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Abstract. In the field of biological regulation, models extracted fromexperimental works are usually com-
plex networks comprising intertwined feedback circuits. The overall behavior is difficult to grasp and the
development of formal methods is needed in order to model andsimulate biological regulatory networks. To
model the behavior of such systems, R. Thomas and coworkers developed a qualitative approach in which
the dynamics is described by a state transition system. Evenif all steady states of the system can be detected
in this formalism, some of them, the singular ones, are not formally included in the transition system. Con-
sequently, temporal properties in which singular states have to be described, cannot be checked against the
transition system. However, steady singular states play anessential role in the dynamics since they can induce
homeostasis or multistationnarity and sometimes are associated to biological phenotypes.

These observations motivated our interest for developing an extension of Thomas formalism in which all
singular states are represented, allowing us to check temporal properties concerning singular states. We easily
demonstrate in our formalism the previously demonstrated theorems giving the conditions for the steadiness
of singular states. We also prove that our formalism is coherent with the Thomas one since all paths of the
Thomas transition system are preserved in our one, which in addition includes singular states.

Keywords: biological networks, feedback circuits, singular states,steady states.

1. Introduction

It is now becoming clear for a lot of researchers that to elucidate the fundamental principles that govern how
genomic information translates into organismal complexity, one has to overcome the current habit of ad hoc
explanations and instead embrace novel and formal conceptsthat will involve computer modeling[9]. These
new approaches form thesystems biology[32] which tends to deal with functioning of modular circuits, includ-
ing their robustness, design and manipulation[12, 10, 8]. Computational systems biology addresses questions
fundamental to our understanding of life. For this, we need to establish methods and techniques that enable us
to understand biological systems as systems, which means tounderstand: the structure of the system, such as
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gene/metabolic/signal transduction networks and physical structures, the dynamics of such systems, methods to
control systems, and methods to design and modify systems togenerate desired properties[11].

Biological regulatory systems often are complex networks comprising several intertwined feedback circuits.
The behavior of such systems is extremely anti-intuitive and cannot be solved without adequate formalization.
Most modeling approaches deal with simulation of a recreated living system with computer in which are put
as much as possible details. Traditionally, biochemical systems are modeled with kinetics differential equations
using the mathematical language of dynamic systems [29] in aquantitative simulator. Biological systems are also
accurately described by non-linear ordinary differentialequations which, however, cannot be solved analytically.
To model the behavior of such systems, R. Thomas and coworkers developed a qualitative approach in which the
dynamics is described by a state transition system depending on some parameters [24, 23]. To capture all steady
states, Snoussi and Thomas introduced the concept of circuit-characteristic states which are particular singular
states. They play an essential role in the dynamics since they can induce homeostasis or multistationnarity and
sometimes are associated to biological phenotypes [18, 28,21, 26, 27]. Then available biological knowledge on
homeostasis, multistationarity or on observed experimental behavior can be used for constraining the underlying
parameters [2]. Even if all steady states of the system can bedetected in this formalism, some of them, the
characteristic ones, are not formally included in the transition system. Consequently, temporal properties in
which singular states have to be described, cannot be checked against the transition system. These observations
motivated our interest for developing an extension of Thomas formalism in which all singular states are included
in the dynamics. Such an extension, which allows us to check temporal properties concerning singular states, is
indeed essential for describing in a coherent and precise way all possible transitions and all possible attractors,
including both regular and singular states.

This paper presents an extension of R. Thomas’ modeling which includes the singular states in the transition
system. In section 2 we present the continuous dynamics of biological regulatory networks based on ordinary
differential equations which constitute the common grounds of our and R. Thomas’ qualitative approaches. Then
a discretization map is introduced leading to the definitionof all qualitative states of our modeling. Section 3
treats of the discretization of the continuous dynamics used to define the transition system. We also introduce
the resources and the qualitative parameters which allows us to define the qualitative dynamics independently
of the continuous system. In section 4 we revisite the definition of the characteristic states of feedback circuits
in a qualitative and formal manner. The conditions for the steadiness of characteristic states, which make the
corresponding circuits functional (see [27] for example),are shown to be the same than in the Thomas’ modeling.
After having given some comparisons between both modelings, we prove that the R. Thomas’ state graph is in a
certain sense included in our transition system. Finally insection 5 perspectives are presented.

2. Qualitative values and qualitative regulatory networks

Interactions between biological entities, often macromolecules or genes, are classically represented by labeled
directed graphs, where vertices abstract biological entities and arcs their interactions. If the interaction is an
inhibition (resp. activation), the label is� (resp.+). This static representation is formally defined as following.

Definition 2.1. (Regulatory network)
A regulatory network is a labeled directed graphG = (V;E) where:� each vertexv of V , calledvariable, represents a biological entity,� each arc(u! v) of E is labeled with the sign of the interaction�uv 2 f+;�g.
In the sequel we denote, for each vertexv 2 V , the set of predecessors (resp. successors) ofv by G�(v) (resp.G+(v)) and the cardinal of a setS by#S.
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We now present the continuous dynamics of such systems basedon ordinary differential equations. This
approach has been fruitfully applied to different systems [31, 20, 3, 30] and constitutes the grounds of the quali-
tative approach first introduced by Thomas. To each variablev is associated a continuous valuexv 2 R+ which
represents its concentration. At a given time the vectorx = (xv)v2V , composed of all concentrations, defines
the state of the regulatory network. The evolution of the system is generally given by the following system of
ordinary differential equations: dxvdt = Sv(x)� �vxv; 8v 2 V (1)

whereSv(x) and�v > 0 represent respectively the synthesis rate and the degradation coefficient of the variablev. The synthesis rateSv : R#V+ ! R+ is often defined by:Sv(x) = Xu2G�(v) I�uv(xu; �uv) (2)

where the functionI�uv : R2+ ! R+ describes the influence of a regulatoru on the synthesis rate ofv. �uv and�uv are respectively the sign and the threshold of the interactionu! v. Indeed for the majority of the biological
interactions, under a certain threshold�uv of the concentration ofu, the interactionu! v has a quasi null effect
on v, and a saturated effect over it. More precisely the functionI�uv is near 0 on one side of the threshold and
near the saturation effectkuv > 0 on the other, it can be represented by a sigmoid as a Hill function (see figure
1). In such a case, the threshold is the inflexion point of the Hill function.

With such non linear interactions the system 1 has no analytical solution. The solution can be numerically
approximated but the precision may be misleading [27] because the parameters are most often unknown. Thomas
proposed to estimate the sigmoid functionI�uv by the step functioneI�uv (figure 1) defined by:eI+(xu; �uv) = ( 0 if xu < �uvkuv if xu > �uv eI�(xu; �uv) = ( kuv if xu < �uv0 if xu > �uv
In such a case the system 1 has an analytic solution on each domain where the synthesis rates are constant. But
with this approximation,eI�uv is undefined whenxu = �uv. A state in which there is at least one variable on
a threshold is thus called asingular state. To define the differential equation system 1 for the singular states
Snoussi and Thomas [18] represent theuncertain influence ofu on v whenxu = �uv by an open interval:

xuI+(xu; �uv)00 �uvkuv xueI+(xu; �uv)00 �uvkuv
xuI�(xu; �uw)00 �uwkuw xueI�(xu; �uw)00 �uwkuw
xuj0j j0; 1j j1j j1; 2j j2j xuj0j j0; 1j j1j j1; 2j j2j

Figure 1. Approximation of sigmoids by step functions and discretization



4 Richard et al. / Modeling Biological Regulatory NetworkseI�uv(�uv; �uv) =℄0; kuv [. This interval represents the set of possible influences ofu on v strictly included
between the case whereu acts onv (xu > �uv) and the case where it does not (xu < �uv). Then the system 1 has
to be seen as a system of differential inclusions [5]:dxvdt 2 Sv(x)� �vxv; 8v 2 V; with Sv(x) = Xu2G�(v) eI�uv(xu; �uv): (3)

To introduce our qualitative approach we define thequalitative valuesused to abstract the concentration of a
variable even if it is on a threshold.

Definition 2.2. (Qualitative Values)� A qualitative value, notedja; bj is a couple of integers (ja; bj 2 N 2 ) wherea � b. The set of qualitative
values is notedQ.� The relations=,<,>,� are defined for 2 qualitative valuesja; bj andj
; dj:

– ja; bj = j
; dj if (a = 
) and(b = d).
– ja; bj < j
; dj if (b < 
) or (b = 
 and(a < b or 
 < d))
– ja; bj > j
; dj if j
; dj < ja; bj
– ja; bj � j
; dj if

8><>: ja; bj = j
; dj or(a = b) and(
 < a) and(b < d) or(a < b) and(
 � a) and(b � d):
Intuitively, qualitative values has to be seen as intervals. On one hand, ifa < b then ja; bj represents the open
interval℄a; b[. On the other hand, ifa = b, the qualitative value is similar to the close interval[a; b℄which contains
only the valuea. Then two open intervals are comparable if they are not overlapping: ℄a; b[<℄
; d[ if b < 
. The
relation� is simply the inclusion relation on intervals. The previousdefinition leads to two kinds of qualitative
values: a qualitative valueja; bj is saidregular if a = b andsingular otherwise. The notationjaj represents the
regular qualitative valueja; aj.

Let us now introduce for each variableu the set of out-thresholds defined by�u = f�uv j v 2 G+(u)g. The
thresholds of�u are ranked from the smallest to the largest:�1u < �2u < ::: < �buu where�iu is thei-th smallest
value of�u andbu is the cardinal of�u.

Definition 2.3. (Discretization map)
The discretization mapdu : R+ ! Q which associates a qualitative value to each concentrationof variableu, is
defined as follows:xu = du(xu) = ( jqj if �qu < xu < �q+1ujq � 1; qj if xu = �qu where �0u = �1 and �bu+1u = +1:
Property 1. The mapdv is an incresing function.

The proof is straightforward from the definition 2.2.

To understand whydu represents the qualitative behavior ofu, let us consider a regulatory network in whichu
acts positively onv and negatively onw. Let us suppose that�uv < �uw (figure 1).xu = j0j means thatu does
not act neither onv nor onw, xu = j0; 1j means thatu does not act onw and acts uncertainly onv, xu = j1j
means thatu acts only onv, xu = j1; 2j means thatu acts onv and acts uncertainly onw and finallyxu = j2j
means thatu acts on both.
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Following Snoussi [16], we suppose that all out-thresholdsare differents, in other words that the numberbu of out-thresholds ofu is the cardinal ofG+(u). The qualitative valuexu can have2bu + 1 different values:bu + 1 regular qualitative valuesxu = jqj; q 2 f0; :::; bug which indicate thatu effectively acts on theq targetst for which we have�ut � �qu, andbu singular qualitative valuesxu = jq; q + 1j; q 2 f0; :::; bu � 1g, which
indicate thatu effectively acts on the same targetst and that the regulation is uncertain for the targett0 such that�ut0 = �q+1u . In the sequel,bu denotes the number of targets ofu.

Definition 2.4. (Qualitative regulatory network)
A qualitative regulatory network, denoted byQR is a regulatory networkG = (V;E) in which each interactionu ! v 2 E is labeled by a couple(�uv ; quv) 2 f�;+g � f1; :::; bug, such that for allv0 2 G+(v) n fvg,quv0 6= quv. quv is called the threshold rank and the qualitative thresholdsuv of the interactionu ! v is defined
by suv = jquv � 1; quvj.
For a given regulatory networkG = (V;E), there is a finite number of qualitative regulatory networks. One can
remark that for each regulationu! v labeled byquv, we havesuv = du(�uv) if �uv = �quvu .

Definition 2.5. (Qualitative states, regular and singular states)
LetQR be a qualitative regulatory network built onG = (V;E).� The set of possible values ofxu isQu = fj0j; j0; 1j; j1j:::; jq � 1j; jq � 1; qj; jqj; :::; jbu jg:� The qualitative state of the network is the vectorx = (xv)v2V composed by all qualitative concentrations.

It belongs to the finite space of qualitative statesQQR =Qv2V Qv.� A state issingular if one of its coordinates is singular, otherwise it isregular.

To illustrate the different concepts of our modeling, we take as running example the mucus production inPseu-
domonas aeruginosa. These bacteria are commonly present in the environment andsecrete mucus only in lungs
affected by cystic fibrosis. As this mucus increases the respiratory deficiency of the patient, it is the major cause
of mortality. The regulatory network of the mucus production system has been widely studied [13, 7]. The main
regulator for the mucus production, AlgU, supervises an operon which is made of 4 genes among which one
codes for a protein that is a repressor of AlgU. Moreover AlgUfavors its own synthesis. The regulatory system
can then be sketched into the qualitative regulatory network of Fig. 2-a, where variableu represents AlgU, and
variablev its repressor. The order of thresholdsquv andquu is not deductible from biological knowledge and in
fact both orderings have to be considered. Figure 2 assumes thatquv < quu.

Figure 2-b gives the associated qualitative state space which is composed of 15 states: 6 regular states and 9
singular ones. The 6 regular states correspond to 6 open domains in the continuous space, and the 9 others to 7
segments and two points.

In the modeling of R. Thomas, the qualitative concentrationof a variable is an integer given by the following
discretization functiondRTv : R+ n �v ! N such thatdRTv (xv) = q iff �qv < xv < �q+1v with �0v = �1 and�bv+1v = +1. Thus regular states of the Thomas model correspond to our regular states. In other words ifxv =2 �v thendv(xv) = jdRTv (xv)j.
3. Dynamics of regulatory networks

In this section we show how the discretization map can be usedto extract the essential qualitative features of the
continuous dynamics. We first present briefly the analytic solution of the differential equation system when the
interactions are approximated by step functions. In such a case the different thresholds define domains in which
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Figure 2. Qualitative regulatory network(a) and its qualitative state space(b)
the synthesis rates are constant. Let us introduce two functionsDv : Qv ! P(R+) andD : QQR ! P(R+)#V
defined by: Dv(xv) = fxv 2 R+ j dv(xv) = xvg and D(x) = (Dv(xv))v2V
whereP(E) denotes the power set of the setE . These functions give respectively the set of continuous concen-
trations and the set of continuous states for which the discretization corresponds to the qualitative valuexu and
to the qualitative statex. Dv(xv) andD(x) are called thedomainsof xv andx.

If x is a qualitative regular state,8xu 2 Du(xu) and8v 2 G+(u), eI�uv(xu; �uv) 2 f0; kuvg. Thus we can
deduce that8v 2 V , the synthesis rateSv(x) is constant inD(x). Since the degradation�vxv of v is linear, the
differential equation system 1 has one solution onD(x). If the initial state isx0 2 D(x), the solution is :xv(t) = Xv(x0)� (Xv(x0)� x0v)e��vt; 8v 2 V where Xv(x) = Sv(x)�v : (4)

Thus all continuous states of the domainD(x) tend to the same constant stateX (x0) = (Xv(x0))v2V that is
called theattractor of the domainD(x). If X (x0) 2 D(x), all trajectories starting inD(x) will never leave the
domainD(x) and they will reach (in+1) the continuous steady stateX (x0). Otherwise ifX (x0) 62 D(x), then
a trajectory starting inD(x) goes towardsXv(x0) up to leave the domainD(x). If additionally we suppose that
the parametersk and� are taken such that the attractor of domain of each regular state is regular, the trajectory
leaves in a finite timeD(x) by reaching a threshold hyperplane. Outside the domain, thesolution of the system
is not the same and the attractor can be different. Thus the stateXv(x0) can never be reached. For a regular
qualitative statex, we define naturally the qualitative attractor ofv as the discretization of the attractorXv(x):Xv(x) = dv(Xv(x)); 8x 2 D(x): (5)

If x is a singular qualitative state, there is at least one variable u such that for all continuous statesx 2 D(x) we
havexu 2 �u and there existsv such thatxu = �uv. TheneI�uv(xu; �uv) =℄0; kuv [ soXv(x) is an interval (see
equations 4 and 3). Thus for generalizing the qualitative attractor of equation 5 to a singular qualitative state we
define the discretization of an interval℄a; b[ wherea andb are not in�v bydv(℄a; b[) = jqa; qbj whereqa andqb are the integers such thatjqaj = dv(a) andjqbj = dv(b): (6)

We can note thatqa � qb becausea � b anddv is an increasing function. The attractors are now defined forall
qualitative states.

The attractor of a variablev at the qualitative statex does not give the value at the next step, but only the
tendency. Ifxv < Xv(x) the variable tends to increase, ifxv > Xv(x) the variable tends to decrease and finally,
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if xv � Xv(x), the variablev is said steady. Then one considers that a statex is steady if all variables are steady.
The following theorem shows that this inclusion is reduced to the equality ifxv is regular.

Theorem 3.1. LetQR be a qualitative regulatory network built onG andx be a steady qualitative state. Ifxv is
regular, thenxv = Xv(x).
Proof: Reasoning by contradiction, let us suppose that there exists a variablev such thatxv � Xv(x) with xv
regular. We haveXv(x) = ja; bj with a < b. Xv(x) = dv(Xv(x)); x 2 Dv(x). SinceXv(x) is a singular value,
thenXv(x) is an interval1 and there existsu1 2 G�(v) which regulatesv uncertainly:xu1 = �u1v , xu1 = su1v.u1 is different thanv becausexu1 is singular andxv is regular.

Sincex is steady,xu1 � Xu1(x) andXu1(x) is singular. With the same reasoning we deduce that there existsu2 2 G�(u1) which regulatesu1 uncertainly: xu2 = �u2u1 , xu2 = su2u1 . Moreover, asxu2 is singular,u2 6= v.
By iteration, one constructs a sequenceu0; u1; u2:::un, whereu0 = v, such thatui 6= u0 andxui = suiui�1

for all i > 0. Since the set of variablesV is finite, there existsl such that the variablesu0; u1; u2; :::; ul�1 are
different and thatul = uk with k 2 f1; 2; :::; l � 1g. We havexul = sulul�1 andxuk = sukuk�1 . By settingu = ul = uk, xu = suul�1 = suuk�1 . Sinceul�1 6= uk�1, u regulates two different variables with the same
threshold, contradicting our assumption that all out-thresholds are different. �
Now it is possible to state the following theorem which proves that the discretization preserves the steady states.

Theorem 3.2. A qualitative statex is steady iff there is a continuous steady state inD(x).
Proof: Let QR be a qualitative regulatory network built onG = (V;E), x a qualitative state andx 2 D(x) a
continuous one. According to the definition of the steadiness given in [18]x is steady if:xv = Xv(x) if xv 62 �v and xv 2 Xv(x) if xv 2 �v; 8v 2 V:
If x is steady thenx is steady because for allv 2 V :

1. If xv 62 �v, we havexv = Xv(x) sodv(xv) = dv(Xv(x)) which is equivalent toxv = Xv(x).
2. If xv 2 �v, xv = dv(xv) is a singular qualitative value and we havexv 2 Xv(x) =℄a; b[. Since the

functiondv is increasing,dv(a) � dv(x) � dv(b). Thendv(xv) � jdv(a); dv(b)j (see definition 2.2) that
is dv(xv) � dv(℄a; b[) which is equivalent toxv � Xv(x).

If x is steady, there is one continuous steady state inD(x) because for allv in V :

1. if xv is regular then following theorem 3.1xv = Xv(x) () dv(xv) = dv(Xv(x)) for all x 2 D(x), in
other words,xv andXv(x) are in the same domainD(x). As xv 62 �v andXv(x) 2 Dv(xv), the attractorXv(x) is steady.

2. Let us suppose now thatxv = jq�1; qj. Sincexv � Xv(x), thenXv(x) is a singular value denoted byja; bj
(with a < b). For eachx 2 D(x), the attractorXv(x) is an non empty interval℄�; �[ such thatdv(�) = jaj
anddv(�) = jbj. Sincejq � 1; qj � ja; bj, we havejaj < jq � 1; qj < jbj () dv(�) < dv(xv) < dv(�)() xv 2℄�; �[() xv 2 Xv(x):

1We have excluded the cases where the attractors are equals tosome thresholds.
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Since the functionXv : QQR ! Qv gives the qualitative attractor of variablev at the qualitative statex, it
would be more suitable to expressXv as a function of the qualitative statex independently of the continuous
statex 2 D(x). In this perspective let us define the regular/singular resources and the qualitative parameters.

Definition 3.1. (Regular/singular resources)
LetQR be a qualitative regulatory network built onG = (V;E) andv 2 V .� The set of regular resourcesRv(x) of v at the statex is the set of predecessors ofv which acts positively

on v (effective activators or non effective inhibitors):Rv(x) = �u 2 G�(v) j (xu > suv and�uv = +) or (xu < suv and�uv = �)	 :� The set of singular resourcesSv(x) of v at the statex is the set of predecessors ofv which acts uncertainly
on v: Sv(x) = �u 2 G�(v) j xu = suv	 :

Note thatu 2 Rv(x) iff eI�uv(xu; �uv) = kuv andu 2 Sv(x) iff eI�uv(xv; �uv) = ℄0; kuv [ for all x 2 D(x).
Definition 3.2. (Qualitative parameters)
Let QR be a qualitative regulatory network built onG = (V;E). The qualitative parametersK = fKv;!g is a
family of integers indexed by couples(v; !) such that:� v belongs toV and! is a subset ofG�(v),� Kv;! = 0 if ! = ; andKv;! 2 f0; :::; bvg otherwise,� ! � !0 =) Kv;! � Kv;!0 .
An instantiation of these qualitative parameters is calledin the remainder, amodelof the qualitative regulatory
network. For example of figure 2-a, four among six qualitative parameters have to be instantiated:Ku;v, Ku;u,Ku;uv andKv;u sinceKu;; = Kv;; = 0 by definition.

Definition 3.2 allows us to set downjKv;!j = dv( 1�v Pu2! kuv), because

1. if ! = ; then2 dv( 1�v Pu2! kuv) = dv(0) = j0j elsedv( 1�v Pu2! kuv) 2 fj0j; j1j; :::; jbv jg under the

hypothesis that( 1�v Pu2! kuv) 62 �v,
2. if ! � !0 then( 1�v Pu2! kuv) � ( 1�v Pu2!0 kuv), and sincedv is an increasing function,dv( 1�v Pu2! kuv) �dv( 1�v Pu2!0 kuv).

Then it is possible to define the functionXv : QQR ! Qv as a function of regular/singular resources and of the
qualitative parametersfKv;!g.
Theorem 3.3. SettingjKv;!j = dv( 1�v Pu2! kuv) the functionXv is given byXv(x) = ��Kv;Rv(x);Kv;Rv(x)[Sv(x)��.
2With the convention

Pu2; a = 0.
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Proof: Using equations 2 and 4, we haveXv(x) = 1�v Pu2G�(v) eI�uv(xu; �uv). The contribution of all pre-
decessors which are not resources (regular or singular), isnull. So we can write, for allx 2 D(x), Xv(x) =( 1�v Pu2Rv(x) kuv) + 1�v Pu2Sv(x) ℄0; kuv [ with the convention

Pu2; a = 0. If Sv(x) is empty, thenXv(x) =1�v Pu2Rv(x) kuv. ThusXv(x) = dv( 1�v Pu2Rv(x) kuv) = jKv;Rv(x)j = jKv;Rv(x);Kv;Rv(x)[Sv(x)j.
On the other hand, ifSv(x) is not empty,Xv(x) = ( 1�v Pu2Rv(x) kuv) + i0; 1�v Pu2Sv(x) kuvh. This can be

written asXv(x) = i 1�v Pu2Rv(x) kuv ; 1�v Pu2Rv(x)[Sv(x) kuvh. ThusXv(x) = dv �i 1�v Pu2Rv(x) kuv ; 1�v Pu2Rv(x)[Sv(x) kuvh� :
As dv( 1�v Pu2Rv(x) kuv) = jKv;Rv(x)j anddv( 1�v Pu2Rv(x)[Sv(x) kuv) = jKv;Rv(x)[Sv(x)j, we haveXv(x) =��Kv;Rv(x);Kv;Rv(x)[Sv(x)�� according to 6. �
With this theorem, the qualitative parameters are sufficient to define the attractors of each state for a given
qualitative regulatory network. For the running example, table of figure 3 gives the symbolic attractors expressed
as the vector of the qualitative valuesXv(x) = ��Kv;Rv(x);Kv;Rv(x)[Sv(x)�� ; v 2 V . Then the attractors are
explicitly computed for an instanciation of qualitative parameters. We deduce from these attractors the tendency
of each variable which allows us to define a state graph, or transition system, representing the dynamics of the
network.

Definition 3.3. (Asynchronous state graph)
Let QR be a qualitative regulatory network built onG = (V;E). The asynchronous state graph (or state graph
for short)SG associated to a model ofQR, is a directed graphSG = (S;T) whereS is the set of qualitative
states ofQR, andT is the set of transitions between qualitative states such that:1: x! x 2 T if x is steady,2: x! x0 2 T if 9 v 2 V such that

8><>: x0v = �+v (xv) andxv < Xv(x)
orx0v = ��v (xv) andxv > Xv(x) and x0u = xu 8 u 2 V n fvg

where�+v and��v are the evolution operators defined as following:�+v (xv) = ( jq; q + 1j if xv = jqjjqj if xv = jq � 1; qj and ��v (xv) = ( jq � 1; qj if xv = jqj andq > 0jqj if xv = jq; q + 1j
To explain this definition we have to notice that the attractors define the state towards which the system tends
to evolve. We consider that two variables cannot evolve simultaneously, that is why the state graph is said
asynchronous. When several variables tend to evolve at a given state, additional information is needed to select
which one first changes. In fact the values of time delays associated to each variation of variables, are to be known
to define which one effectively evolves first [27]. As we have no information about time delays, all possible
variations are considered. As a consequence a state for which n variables tend to evolve, hasn successors.

Practically to built a state graph associated to a qualitative regulatory network built onG = (V;E), we have
to instantiate the qualitative parametersK = fKv;! j v 2 V; ! � G�(v)g. Note that there is a finite number of
models associated to a qualitative regulatory network, since the number of possible instantiations of parameters is
itself finite. Thus, the qualitative approach allows with a finite number of models to study the qualitative features
of the infinity of continuous dynamics associated to a regulatory network.

In the Thomas’ approach, the logical parameters are defined in the same way. Thus the models associated
to a qualitative regulatory network are the same in both approaches (in particular there is the same number of
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models), but the state graphs deduced from these models are different. Indeed, the attractor of a variablev at
the statex can be written with our notation byXRTv (x) = Kv;Rv(~x) wherex is a state of R. Thomas (a vector of
integers) and where~x is the qualitative regular state identifiable tox (~xv = jxvj for all v 2 V ). Thus the attractors
of the states of Thomas’ approach are the attractors of our regular states:Xv(~x) = jXRTv (x)j. The R. Thomas’
state graph contains only transitions between regular states and similarly to the previous definition,x ! x is a
transition ifx is steady andx! x0 is a transition if:9 v 2 V such that

8><>: x0v = xv + 1 andxv < XRTv (x)
orx0v = xv � 1 andxv > XRTv (x) and x0u = xu 8 u 2 V n fvg:

Figure 3 uses definition 3.3 to construct the asynchronous state graph associated to the running example with
particular values for qualitative parameters. It is compared to the R. Thomas’ state graph, for which only one of
the three continuous steady states is abstracted by a qualitative one.

u v+,1

-,1

+,2

statesx symbolic attractors attractors tendenciesxu xv Xu(x) Xv(x) Xu(x) Xv(x) u vj0j j0j jKu;vj jKv;;j j2j j0j %  j0j j0; 1j jKu;;;Ku;vj jKv;;j j0; 2j j0j % &j0j j1j jKu;;j jKv;;j j0j j0j  &j0; 1j j0j jKu;vj jKv;;;Kv;uj j2j j0; 1j % %j0; 1j j0; 1j jKu;;;Ku;vj jKv;;;Kv;uj j0; 2j j0; 1j   j0; 1j j1j jKu;;j jKv;;;Kv;uj j0j j0; 1j & &j1j j0j jKu;vj jKv;uj j2j j1j % %j1j j0; 1j jKu;;;Ku;vj jKv;uj j0; 2j j1j  %j1j j1j jKu;;j jKv;uj j0j j1j &  j1; 2j j0j jKu;v;Ku;uvj jKv;uj j2j j1j % %j1; 2j j0; 1j jKu;;;Ku;uvj jKv;uj j0; 2j j1j  %j1; 2j j1j jKu;;;Ku;uj jKv;uj j0; 2j j1j   j2j j0j jKu;uvj jKv;uj j2j j1j  %j2j j0; 1j jKu;u;Ku;uvj jKv;uj j2j j1j  %j2j j1j jKu;uj jKv;uj j2j j1j   
R. Thomas’ state graph State graph with singular states

(0; 0) (1; 0) (2; 0)(0; 1) (1; 1) (2; 1)
j0j;j0j j1j;j0j j1;2j;j0jj0;1j;j0j j2j;j0j
j0j;j1j j1j;j1jj0;1j;j1j j2j;j1jj0j;j0;1j j1j;j0;1j j1;2j;j0;1jj0;1j;j0;1j j2j;j0;1jj1;2j;j1j

Figure 3. State graphs deduced from the running example for the qualitative parameters:Ku;; = 0, Ku;v = 2, Ku;u = 2,Ku;uv = 2, Kv;; = 0 andKv;u = 1.
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4. Functionality of feedback circuits

Most often, there is a huge number of models associated to a regulatory network since the number of parametersKv;! associated to eachv 2 V is exponential according to the number of its predecessors.These parameters
are often unknown and thus, the major issue of the modeling activity is to select the suitable set of parameters
which give a qualitative behavior coherent with the experimental knowledge on the system. Three different kinds
of dynamic properties are often used to aid the selection of suitable models: steady states, multistationarity and
homeostasis. The selection of models which presents a givenset of steady states remains a simple application
of definition of steady states (see section 3). On the other hand the two other dynamic properties are not directly
expressed in term of parameters, and their detection in a given model is not trivial. Hopefully the feedback circuits
theory [28] allows us to link multistationarity and homeostasis to parameters and to select appropriate models.

In a feedback circuit, each variable has an influence on its target but also an indirect effect on all following
elements including itself. A feedback circuit is saidpositive (resp. negative) if each variable has a positive
(resp. negative) influence on itself. The sign of the circuitis determined by the number of negative interactions:
the circuit is negative if the number of negative interactions is odd, otherwise it is positive. It has been shown
that it is possible to associate to a feedback circuit a typical dynamic behavior: in anegative circuit, a high
concentration of a variable tends to make decrease itself (and reversely). Thus the circuit makes the concentration
of each variable to tend to (or oscillate around) an equilibrium concentration. It then generates homeostasis. In a
positive circuit, a high (resp. low) concentration of a variable tends to makeit increase (resp. decrease). Thus
each variable can stay at a low or high concentration and the positive circuit generates multistationnarity. A
feedback circuit, which presents a typical dynamic behavior is said ’functional’. Several other properties on the
behabior of feedback circuits have been proved: at least onepositive regulatory circuit is necessary to generate
multistationarity whereas at least one negative circuit isnecessary to generate a stable oscillatory behavior[28,
22, 14, 6, 17, 19]. One can then demonstrate thatm functional disjointed positive feedback circuits generate 3m
steady states among which2m are regular.

In the sequel we first introduce the notion of characteristicstates of a feedback circuit which play a fundamen-
tal role: the steadiness of one of them leads to the functionality of the circuit. We then prove in our framework as
Snoussi and Thomas did in the context of R. Thomas theory [18], that among singular states only characteristic
states can be steady. The condition of steadiness of a characteristic state can be rewritten in term of constraints
on parameters. The proof of these conditions by Snoussi and Thomas is quite technical in their modeling because
they do not formally express the qualitative attractors of singular states. After comparison of both state graphs
for a model which verifies the condition of functionality, wegive a theorem which shows that the dynamics of
Thomas are preserved in our modeling.

4.1. Characteristic states

A circuit can be described by the finite set of arcs which compose it. A characteristic state of a circuit [18] is
defined as a state in whichu is a singular resource ofv iff (u ! v) is an arc of the circuit. This notion of
characteristic state can be extended to the unions of disjointed circuits3.

Definition 4.1. (Characteristic state of a union of circuits)
Let QR be a qualitative regulatory network built onG = (V;E) and letC a union of disjointed circuits. The
statex is characteristic ofC if we have:u is a singular resource ofv iff u! v is an arc of the union of circuits,
that is ifC = fu! v 2 E j u 2 Sv(x)g.
Note that a characteristic state is singular and that there are several characteristic states associated to a union
of circuits if it does not contain all variables of the network. Some examples of unions of disjointed circuits
with their characteristic states are given in Figure 4. It ispossible to demonstrate the following useful property: a
3Circuits are disjointed if there is no vertex which belongs to more than one circuit.
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a) u1 99

2
(( v 2yy1}}w1PP u1 99

2
(( v 2yy1}}w1PP u1 99

2
(( v 2yy1}}w1PP u1 99

2
(( v 2yy1}}w1PPC1 = fu! ug C2 = fv ! vg C3 = fu! u; v ! vg C4 = fu! v; v ! w;w! ug

b) C1 C2 C3 = C1 [ C2 C4xu xv xwj0; 1j j0j j0jj0; 1j j0j j1jj0; 1j j1j j0jj0; 1j j1j j1jj0; 1j j2j j0jj0; 1j j2j j1j
xu xv xwj0j j1; 2j j0jj0j j1; 2j j1jj1j j1; 2j j0jj1j j1; 2j j1jj2j j1; 2j j0jj2j j1; 2j j1j

xu xv xwj0; 1j j1; 2j j0jj0; 1j j1; 2j j1j xu xv xwj1; 2j j0; 1j j0; 1j
Figure 4. Unions of disjointed circuits of a regulatory network (a) and their characteristics states (b).

singular state such that each variable with a singular qualitative value is uncertainly regulated by another variable,
is a characteristic state.

Property 2. Among singular states, only characteristic states can be steady.

Proof: LetQR be a qualitative regulatory network built onG = (V;E) and letx a non characteristic singular
state. One can deduce from the previous remark that there is avariablev 2 V such thatxv is singular andSv(x) = ;. We deduce that the attractor ofv at this state is a regular qualitative valueXv(x) = jKv;Rv(x)j. Since
a singular value cannot be contained in a regular qualitative value,xv 6� Xv(x), andx cannot be steady. �
4.2. Constraints for functionality of feedback circuits

To select suitable models, it can be useful to translate functionality of feedback circuits in terms of constraints
on parameters. Thomas realized that the functionality of feedback circuits is directly linked to the stationnarity
of characteristic states: a circuit is functional if one associated characteristic state is steady [18]. For a functional
negative circuit, the steady characteristic state acts as an attractor since for all variables implicated in the circuit,
if the concentration is above (resp. below) the out-threshold in the circuit, the negative effect on itself tends to
make it decrease (resp. increase). On the other hand, for a functional positive circuit, the steady characteristic
state is unstable, because for each variable of the circuit the slightest departure from the threshold is sufficient to
make topple down the variable under or over its threshold.

In our modeling, the constraints for steadiness of characteristic states can be expressed as constraints on
parameters, which give thus the constraints for functionality of associated circuit: letx be a characteristic state
of a circuitC. It is steady iff for each variablev, xv � Xv(x).� For each variableu not implicated inC, Su(x) = ; andxu � Xu(x) () xu = Xu(x) () xu =jKu;Ru(x)j.
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threshold rank labelingu! v 2 C, thenxu � Xu(x) () jquv � 1; quvj � jKu;Ru(x);Ku;Ru(x)[Su(x)j() Ku;Ru(x) � quv � 1 and quv � Ku;Ru(x)[Su(x)() Ku;Ru(x) < quv � Ku;Ru(x)[Su(x):

Snoussi and Thomas deduced similar constraints in their modeling which are given in the following theorem.

Theorem 4.1. [18] For a given model, there exists a steady characteristicstate of a circuitC if there are two
regular qualitative states (in the Thomas model)x+ andx� such that:� for each variableu not implicated inC, x�u = x+u = XRTu (x+) = XRTu (x�)� for each variableu implicated inC whose the successor inC is v,8>>>><>>>>: if �uv = + then

( x+u = quvx�u = quv � 1
if �uv = � then

( x+u = quv � 1x�u = quv and XRTu (x�) < quv � XRTu (x+)
wherequv is the threshold rank ofu ! v. The statesx+ andx� are called the adjacent regular states of the
characteristic state of the circuit and they give respectively the minimal and maximal attractors.

The notion of resources permits us to develop the constraints of the previous theorem in terms of parameters.
We assimilate bothx+ andx� in the modeling of Thomas to the corresponding qualitative regular states in our
modeling. The characteristic statex which hasx+ andx� for adjacent states, is defined as the only characteristic
state ofC which verifiesxu = x�u = x+u for all u not implicated in the circuit. By definition, the resources of
each variable of the circuit at the statex� are not in the circuit. Since for allu not implicated in the circuit we
havexu = x�u , thenRu(x�) = Ru(x). In contrast, by definition of the statex+, each variable implicated in
the circuit is a resource of its successor in the circuit. So we have for allu, Ru(x+) = Ru(x) [ Su(x) (withSu(x) 6= ; if u is implicated in the circuit andSu(x) = ; otherwise). Thus:� for each variableu not implicated inC, we haveSu(x) = ; andx�u = XRTu (x�) () x�u = jKu;Ru(x�)j () xu = jKu;Ru(x)j with � 2 f+;�g� for each variableu implicated inC whose the successor inC is v, we haveSu(x) 6= ; andXRTu (x�) < quv � XRTu (x+) () Ku;Ru(x�) < quv � Ku;Ru(x+) () Ku;Ru(x) < quv � Ku;Ru(x)[Su(x)
Thus the constraints elaborated for the Thomas’ modeling are translated in our modeling in terms of constraints
on parameters.
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4.3. Examples and comparison with R. Thomas modeling

In the previous subsections, we highlighted that characteristic states play a central role for the circuit functionality
and we showed that the conditions for functionality are the same in the R. Thomas modeling and in our one. Now
we compare the dynamics of models for which some circuits arefunctional. Let us consider first the example
which contains a unique vertex which acts on itself positively or negatively:L� : v �,1 L+ : v +,1

We deduce from these two loops the following symbolic attractors:L� : xv Xv(x) L+ : xv Xv(x)j0j jKv;vj j0j jKv;;jj0; 1j jKv;;; Kv;vj  characteristic state! j0; 1j jKv;;; Kv;vjj1j jKv;;j j1j jKv;vj
The loops are functional if the associated characteristic statej0; 1j is steady, that is ifj0; 1j � Xv(j0; 1j) () Kv;; < 1 � Kv;v:
Thus,Kv;; = 0 andKv;v = 1 is the only one possible instantiation of parameters satisfying these constraints.
The attractors and the tendencies for both models become:L� : xv Xv(x) Tendencies L+ : xv Xv(x) Tendenciesj0j j1j % j0j j0j  j0; 1j j0; 1j   steady characteristic state! j0; 1j j0; 1j  j1j j0j & j1j j1j  
The state graphs can then be deduced:

R. Thomas state graph state graph with singular statesL� : 0 "" 1bb
j0j // j0; 1j�� j1jooL+ : 0$$ 1 dd j0j'' j0; 1j�� j1j gg

In the 4 state graphs, homeostasis or multistationarity induced by the loop functionality is present. The greatest
difference concerns the negative circuit:

1. The paths of the Thomas’ state graph do not correspond to paths between regular states in our state graph.
When a characteristic state of a negative loopv ! v is steady, then the Thomas’ state graph is not “con-
tained” in the state graph with singular states (see property 3 for details).

2. The state graph reflects a damped oscillation towards the characteristic state in our modeling and a sus-
tained oscillation for Thomas modeling.

In the Thomas modeling it is not possible to represent the softening which can be generated by the functionality
of negative circuits. That can infer a confusion about the interpretation of the circuit functionality. Let us consider
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now the qualitative regulatory network of figure 3 containing 2 variables with a negative circuit of length 2 and a
positive loop. The following table gives the constraints for steadiness of each characteristic state.

characteristic states Symbolic attractors Contraints forxu xv Xu(x) Xv(x) functionnality

Circuit - j0; 1j j0; 1j jKu;;;Ku;vj jKv;;;Kv;uj Ku;; < 1 � Ku;v Kv;; < 1 � Kv;u
Circuit + j1; 2j j0j jKu;v;Ku;uvj jKv;uj Ku;v < 2 � Ku;uv Kv;u = 0
Circuit + j1; 2j j1j jKu;;;Ku;uj jKv;uj Ku;; < 2 � Ku;u Kv;u = 1

The necessary conditions for functionality of both circuits are compatible in the case of steadiness of the second
characteristic state of the positive circuit. The instantiation of parameters of figure 3 makes functional both
circuits and multistationarity is predicted (functional positive loop). This multistationarity is important because
the network of the running example is supposed to control an epigenetic switch4 [2]. Then models which present
a multistationarity have to be considered. In the Thomas’ state graph there is only one steady state (the two others
are singular) and from each state it is possible to reach it. In our modeling the multistationarity is represented in
the dynamics since it contains three steady states.

However, the paths between states in the Thomas modeling arecoherent with our modeling. Indeed, each
transitionx1 ! x2 of the Thomas’ state graph corresponds to a pathxa ! xs ! xb wherexa andxb are
identifiable tox1 andx2 and wherexs is a singular state. The following property gives more details about the
coherence between both modelings.

Property 3.� Let x1 ! x2 (with x1 distinct fromx2) be a transition of the state graph of R. Thomas deduced from a
model of a qualitative regulatory networkQR built onG = (V;E),� let u be the only variable which evolves during the transition (x1u 6= x2u),� let xa andxb be the qualitative regular states identifiable tox1 andx2 (xav = jx1vj andxbv = jx2vj for all v inV ), and finally letxs be the qualitative singular state betweenxa andxb.

Then the qualitative state graph deduced from the same modelcontains the pathxa ! xs ! xb if xsu is not steady
(xsu is steady imposes thatxs is a characteristic state of the negative loopsu! u).

Proof: Let us set downxau = jqj. Sincex1 ! x2 is a transition of the state graph of R. Thomas and sincex1 6= x2, x1u 6= XRTu (x1) () xau 6= jKu;Ru(xa)j () jqj 6= jKu;Ru(xa)j.� If jqj < jKu;Ru(xa)j thenxsu = jq; q + 1j, xbu = jq + 1j, soxa ! xs is a transition of our state graph, andjq + 1j � jKu;Ru(xa)j.� If xs is not a characteristic state then either(u ! u) =2 E or the threshold of the auto-regulation(u! u) is not equal toxsu = jq; q + 1j. SoSu(xs) = ; andXu(xs) = jKu;Ru(xs)j = jKu;Ru(xa)j. Soxsu = jq; q + 1j < jKu;Ru(xa)j andxs ! xb is a transition of our state graph.� If xs is a characteristic state then(u! u) 2 E andsuu = jq; q + 1j. ThusSu(xs) = fug.� If the sign of u ! u is positive,�uu = +, thenXu(xs) = jKu;Ru(xs);Ku;Ru(xs)[fugj =jKu;Ru(xa);Ku;Ru(xa)[fugj. Soxsu = jq; q + 1j < jKu;Ru(xa);Ku;Ru(xa)[fugj andxs ! xb is
a transition of our state graph.

4stable change of phenotype without mutation



16 Richard et al. / Modeling Biological Regulatory Networks� If �uu = � thenXu(xs) = jKu;Ru(xs);Ku;Ru(xs)[fugj = jKu;Ru(xa)nfug;Ku;Ru(xa)j. So, if xsu
is not steady we havexsu = jq; q + 1j 6� jKu;Ru(xa)nfug;Ru(xa)j =) q < Ku;Ru(xa)nfug ()q+1 � Ku;Ru(xa)nfug. Sojq; q+1j < jKu;Ru(xa)nfug;Ku;Ru(xa)j andxs ! xb is a transition of
our state graph.� If jqj > jKu;Ru(xa)j thenxsu = jq � 1; qj, xbu = jq � 1j, soxa ! xs is a transition of our state graph, andjq � 1j � jKu;Ru(xa)j.� If xs is not a characteristic state then the demonstration is similar.� If xs is a characteristic state, then(u! u) 2 E andsuu = jq � 1; qj. ThusSu(xs) = fug.� If �uu = + thenXu(xs) = jKu;Ru(xs);Ku;Ru(xs)[fugj = jKu;Ru(xa)nfug;Ku;Ru(xa)j. Soxsu =jq � 1; qj > jKu;Ru(xa)nfug;Ku;Ru(xa)j andxs ! xb is a transition of our state graph.� If �uu = � thenXu(xs) = jKu;Ru(xs);Ku;Ru(xs)[fugj = jKu;Ru(xa);Ku;Ru(xa)[fugj. So, ifxsu is
not steady we havexsu = jq � 1; qj 6� jKu;Ru(xa);Ku;Ru(xa)[fugj =) q > Ku;Ru(xa)[fug ()q � 1 � Ku;Ru(xa)[fug. Sojq � 1; qj > jKu;Ru(xa);Ku;Ru(xa)[fugj andxs ! xb is a transition
of our state graph. �

Application of the previous property to the running exampleof Pseudomonas aeruginosais straightforward:
since the network does not contain negative loop (circuit oflength 1) then, for each model, the R. Thomas’ state
graph is “contained” in our one.

5. Conclusion and perspectives

In this paper we present a new qualitative modeling based on the R. Thomas works which allows us to represent
the singular states in the dynamics. Both modelings are based on a dicretization of piecewise-linear differential
equations system. However through our discretization map,all the steady states of the continuous dynamics are
preserved in our state graph. Moreover:� the increase in the number of states does not imply an increase in the number of models associated to a

network,� the state graph reflects the softening of the negative functional circuits,� the dynamics do not contradict the R. Thomas’ ones, and� finally, the theorems of the functionality of feedback circuits have been extended to our modeling, using
the notion of singular/regular resources.

The formal modeling of regulatory networks allows us to takeadvantage of the corpus of formal methods to
confront the models to biological knowledge. Now that singular states, which can play an important biological
role, are included in trajectories, temporal properties concerning them can be automatically checked on the tran-
sition system. This leads to a more extended set of checkableproperties which can be involved in the modeling
process. Indeed we want to select models which are coherent not only with the static conditions (functional-
ity of feedback circuits) but also with some known dynamic properties extracted from biological experiments
or hypothesis. We have already implemented a software,SMBioNet [2, 15] (Selection of Models of Biological
Networks), which allows, in the context of Thomas modeling,the selection of models for a given regulatory
network satisfying specified temporal properties. The software takes as input a qualitative regulatory network,
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some temporal properties expressed as a CTL formula and a setof functional circuits. Then it gives as output
the models which satisfy the specified temporal properties (using the NuSMV model checker [4]). The global
methodology of this computer aided modeling process can be extended to the formalism presented in this paper.
For a large amount of biological systems, this refinement would be useful to be more coherent with the biology.

More generally the formal methods can be applied in the field of biological regulatory networks in order
to explicit some behaviors or to model some other biologicalknowledge. Let us mention for example that the
introduction of transitions in the regulatory network could help to specify how the different regulators cooperate
for inducing or repressing their common target [1]. One can also take into account time delays[25] between the
beginning of the activation order and the synthesis of the product and conversely for the turn-off delays. These
constitute ongoing or future works of ourgenopole R
 research groups.
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