For
each organ, we classified and grouped the observed effects listed in
ToxRefDB into adverse effect categories: three categories for adrenal
glands (steroidogenesis effects, stimulation, injury), two for ovary (ef-
fect on germinal cells, effect on interstitial cells), two for testis (effect
on germinal cells, effect on spermatogenesis), one for prostate and one
for uterus. For each category independently, we used these in vivo re-
sults as binary data by assigning 1 to compounds that had an effect
(whatever the corresponding dose) and 0 otherwise.

2.1.2. In vitro bioactivity data
In vitro data were obtained from the ToxCast database (October

2015 release) which gathers the results of 1192 HTS assays performed
on 9076 compounds during ToxCast Phase I and II. Results are provided
as the AC50 which is the concentration (in micromolar) corresponding
to the half maximal efficacy. Of the 445 compounds selected from
ToxRefDB, 418 were found in the ToxCast database.

As the current study focuses on pathways leading to endocrine
disruption, we selected in vitro assays related to AR, ER, aromatase,
steroidogenesis and other receptors located in endocrine organs. We
manually performed this selection, based on expertise and knowledge
of endocrine pathways. For ER and AR, we referred to the assays used
by the published computational models [6,8].

In an effort to ensure a robust dataset with enough representatives
of active versus inactive compounds, we applied a filter to keep only
assays that have at least five percent of active compounds (for the 418
compounds overlapping between ToxCast and ToxRefDB) and ended up
with 42 assays. Table 1 provides the list of assays, the associated
pathway and the assay type. In summary we used 12 assays related to
ER, 9 related to AR, 2 related to aromatase, 11 related to ster-
oidogenesis and 8 related to other receptors.

2.1.3. Chemical structure
Chemical structure information for 8599 unique substances was

obtained from DSSTox (Distributed Structure – Searchable Toxicity)
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SDF (Structure Data File) files (October 2014 release). These files
contain compound structure, name, CASRN, SMILEs, and other in-
formation that was not needed for the current analysis.

2.2. Statistical analysis – correlation

2.2.1. Correlation analysis
In vitro assay results (AC50, as reported in the US EPA ToxCast

database [11]) were turned into binary values: a value of 1 was used if
the ToxCast data analysis pipeline determined the chemical-assay pair
to be active, and 0 otherwise.

For each pair of in vitro assay and in vivo outcome, we computed the
three following metrics:

- Sensitivity= +TP TP FN/( )
- Specificity= +TN TN FP/( )
- Balanced Accuracy (BA)= +Sensitivity Specificity( )/2

where TP (respectively TN) is the number of True Positive (respectively
True Negative) compounds, i.e. compounds which are positive (re-
spectively negative) for both in vitro assay and in vivo outcome; and FP
(respectively FN) is the number of False Positive (respectively False
Negative) compounds, i.e. compounds which are positive (respectively

negative) in vitro but negative (respectively positive) in vivo.
All statistical analysis was performed using R version 3.2.3 software.

2.2.2. Results from ER and AR computational models
In order to determine if aggregating several in vitro assays is more

predictive of in vivo outcomes than a single in vitro assay, we used the
results from EPA’s computational models for ER [6] and AR activity [8].
Basically, these models sum the activity of a chemical obtained for each
assay that contributes to the model in a non-weighted manner and for
different concentrations. Thereby, for each chemical and concentration,
a linear sum of the activity measured in the 18 (respectively 12) in vitro
assays targeting the ER (respectively AR) pathway is computed. In the
end, the activity is described by a concentration response curve for
which the area under the curve (AUC) is measured. The AUC ranges
from 0 to 1 and is referred to as the score of the model. Detailed
methods and results, including the AUC score, quality criteria and flags,
are available for both ER and AR models [6–8].

For the ER model, two scores are computed to assess the quality or
reliability of the AUC score. A Z-score flags non selective assay activity
due to cytotoxicity by measuring the distance between the AC50 ob-
tained for a compound in an assay of the ER model and the AC50s ob-
tained for this chemical in the cytotoxicity assays, and factors in the
variability across all chemicals and all cytotoxicity assays. A low dis-
tance (Z-score < 3) indicates that the activity measured in the con-
sidered assay could be due to cytotoxicity and not to a target-selective
mechanism. The T-score corresponds to the maximum activity mea-
sured (i.e. the highest point of the concentration-response curve).
Indeed, since concentration-response curves are normalized compared
to a control or baseline, the maximal activity is a relative percentage
not necessarily equal to 100%. The T-score therefore corresponds to the
highest value of this relative percentage. For both Z and T scores, a
median was computed across all ER assays for each compound and
referred to respectively as med.Z and med.T [6].

Regarding the AR model, a confidence score is provided which takes
into account the AUC value of the model, the same Z-score as for the ER
model and the results of a supplemental assay which can confirm the
antagonist activity of chemicals.

Among the 418 compounds from our study, 361 have a score
available for the ER and AR models.

To discriminate between positive and negative compounds for these
models, we chose the following thresholds for the different values
available:

• Positive for ER model if model score > 0.1 (either agonist or an-
tagonist activity) and med.T > 50% and med.Z > 3; negative
otherwise

• Positive for AR model if model score > 0.1 (either agonist or an-
tagonist activity) and, in the case of an antagonist activity, con-
fidence score > 0 (this confidence score is not provided for the
agonist activity, therefore all the agonists are considered as positive
when model score > 0.1); negative otherwise

In the end, 5 compounds were positive for the ER model and 55 for
the AR model.

We performed the correlation analysis for the ER and AR models as
described above for the 42 assays independently and plotted the results
on the same graphs as a comparison. Note that from the 19 assays used
by Judson et al. in their model for ER, 7 are excluded from our study
because their hit rate was below our cutoff of 5%. This is also the case
for 3 assays of the 12 used by Kleinstreuer et al. for the AR model.

2.3. Machine learning

We used machine learning methods to predict the in vivo outcomes
observed in endocrine organs from either the structure of compounds
and/or their in vitro bioactivity.

Table 1
List of the selected 42 assays that are related to endocrine pathways with the
pathway they are linked to and their type. E= estrogen, A= androgen,
S= steroidogenesis, O= others.

Assay name Pathway Type of assay

ACEA_T47D_80hr_Positive E Cell proliferation
ATG_ERE_CIS_up E mRNA induction
ATG_ERa_TRANS_up E mRNA induction
OT_ER_ERaERb_0480 E Protein complementation
OT_ER_ERaERb_1440 E Protein complementation
OT_ER_ERbERb_0480 E Protein complementation
OT_ER_ERbERb_1440 E Protein complementation
OT_ERa_EREGFP_0120 E Reporter gene
OT_ERa_EREGFP_0480 E Reporter gene
TOX21_ERa_BLA_Antagonist_ratio E Reporter gene
TOX21_ERa_LUC_BG1_Agonist E Reporter gene
TOX21_ERa_LUC_BG1_Antagonist E Reporter gene
NVS_NR_cAR A Receptor binding
NVS_NR_hAR A Receptor binding
NVS_NR_rAR A Receptor binding
OT_AR_ARELUC_AG_1440 A Reporter gene
OT_AR_ARSRC1_0480 A Coregulator recruitment
OT_AR_ARSRC1_0960 A Coregulator recruitment
TOX21_AR_BLA_Antagonist_ratio A Reporter gene
TOX21_AR_LUC_MDAKB2_Antagonist A Reporter gene
TOX21_AR_LUC_MDAKB2_Antagonist2 A Reporter gene
CEETOX_H295R_11DCORT_dn S Hormone measurement
CEETOX_H295R_ANDR_dn S Hormone measurement
CEETOX_H295R_CORTISOL_dn S Hormone measurement
CEETOX_H295R_DOC_dn S Hormone measurement
CEETOX_H295R_ESTRADIOL_up S Hormone measurement
CEETOX_H295R_ESTRONE_dn S Hormone measurement
CEETOX_H295R_ESTRONE_up S Hormone measurement
CEETOX_H295R_OHPROG_dn S Hormone measurement
CEETOX_H295R_OHPROG_up S Hormone measurement
CEETOX_H295R_PROG_up S Hormone measurement
CEETOX_H295R_TESTO_dn S Hormone measurement
NVS_ADME_hCYP19A1 S Enzyme activity
TOX21_Aromatase_Inhibition S Enzyme inhibition
ATG_Sp1_CIS_up O mRNA induction
ATG_GRE_CIS_dn O mRNA induction
ATG_SREBP_CIS_up O mRNA induction
NVS_NR_bPR O Receptor binding
NVS_NR_hGR O Receptor binding
NVS_NR_hPR O Receptor binding
TOX21_GR_BLA_Agonist_ratio O Reporter gene
TOX21_GR_BLA_Antagonist_ratio O Reporter gene
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The machine learning approach was based on the work of Liu et al.
[11] and the associated published Python code.

2.3.1. Datasets
Since the machine learning methods used in this approach are not

good at handling missing data we identified a complete matrix between
all in vitro and in vivo data (i.e., all the compounds in the dataset have
been tested in all the 42 assays previously selected). From the 418
compounds available, 341 compounds met this criteria.

2.3.2. Chemical structure descriptors
The Structure Data Files (SDF) for the 341 compounds were ob-

tained from the EPA website.1 After cleaning the structures of the
compounds (removing salts and inorganic elements, neutralizing and
checking for duplicates), we computed two types of chemical structure
descriptors:

- 74 molecular descriptors using RDKit which are physico-chemical
properties. Continuous values were normalized between 0 and 1;

- 731 fingerprints using pybel package in Python [12] and PaDEL
software [13]: FP3 (18), Estate (27), KlekotaRoth (184), PubChem
(331), SubFP (43), MACCS (128).

2.3.3. Bioactivity descriptors
The 42 in vitro assays as selected were used as individual descriptors

of the bioactivity of compounds. As in Liu et al., we set AC50 values of
inactive compounds to 1×106 µM and transformed all the AC50 ac-
cording to the following formula: = −AC log AC50 6 10( 50)' . This for-
mula gives inactive compounds a value of 0 and represents active ones
on a continuous ascending scale and reflects their potency. Then the
values were normalized between 0 and 1.

2.3.4. Machine learning
The machine learning method was implemented in Python2.7 and

described by Liu et al. [11].
We used the same five classification algorithms as Liu (linear dis-

criminant analysis (LDA), Naïve Bayes (NB), support vector machines
(SVM) with two different kernels (linear and radial basis function),
classification and regression trees (CART), k- nearest neighbors (KNN))
with the same default parameters. We also used the Random Forest (RF)
algorithm (with default parameters and 100 trees) because it is an en-
semble method that performs better in terms of generalization than a
single regression tree, can handle many input features and lowers risk
of overfitting [14]. Finally, we used an ensemble technique (ENSMB)
[15] for which the prediction corresponds to the majority vote of the six
previous classifiers.

A 10-fold cross-validation testing was performed and repeated 20
times. For each step in the cross-validation, the descriptors were ranked
by computing their importance score using the Random Forest attribute
feature_importance (this was different from Liu et al. who computed the
univariate association between each pair of descriptors and the in vivo
outcome). Then, classifiers were built using the 10–42 or 60 best de-
scriptors, (depending on the type of descriptor: 42 when only in vitro
assays are used and 60 when chemical descriptors are used), by adding
one descriptor at each step.

The results for each category reported below are for the model that
showed the highest BA with its corresponding number of descriptors
used.

2.3.5. Data augmentation
Since the datasets in this study are imbalanced (more inactive

compounds than active ones) we used data augmentation to rebalance
the data and build new classifiers. We utilized the technique SMOTE

(Synthetic minority over-sampling technique) [16] which aims at
creating new synthetic samples based on linear interpolation of actual
data. Basically, for each observation (i) of the minority class, it ran-
domly selects one of its k-nearest neighbors (j) of the minority class in
the descriptors space and generates a random example that is along the
line between i and j according to the following formula:

= + −x x x x δ( )*new i j i where x corresponds to the vector of descriptors
of the different observations and δ is a random number from the in-
terval [0,1]. This process is repeated for all or part of the k-nearest
neighbors of each observation from the minority class, according to the
desired final number of new samples.

We used this technique in each step of the cross-validation loop in
order to increase the number of compounds of the minority class of the
training set.

2.3.6. Performance evaluation
The performance of the classifiers was evaluated using the three

metrics described above: sensitivity, specificity, and balanced accuracy
(BA).

3. Results

3.1. Overview

The overall goal of the study was to assess if the evaluation of
chemicals in in vitro assays could provide information about in vivo
endocrine-related effects observed in long-term carcinogenicity rat
toxicity studies (Fig. 1). For this we used the publicly available datasets
ToxCast and ToxRefDB. We focused on effects observed in three en-
docrine organs (adrenal glands, testis and ovary) and two sex accessory
organs (prostate and uterus). From the available in vitro assays in
ToxCast, we identified 42 assays that should be most informative and
predictive of endocrine effects based on their relation to the following
biological pathways: estrogen receptor (E), androgen receptor (A),
steroidogenesis pathway (S) or other endocrine related receptors (O).
First, we looked at the correlation between each pair of in vitro assays
and in vivo effects observed in the selected target organs. Second, in an
attempt to predict in vivo effects we applied machine learning using in
vitro assay results, chemical structure information or a combination of
the two.

3.2. Statistical analysis

3.2.1. Data
In total, 418 compounds have in vivo data for chronic rat studies in

ToxRefDB and have been tested in ToxCast, but not always in all the 42
selected in vitro assays. For each of the 42 assays, Table 2 provides the
total number of compounds tested with the number of positive and
negative ones as well as the corresponding percentage of actives.

From the 418 compounds, 349 have been tested in all the 42 se-
lected in vitro assays. The results show a range of percentage of active
only between 5 and 30% (mean 12.7%) indicative of a highly im-
balanced dataset in favor of negative compounds.

Regarding the computational models for ER and AR (which ag-
gregate several in vitro assay results into one model that generates an ER
and AR score), scores are available for 361 compounds among the 418.
We applied filters to discriminate between positives and negatives (see
Materials and Methods) and only 5 compounds were positive among the
361 for the ER model (1.4%) and 55 for the AR model (15%).

Table 3 summarizes the in vivo data used with the number of posi-
tive and negative compounds for each of the 9 effect categories for the 5
organs. Here again the data are highly imbalanced in favor of negative
compounds with 4 to 16% of positive compounds depending on the
category.1 EPA website : ftp://ftp.epa.gov/dsstoxftp
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3.2.2. Statistical analysis results
For each in vivo outcome, we plotted the sensitivity, specificity and

balanced accuracy computed to look at the correlation with all the 42 in
vitro assays and the ER and AR models (Fig. 2).

We observed that for all pairs of assay and in vivo outcome, the
specificity was high (between 0.85 and 0.95) and the sensitivity was
very low (lower than 0.3) leading to an overall BA around 0.5. Of note,
ER pathway related assays (E) did not show a higher BA for ovary and
uterus outcomes compared to the other assays. The same was observed
for the AR and steroidogenesis pathways related assays (A and S) and
testis, prostate and adrenal gland outcomes, respectively.

When looking at the correlation between the computational model
for AR [8] and in vivo outcomes (in particular in prostate and testis), we
did not see any difference compared to the individual AR pathway re-
lated assays. This result showed that even the aggregation of several
assays related to the AR pathway does not improve the correlation with
the selected in vivo outcomes that were examined here. Regarding the
computational model for ER, we did observe an increase of BA and
sensitivity for 4 outcomes (Uterus, Spermatogenesis testis, Germinal
cells ovary and Prostate) but since there is only 1.4% of positive com-
pounds for this model in our datasets, it is difficult to know the sig-
nificance of this finding.

Overall, this simple statistical analysis demonstrated that there is no
mutual linear correlation between the 42 in vitro assays and any of the
selected in vivo outcomes when we used the results of each assay in-
dependently. Somewhat surprisingly, this observation was also made
for the in vitro assays with targets physiologically related to specific in
vivo adverse outcomes (e.g. in vitro AR assays were not correlated with
effects observed in prostate or testis known to result from a perturba-
tion of the AR pathway). Moreover, the use of a linear additive model to
consider several assays in the same biological pathway as proposed by
Judson et al. and Kleinstreuer et al. [6,8] did not show a higher cor-
relation for the selected long-term adverse outcomes, but we could only

draw a clear conclusion for the AR model.
We then investigated if there was a possibility to predict in vivo

outcomes based on a combination of several of the 42 in vitro assays
using machine learning methods.

3.3. Prediction of in vivo toxicity outcomes based on in vitro assays or/and
structural descriptors using machine learning methods

Machine learning models were built to predict the 9 effect cate-
gories for the 5 organs (Table 3). For each category of effects, three
types of models were built depending on the input descriptors: biolo-
gical (the 42 in vitro assays), chemical structure (physico-chemical
properties and fingerprints) or a combination of both. Since the data
were imbalanced, we also used a data augmentation technique to test if
it could improve the predictive model performance.

3.3.1. Datasets
As described above, 341 compounds had results in ToxRefDB for

long term rat studies and have been tested in all the 42 ToxCast assays.
Table 4 summarizes the number of positive and negative compounds in
the datasets used for each in vivo effect category for the 5 organs. As
already described by Liu et al., we chose to be quite stringent and call a
compound negative (assigned a value of 0) for a specific organ only if it
was negative for all the organ’s effects categories. For example, if a
compound did not induce any of the 3 category effects in the adrenal
glands (Steroidogenesis effects, Stimulation or Injury), it was con-
sidered “negative”. However, if a compound induced one of these 3
category effects (e.g., Stimulation), it was considered positive in the
“Stimulation” dataset but discarded from the two other adrenal glands
datasets (Steroidogenesis effects and Injury). Therefore, not all the 341
compounds are represented in each dataset.

For all the endpoints considered, the datasets for machine learning
were highly imbalanced in favor of negative compounds. The lowest

Fig. 1. Overview of our approach to evaluate how in vitro ToxCast assays can inform about in vivo effects observed in endocrine related organs. 1 – Correlation is
performed between each pair of in vitro assay and in vivo effect. 2 –Machine learning (ML) is used to predict in vivo effects from in vitro assays. 3 – Chemical structures
are used as descriptors either alone or combined with in vitro assays to predict in vivo effects.

I. Grenet, et al. Computational Toxicology 12 (2019) 100098

5



percentage of actives was for the effects in the prostate (4.5%) and the
highest was for stimulation in adrenal glands (19%).

3.3.2. Results
Figs. 3–5 show the performance of the models obtained for the 9

effects with the Random Forest (RF) algorithm, before and after SMOTE
(data augmentation technique to reduce the impact of the unbalanced
nature of the dataset used). We chose to present the results of RF be-
cause of its ability to handle numerous features and it is commonly
accepted as an algorithm avoiding overfitting. The results obtained with

all the other methods are available in Supplemental files.

3.3.2.1. Machine learning based on in vitro assays alone. For the adrenal
outcomes (Fig. 2), ovary and uterus outcomes (Fig. 3) and testis and
prostate outcomes (Fig. 4), all had low sensitivity and high specificity,
and BA lower than 0.6. The SMOTE method increased sensitivity but
lowered specificity leading to same overall BA.

For all effects, with and without using the SMOTE method, we ob-
served that the sensitivity is very low (between 0.05 and 0.09) and the
specificity is high (between 0.95 and 0.99) which led to a BA between

Table 2
Summary of number of positive and negative compounds in each of the 42 in vitro assays selected over the 418 compounds.

Assay name Pathway # cpds tested in total # cpds inactive # cpds active % of active cpds

ACEA_T47D_80hr_Positive E 367 319 48 13.08
ATG_ERE_CIS_up E 397 277 120 30.23
ATG_ERa_TRANS_up E 397 297 100 25.19
OT_ER_EraERb_0480 E 368 328 40 10.87
OT_ER_EraERb_1440 E 368 341 27 7.34
OT_ER_ErbERb_0480 E 368 328 40 10.87
OT_ER_ErbERb_1440 E 368 345 23 6.25
OT_Era_EREGFP_0120 E 368 340 28 7.61
OT_Era_EREGFP_0480 E 368 345 23 6.25
TOX21_Era_BLA_Antagonist_ratio E 404 319 85 21.04
TOX21_Era_LUC_BG1_Agonist E 404 335 69 17.08
TOX21_Era_LUC_BG1_Antagonist E 404 332 72 17.82
ER EPA model E 361 356 5 1.39
NVS_NR_cAR A 373 329 44 11.80
NVS_NR_hAR A 388 346 42 10.82
NVS_NR_rAR A 397 377 20 5.04
OT_AR_ARELUC_AG_1440 A 368 343 25 6.79
OT_AR_ARSRC1_0480 A 368 336 32 8.70
OT_AR_ARSRC1_0960 A 368 307 61 16.58
TOX21_AR_BLA_Antagonist_ratio A 404 292 112 27.72
TOX21_AR_LUC_MDAKB2_Antagonist A 404 308 96 23.76
TOX21_AR_LUC_MDAKB2_Antagonist2 A 402 278 124 30.85
AR EPA model A 361 306 55 15.24
CEETOX_H295R_11DCORT_dn S 349 301 48 13.75
CEETOX_H295R_ANDR_dn S 349 307 42 12.03
CEETOX_H295R_CORTISOL_dn S 349 314 35 10.03
CEETOX_H295R_DOC_dn S 349 319 30 8.60
CEETOX_H295R_ESTRADIOL_up S 349 328 21 6.02
CEETOX_H295R_ESTRONE_dn S 349 331 18 5.16
CEETOX_H295R_ESTRONE_up S 349 324 25 7.16
CEETOX_H295R_OHPROG_dn S 349 312 37 10.60
CEETOX_H295R_OHPROG_up S 349 324 25 7.16
CEETOX_H295R_PROG_up S 349 322 27 7.74
CEETOX_H295R_TESTO_dn S 349 314 35 10.03
NVS_ADME_hCYP19A1 S 384 360 24 6.25
TOX21_Aromatase_Inhibition S 404 286 118 29.21
ATG_Sp1_CIS_up O 397 344 53 13.35
ATG_GRE_CIS_dn O 397 360 37 9.32
ATG_SREBP_CIS_up O 397 290 107 26.95
NVS_NR_bPR O 384 355 29 7.55
NVS_NR_hGR O 393 340 53 13.49
NVS_NR_hPR O 393 371 22 5.60
TOX21_GR_BLA_Agonist_ratio O 404 375 29 7.18
TOX21_GR_BLA_Antagonist_ratio O 404 372 32 7.92

Table 3
Summary of number of compounds positive and negative in each of the 9 endocrine outcomes over the 418 compounds.

In vivo endpoint # cpds negative # cpds positive # cpds tested in total % of positive

Injury adrenal glands 363 55 418 13.16
Steroidogenesis adrenal glands 360 58 418 13.88
Stimulation adrenal glands 350 68 418 16.27
Germinal cells ovary 387 31 418 7.42
Interstitial cells effect ovary 382 36 418 8.61
Germinal cells testis 351 67 418 16.03
Spermatogenesis testis 375 43 418 10.29
Prostate effect 401 17 418 4.07
Uterus effect 375 43 418 10.29
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Fig. 2. Results of statistical analysis. Balanced accuracy (pink), sensitivity (blue) and specificity (purple) between each of the 42 in vitro assays or one of the two EPA
computational models (ER and AR) and the in vivo outcomes observed after rat chronic studies in adrenals, ovaries, uterus, testis and prostate. E: estrogen pathway
related assays (including ER model), A: androgen pathway related assays (including AR model), S: steroidogenesis pathway related assays, O: other assays.
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0.50 and 0.53.
When using the SMOTE method, the sensitivity was increased (be-

tween 0.1 and 0.49) but the specificity was decreased (between 0.58
and 0.94), resulting in a BA still around 0.50. Similar results were ob-
tained with the other algorithms (see Supplemental data).

Overall, these results showed that machine learning models to
predict in vivo effects observed in endocrine organs from the selected in
vitro assays did not perform better than chance (BA around 0.5) and

that data augmentation did not help to increase the performance. This
highlighted that a combination (linear or not) of different in vitro assays
is also not correlated to the selected long-term in vivo effects and cannot
help to predict them.

3.3.2.2. Machine learning based on chemical structure information alone or
combined with in vitro assays. Regarding the prediction of the in vivo
outcomes from either the chemical structure information alone or

Fig. 2. (continued)

Table 4
Number of positive and negative compounds for each dataset to predict the 9 in vivo outcomes corresponding to 5 endocrine organs. For adrenal glands, testis and
ovary, compounds are negatives for the organ if they are negative for all the organ’s categories.

Organ name Endpoint Number of positive compounds (percentage) Number of negative compounds

Uterus Uterus effect 33 (9.7%) 308
Prostate Prostate effect 15 (4.5%) 326
Adrenal glands Steroidogenesis effects 51 (16%) 264

Stimulation 62 (19%)
Injury 47 (15%)

Ovary Effect on germinal cells 25 (7.5%) 307
Effect on interstitial cells 29 (8.6%)

Testis Effect on germinal cells 56 (17%) 270
Effect on spermatogenesis 33 (11%)

I. Grenet, et al. Computational Toxicology 12 (2019) 100098

8



combined with the in vitro assays, we observed that the performances of
the models are similar to the ones of the models built with in vitro assays
alone (Figs. 3, 4 and 5). Regarding the impact of the data augmentation
technique, the sensitivity was not increased and the specificity was not
decreased as it was for the model built on in vitro assays alone. For
example for the outcome “Steroidogenesis in adrenal glands”,
sensitivity and specificity were around 0.1 and 0.99 before data
augmentation respectively, and around 0.1 and 0.95 after data

augmentation, either with chemical structure alone or combined with
in vitro assays. However, since the shown plots provide the performance
only for the model which provided the best BA but not the best
sensitivity, we may observe higher sensitivity for other models but the
BA would be lower (e.g. the best sensitivity obtained for steroidogenesis
in adrenal glands is 0.15 and corresponding BA of 0.51).

Overall, these results showed that using chemical structure to pre-
dict the long-term in vivo effects is neither better nor worse than using

Fig. 3. Performance of ML models that predict adrenal outcomes using RF algorithm and that reached the highest BA for each type of descriptors. a), b) –
Steroidogenesis, c), d) – Stimulation, e), f) – Injury. Left panel: without SMOTE method, right panel: with SMOTE method. The different colors represent the types of
descriptors used in the models and the numbers in the legend correspond to the number of descriptors used. bio: in vitro assays, chem: molecular descriptors,
combined: combination of both.
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the results of the selected in vitro assays.

4. Discussion/conclusion

In this work we evaluated the ability of in vitro assay results
(ToxCast program) to predict in vivo outcomes observed in rat long-term
studies (ToxRef database). Our analysis utilized 404 chemicals, 42 in
vitro assays related to endocrine pathways and in vivo endpoints from
three endocrine organs (adrenal glands, ovary and testis) and two sex

accessory organs (uterus and prostate).
Using simple statistical linear correlation and machine learning

methods in order to investigate potential non-linear correlations, we
were able to show three main conclusions. First, the 42 selected in vitro
assays were not correlated to the in vivo outcomes, even for assays that
were specific for relevant pathways known to be present in the target
organs. Indeed, ER related assays were not more correlated with out-
comes observed in ovary or uterus than in the other organs. The same
was observed for AR related assays and prostate and testis in vivo

Fig. 4. Performance of ML models that predict ovary and uterus outcomes using RF algorithm and that reached the highest BA for each type of descriptors. a), b) –
Germinal cells effects, c), d) – Interstitial cells effects, e), f) – Uterus effects. Left panel: without SMOTE method, right panel: with SMOTE method. The different
colors represent the types of descriptors used in the models and the numbers in the legend correspond to the number of descriptors used. bio: in vitro assays, chem:
molecular descriptors, combined: combination of both.
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outcomes and for steroidogenesis related assays and adrenal glands
outcomes. To determine if better results could be obtained by con-
sidering results from multiple assays, we also performed the analysis
using the results from the published computational models for ER and
AR pathways that aggregate several assays’ results into one single score
for each pathway. For the AR model, we could conclude that the use of
a linear additive approach that considers several assays in the same
pathway did not show a higher correlation with long-term in vivo out-
comes compared to predictions made using one single assay. Regarding

the ER model, we could not draw a valid conclusion because of the
small number of positive compounds (1.4%) in our analysis.

Second, machine learning models built on the data from the 42 in
vitro assays were not able to predict the in vivo effects. One significant
limitation to building accurate models was the unbalanced nature of the
datasets used in this work (hit rates< 10%). A data augmentation
technique was applied but it did not improve the predictive ability of
the models. Together, these results suggest that the combination of
different in vitro assays is not correlated to the long-term in vivo effects

Fig. 5. Performance of ML models that predict testis and prostate outcomes using RF algorithm and that reached the highest BA for each type of descriptors. a), b) –
Germinal cells effects, c), d) – Spermatogenesis, e), f) – Prostate effects. Left panel: without SMOTE method, right panel: with SMOTE method. The different colors
represent the types of descriptors used in the models and the numbers in the legend correspond to the number of descriptors used. bio: in vitro assays, chem: molecular
descriptors, combined: combination of both.
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and cannot help to predict them, even if the combination is not linear
Finally, the predictions from machine learning models built on the

selected 42 in vitro assays are not better than those derived from che-
mical structure alone for in vivo effects. Furthermore, a combination of
both types of descriptors also did not improve the performance. This
leads us to conclude that these in vitro assays do not provide informa-
tion about in vivo outcomes observed in endocrine and associated or-
gans in rat long-term studies.

Although it may initially be discouraging to find that in vitro assays
are currently unable to predict long-term endocrine outcomes in vivo,
there are several factors (both related to the data and to biology) that
help explain the results of our study, and suggest areas for further de-
velopment of this type of research. First, our analysis was based on a
relatively small number of compounds (418). The data used were lim-
ited to the publicly available in vivo rat carcinogenicity studies. This
illustrates a general challenge faced by the computational toxicologist
regarding the small volume of data publicly available and the im-
portance of initiatives such as eTOX that aim at gathering, organizing
and making available in vivo toxicological data [17]. Further, tox-
icological data, from both in vitro and in vivo models, is often highly
imbalanced and, therefore, not well suited for computational purposes
and machine learning in particular. This small number of compounds
combined with the imbalanced property of the data also led to the re-
moval of some ER and AR related in vitro assays when applying the
cutoff of a minimum of 5% of positive compounds. Thus, we do not
know if these assays could have contributed to a better prediction of the
long-term in vivo effects. Another issue faced when utilizing in vivo
toxicological data sources is a general lack of well harmonized on-
tology, which has been fully discussed by others [18,19]. The same
endpoint or finding could be referred to by several different terms de-
pending on the laboratory or pathologist that conducted the study. We
made our best attempt to address this issue by grouping the different
endpoints into categories to make the effects more inclusive, but we
expect that our methods would have had better performance with more
precise and harmonized histopathological ontology. Various organiza-
tions are making progress in developing terminology and ontologies
(e.g. the US Food and Drug Administration (FDA) utilizing Standard for
Exchange of Nonclinical Data (SEND) [18]; the Society of Toxicology
Pathology and the European Society of Toxicology leading the Inter-
national Harmonization of Nomenclature and Diagnostic (INHAND)
criteria for lesions in rats and mice project [20]), but global harmoni-
zation has not yet been achieved. Finally, databases of in vivo toxicology
data may only include effects used to determine the lowest observed
adverse effect level (LOAEL), meaning that additional effects at higher
doses are not reported and not available for data analysis exercises. In
particular, this has been pointed out for reproductive toxicity studies in
ToxRefDB [20].

In addition to characteristics of the data utilized in the analysis, the
biological meaning of the datasets also contributes to the outcome of
our study. Several aspects can explain why a compound is called active
in vitro and negative in vivo and conversely. First, it is important to state
that the in vitro assays used here do not give information about ADME
(Absorption, Distribution, Metabolism and Excretion) properties and
therefore the results do not reflect dose dependencies in the in vivo
context. These properties are critical to obtain accurate in vivo predic-
tions, as recently highlighted [21,22]. Also, the selected 42 assays do
not represent the set of all possible biological pathways leading to ad-
verse endocrine effects. Assays selected in the ToxCast project were not
originally designed to be predictive of specific long-term in vivo out-
comes or toxicological modes of action [23]. Furthermore, intercellular
and inter-organ communication is also not captured by in vitro assays
[24] which prevents detecting the in vivo responses that require multi-
tissue interactions [25]. This is often crucial in endocrine mediated
toxicity given the key compensatory role of the pituitary gland for many
endocrine related tissues [26].

In the last years, most of the computational work performed to

predict toxicological effects and bioactivity of compounds has tried to
link compound structures to in vitro or in vivo data by applying read
across approaches [27] or machine learning methods [28,29] and re-
cently a combination of both [30]. Nonetheless, the link between in
vitro and in vivo data has not been evaluated much and was considered
either broadly [11,31] or for specific outcomes [32,33]. In particular,
Thomas et al. also used ToxCast and ToxRefDB to evaluate how in vitro
assays and/or chemical structure could classify 60 in vivo toxicity
endpoints using statistical and machine learning approaches [34]. They
were not able to obtain accurate predictions and showed that machine
learning models based on in vitro assays alone did not perform better
than those based on structural descriptors and that the combination of
both types of descriptors did not improve the performance. The ToxCast
team replied to this work and suggested that biological knowledge
should be used to build such models [35]. This is what we tried to do by
performing a pre-selection of in vitro assays that could be related to
specific in vivo outcomes. Moreover, recent studies showed that in vitro
bioactivity data was not able to correctly predict carcinogenicity in
rodents or cancer hazard classification [36,37]. Here we proposed for
the first time to look at the link between specific in vitro assays and in
vivo effects arising in rat endocrine related organs after long-term ex-
posure using simple correlation and machine learning methods. This
work extends the evaluation of EPA’s additive models for ER and AR
pathways, aiming at the replacement of EDSP Tier 1 assays which in-
cludes short term in vivo pubertal assays, uterotrophic assay and
Hershberger assay [5,6,7], by evaluating if in vitro assays could give
information about the in vivo long-term ED effects. In particular, since
the EPA’s additive models resulted in good predictions of uterotrophic
and Hershberger assay, our results suggest that, in extension, these
short-term in vivo assays are probably not good to predict long-term
endocrine-related in vivo endpoints such the ones we are interested in
here. It would have been interesting to look at the number of true po-
sitive and true negative compounds between the two short-term assays
and the long-term endocrine-related effects. Unfortunately, it was not
possible as too few compounds were found having both long-term and
Uterotrophic and Hershberger data available. Finally, it is worth to
mention that in essence, an in vivo evaluation has got its own level of
uncertainty regarding the reproducibility as it has already been de-
scribed [39,40].

In general, since the results of our work showed that there is no
evident link between the 42 in vitro assays selected and in vivo effects
observed in rat long term studies, we would suggest being cautious
when interpreting the meaning and relevance of positive in vitro assays.
Ideally, a hypothesis-driven approach should be conducted to drive the
selection of appropriate in vitro assays specifically addressing the pre-
diction of a given adverse outcome pathway in order to ensure the
causal link between the two types of evaluations [41]. Further, in-
cluding PBPK modelling in this approach could allow for the con-
sideration of dose in the predictions from in vitro to in vivo. Indeed,
physiologically based kinetic modelling-based reverse dosimetry has
recently been shown to accurately simulate the dose-response of in vivo
uterus growth induced by estrogenic compounds using in vitro data as
input information [38].

Moreover, our results highlighted the important need for more
publicly available data, with harmonized results and ontology, to be
utilized in computational and predictive toxicology efforts.

In conclusion, statistical analysis and machine learning based on the
results of more than 400 compounds showed that ToxCast in vitro assays
that are related to pathways altering endocrine activity do not dis-
criminate compounds which actually lead to long-term in vivo toxicity
in endocrine organs in the reproductive tract (testis, prostate, ovary,
uterus) as well as in the adrenal glands.

Future work should address the lack of description of toxicokinetic
properties of compounds in order to enable reliable in vitro-to-in vivo
extrapolation (IVIVE) and estimate the dose of effective potency as al-
ready suggested by Thomas et al. [22]. Also, more efforts are required to
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develop specific in vitro assays informing about a broader spectrum of
pathways leading to endocrine-mediated adverse outcomes, in parti-
cular in the case of toxic modes of action involving several organs
[26,42]. Furthermore, this type of computational study predicting in
vivo effects from in vitro data should be expanded to other types of
adverse effects observed as well as to other laboratory animal species.
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