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Abstract. In the field of biological regulation, models extracted fremperimental works are usually com-
plex networks comprising intertwined feedback circuitsheToverall behavior is difficult to grasp and the
development of formal methods is needed in order to modekandlate biological regulatory networks. To
model the behavior of such systems, R. Thomas and coworkesaped a qualitative approach in which
the dynamics is described by a state transition system. Eedirsteady states of the system can be detected
in this formalism, some of them, the singular ones, are nohédly included in the transition system. Con-
sequently, temporal properties in which singular statesha be described, cannot be checked against the
transition system. However, steady singular states plasaential role in the dynamics since they can induce
homeostasis or multistationnarity and sometimes are &gsddo biological phenotypes.

These observations motivated our interest for developimgxension of Thomas formalism in which all
singular states are represented, allowing us to check teahpmperties concerning singular states. We easily
demonstrate in our formalism the previously demonstrateditems giving the conditions for the steadiness
of singular states. We also prove that our formalism is cehewith the Thomas one since all paths of the
Thomas transition system are preserved in our one, whicHditian includes singular states.

Keywords: biological networks, feedback circuits, singular stagtsady states.

1. Introduction

It is now becoming clear for a lot of researchers that to elatd the fundamental principles that govern how
genomic information translates into organismal complgexine has to overcome the current habit of ad hoc
explanations and instead embrace novel and formal condegatswvill involve computer modeling[9]. These
new approaches form theystems biolod@2] which tends to deal with functioning of modular cir@jiinclud-

ing their robustness, design and manipulation[12, 10, 8mgutational systems biology addresses questions
fundamental to our understanding of life. For this, we needdtablish methods and techniques that enable us
to understand biological systems as systems, which meamsderstand: the structure of the system, such as

CCorresponding author



- A IRAT e e PN TAY I OTYRR ARy PR R AT I

gene/metabolic/signal transduction networks and phi/stocactures, the dynamics of such systems, methods to
control systems, and methods to design and modify systegsnerate desired properties[11].

Biological regulatory systems often are complex netwoiksprising several intertwined feedback circuits.
The behavior of such systems is extremely anti-intuitivd eannot be solved without adequate formalization.
Most modeling approaches deal with simulation of a recoediteng system with computer in which are put
as much as possible details. Traditionally, biochemicatesys are modeled with kinetics differential equations
using the mathematical language of dynamic systems [29{jureatitative simulator. Biological systems are also
accurately described by non-linear ordinary differengiquations which, however, cannot be solved analytically.
To model the behavior of such systems, R. Thomas and coveodexeloped a qualitative approach in which the
dynamics is described by a state transition system depgmrairsome parameters [24, 23]. To capture all steady
states, Snoussi and Thomas introduced the concept oftetftaiacteristic states which are particular singular
states. They play an essential role in the dynamics singeddwe induce homeostasis or multistationnarity and
sometimes are associated to biological phenotypes [1212&6, 27]. Then available biological knowledge on
homeostasis, multistationarity or on observed experiaidyghavior can be used for constraining the underlying
parameters [2]. Even if all steady states of the system cattetected in this formalism, some of them, the
characteristic ones, are not formally included in the titeors system. Consequently, temporal properties in
which singular states have to be described, cannot be ctheajanst the transition system. These observations
motivated our interest for developing an extension of Thefoamalism in which all singular states are included
in the dynamics. Such an extension, which allows us to chexlporal properties concerning singular states, is
indeed essential for describing in a coherent and precigealVgossible transitions and all possible attractors,
including both regular and singular states.

This paper presents an extension of R. Thomas’ modelinglwihiudes the singular states in the transition
system. In section 2 we present the continuous dynamicsotddical regulatory networks based on ordinary
differential equations which constitute the common grauofdour and R. Thomas’ qualitative approaches. Then
a discretization map is introduced leading to the definitbrll qualitative states of our modeling. Section 3
treats of the discretization of the continuous dynamicslusedefine the transition system. We also introduce
the resources and the qualitative parameters which all@me define the qualitative dynamics independently
of the continuous system. In section 4 we revisite the dedmiof the characteristic states of feedback circuits
in a qualitative and formal manner. The conditions for theadiness of characteristic states, which make the
corresponding circuits functional (see [27] for exampéag shown to be the same than in the Thomas’ modeling.
After having given some comparisons between both modelinggrove that the R. Thomas’ state graph is in a
certain sense included in our transition system. Finallyaation 5 perspectives are presented.

2. Qualitative values and qualitative regulatory networks

Interactions between biological entities, often macraoles or genes, are classically represented by labeled
directed graphs, where vertices abstract biological iestiand arcs their interactions. If the interaction is an
inhibition (resp. activation), the label is (resp.+). This static representation is formally defined as follogvi

Definition 2.1. (Regulatory network)
A regulatory network is a labeled directed gra@h= (V, E) where:

e each vertew of V, calledvariable, represents a biological entity,
e each ardu — v) of F is labeled with the sign of the interactien,, € {+, —}.

In the sequel we denote, for each vertex V, the set of predecessors (resp. successors)gfG— (v) (resp.
G (v)) and the cardinal of a sétby #S.
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We now present the continuous dynamics of such systems lmseddinary differential equations. This
approach has been fruitfully applied to different systeBis PO, 3, 30] and constitutes the grounds of the quali-
tative approach first introduced by Thomas. To each varialideassociated a continuous valug € R™ which
represents its concentration. At a given time the vegter (z,),cy, composed of all concentrations, defines
the state of the regulatory network. The evolution of theeysis generally given by the following system of

ordinary differential equations:
dz,

dt
whereS, (z) and\, > 0 represent respectively the synthesis rate and the degradatefficient of the variable
v. The synthesis rat§, : R”" — R, is often defined by:

= 8Sy() — ATy, YoeV Q)

Su(m) = Z L (.’I}u, 911,1)) (2)

ueG~(v)

where the functiorL ®«» : Ri — R, describes the influence of a regulatoon the synthesis rate of «,,, and
0., are respectively the sign and the threshold of the interacti— v. Indeed for the majority of the biological
interactions, under a certain threshélg, of the concentration af, the interaction: — v has a quasi null effect
onw, and a saturated effect over it. More precisely the funcfiérr is near 0 on one side of the threshold and
near the saturation effeét,, > 0 on the other, it can be represented by a sigmoid as a Hill imm¢see figure
1). In such a case, the threshold is the inflexion point of thigfdshction.

With such non linear interactions the system 1 has no acalysiolution. The solution can be numerically
approximated but the precision may be misleading [27] bee#iue parameters are most often unknown. Thomas
proposed to estimate the sigmoid functibfr® by the step functiofL®»» (figure 1) defined by:

f+(m7l,79u’1)) = { : If u s euv fi’i (mmgm)) = { ku’u If Pu S euv
kuy 1 2y > Oy 0 if 2y > Oy
In such a case the system 1 has an analytic solution on eachimlerhere the synthesis rates are constant. But
with this approximation,f“"" is undefined whenr,, = 6,,. A state in which there is at least one variable on

a threshold is thus called singular state. To define the differential equation system 1 for thgudar states
Snoussi and Thomas [18] represent theeertaininfluence ofu on v whenzx, = 6,, by an open interval:

I+(£Eu,9uv) i'+($mguv)

x : T
0 0 u 0 0 7. u
I_($Ua9uw) f_(fEuaouw)
ku’ll} k?t?l}
0 : Lo 0 : x
0 971,'11) ' 0 971,’111 !
Xu Xu

oF 10,11 [1,2] 2] of 0, 1)1 [1,2] 2]

Figure 1. Approximation of sigmoids by step functions anstdétization
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iw(ew,aw) =]0, kyy[. This interval represents the set of possible influences of v strictly included
between the case wheseacts orw (z,, > 6,,) and the case where it does nof, (< 4,,). Then the system 1 has
to be seen as a system of differential inclusions [5]:

dx,

o €Su(@) = Momy, VO EV, with Su(x) = Y T (zu,0u). (3)

ueG~ (v)

To introduce our qualitative approach we define thmlitative valuesused to abstract the concentration of a
variable even if it is on a threshold.

Definition 2.2. (Qualitative Values)
e A qualitative value, notedl, b| is a couple of integersd,b| € N?) wherea < b. The set of qualitative
values is noted).

e The relations=,<,>,C are defined for 2 qualitative valués, b| and|c, d|:

— la,b| = |c,d| if (a = c) and(b = d).
— Ja,b| < ¢, d]if (b<c)or(b=cand(a <borc< d))
— la,b| > |c,d| if |c,d| < |a,b]
la,b| = |c,d| or
— |a,b| Cle,d|if ¢ (a=b)and(c < a)and(b < d) or
(a < b)and(c <a)and(b < d).

Intuitively, qualitative values has to be seen as interv@la one hand, it: < b then|a, b| represents the open
interval]a, b[. On the other hand, if = b, the qualitative value is similar to the close interjealb] which contains
only the valuez. Then two open intervals are comparable if they are not apeihg: Ja, b[<]c,d[ if b < ¢. The
relation C is simply the inclusion relation on intervals. The previa&inition leads to two kinds of qualitative
values: a qualitative value, b| is saidregular if a = b andsingular otherwise. The notatiofu| represents the
regular qualitative valuéz, al.

Let us now introduce for each variablethe set of out-thresholds defined 8y, = {6, | v € G*(u)}. The
thresholds 0@, are ranked from the smallest to the largeht:< 02 < ... < 6% wheref! is thei-th smallest
value of®,, andb, is the cardinal ob,,.

Definition 2.3. (Discretization map)
The discretization mag, : R, — Q which associates a qualitative value to each concentrafioariableu, is
defined as follows:

it 0% <z, <68"
Xy = dy (1) = a o where 00 = —o00 and 0%t = 4oc.
q—1,q| if T, = 05 “ “
- 4 u — Yu

Property 1. The mapd, is an incresing function.

The proof is straightforward from the definition 2.2.

To understand whyi,, represents the qualitative behaviorwgflet us consider a regulatory network in whigh
acts positively oy and negatively om. Let us suppose th#ét,, < 6,., (figure 1).x, = |0] means that: does
not act neither o nor onw, x,, = |0,1| means that, does not act om and acts uncertainly on, x,, = |1]
means that, acts only orw, x,, = |1, 2| means that: acts onv and acts uncertainly om and finallyx, = |2
means that, acts on both.
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Following Snoussi [16], we suppose that all out-thresh@ds differents, in other words that the number
b, of out-thresholds of; is the cardinal of7" (u). The qualitative value,, can have2b,, + 1 different values:
b, + 1 regular qualitative values, = |q|,q € {0,...,b,} which indicate that: effectively acts on the targets
t for which we haved,; < 6¢, andb, singular qualitative values, = |q,q + 1|,9 € {0,...,b, — 1}, which
indicate that: effectively acts on the same targétand that the regulation is uncertain for the targetuch that
O = 047" In the sequelb, denotes the number of targets:wof

Definition 2.4. (Qualitative regulatory network)

A qualitative regulatory network, denoted bR is a regulatory networks = (V, E) in which each interaction
u — v € FE is labeled by a coupléw,,., quy) € {—,+} x {1,...,b,}, such that for alb’ € G*(v) \ {v},
Guv' # Quuv- Guo 1S Called the threshold rank and the qualitative threslgldof the interactionu — v is defined

by Syp = |q“,1) - 13 QU,?)‘-

For a given regulatory networe = (V. E), there is a finite number of qualitative regulatory networ®se can
remark that for each regulation— v labeled byg,,,,, we haves,,, = d,,(0,) if 6, = 07"".

Definition 2.5. (Qualitative states, regular and singular ates)
Let QR be a qualitative regulatory network built @h= (V. E).

e The set of possible values ®f is Q, = {|0], 0, 1|, [1|...,|¢ — 1],]¢ — L1, 4], g, ---, |bu |}

e The qualitative state of the network is the vector (x,),c1 composed by all qualitative concentrations.
It belongs to the finite space of qualitative statgr = [[, oy Qo-

e A state issingularif one of its coordinates is singular, otherwise itégular.

To illustrate the different concepts of our modeling, weetas running example the mucus productioiP geu-
domonas aeruginosdal hese bacteria are commonly present in the environmensarrégte mucus only in lungs
affected by cystic fibrosis. As this mucus increases thenaspy deficiency of the patient, it is the major cause
of mortality. The regulatory network of the mucus produntgystem has been widely studied [13, 7]. The main
regulator for the mucus production, AlgU, supervises anrapavhich is made of 4 genes among which one
codes for a protein that is a repressor of Algu. Moreover Afglbrs its own synthesis. The regulatory system
can then be sketched into the qualitative regulatory n&&wbiFig. 2-a, where variable represents AlgU, and
variablew its repressor. The order of thresholgs, andq,,, is not deductible from biological knowledge and in
fact both orderings have to be considered. Figure 2 assuméeg,t < quu.

Figure 2-b gives the associated qualitative state spacehvisnicomposed of 15 states: 6 regular states and 9
singular ones. The 6 regular states correspond to 6 openidsmnathe continuous space, and the 9 others to 7
segments and two points.

In the modeling of R. Thomas, the qualitative concentratiba variable is an integer given by the following
discretization functiont?” : R, \ ©, — N such that??” (z,) = ¢ iff 0% < z, < 647" with #9 = —oc and
§b+1 = 4o00. Thus regular states of the Thomas model correspond to guiarestates. In other words if
z, ¢ O, thend,(z,) = |dF (z,)|.

3. Dynamics of regulatory networks
In this section we show how the discretization map can be tesegtract the essential qualitative features of the

continuous dynamics. We first present briefly the analytlotg&m of the differential equation system when the
interactions are approximated by step functions. In sucise the different thresholds define domains in which
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Figure 2. Qualitative regulatory networka) and its qualitative state space)

the synthesis rates are constant. Let us introduce twoibmsD, : Q, — P(R; ) andD : Qqr — P(Ry)*V
defined by:

Du(xv) = {xv € RF | du(xv) = Xu} and D(X) = (D’U(X’U))UEV

whereP(€) denotes the power set of the getThese functions give respectively the set of continuousen-
trations and the set of continuous states for which the eligation corresponds to the qualitative valyeand
to the qualitative state. D, (x,) andD(x) are called thelomainsof x,, andx.

If x is a qualitative regular stat&z, € D, (x,) andVo € G*(u), Z (24, 0yy) € {0, kyy }. Thus we can
deduce that'v € V, the synthesis rat§, (z) is constant ifD(x). Since the degradatiok,z, of v is linear, the
differential equation system 1 has one solutiorifd). If the initial state isz’ € D(x), the solution is :

Ty (1) = Xy (20) — (X, (2°) — 20)e M, YoeV where Xy(z) = . 4

Thus all continuous states of the domdhx) tend to the same constant statéz") = (X, (z")),ev that is
called theattractor of the domainD(x). If X(2°) € D(x), all trajectories starting iD(x) will never leave the
domainD(x) and they will reach (int-oc) the continuous steady statg(z"). Otherwise ifX' (z°) ¢ D(x), then

a trajectory starting irD(x) goes towardsy, (z") up to leave the domaif(x). If additionally we suppose that
the parameters and \ are taken such that the attractor of domain of each regudée & regular, the trajectory
leaves in a finite timé(x) by reaching a threshold hyperplane. Outside the domairsdhgion of the system
is not the same and the attractor can be different. Thus #te &t (2°) can never be reached. For a regular
qualitative statex, we define naturally the qualitative attractoruoés the discretization of the attracta,(z):

X, (x) = dy(X,(z)), Vi € D(x). (5)

If x is a singular qualitative state, there is at least one viaialsuch that for all continuous statese D(x) we
havez, € ©, and there exists such that:,, = 6,,,. ThenZ (z,, 0,,) =0, ky,[ SO X,(x) is an interval (see
equations 4 and 3). Thus for generalizing the qualitatit@etior of equation 5 to a singular qualitative state we
define the discretization of an intenjal b[ wherea andb are not in®,, by

dy(Ja,b]) = |ga,qw| Whereg, andg, are the integers such that,| = d, (a) and|qg| = d,(b). (6)

We can note thaj, < ¢, because: < b andd,, is an increasing function. The attractors are now defineclfor
qualitative states.

The attractor of a variable at the qualitative state does not give the value at the next step, but only the
tendency. I, < X,(x) the variable tends to increasexif > X, (x) the variable tends to decrease and finally,
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if x, C X, (x), the variablev is said steady. Then one considers that a stagesteady if all variables are steady.
The following theorem shows that this inclusion is reduaethe equality ifx, is regular.

Theorem 3.1. Let QR be a qualitative regulatory network built @handx be a steady qualitative state.xIf is
regular, therx, = X, (x).

Proof: Reasoning by contradiction, let us suppose that theresexisériables such that, C X, (x) with z,
regular. We hav&X, (x) = |a, b| with a < b. X, (x) = d,(X,(z)),z € D,(x). SinceX,(x) is a singular value,
thenX, () is an intervat and there exists; € G~ (v) which regulates uncertainly:z,, = 0,,, < Xy, = Su,v.
uy Is different tharw because,, is singular and,, is regular.

Sincex is steadyx,, C Xy, (x) andX,, (x) is singular. With the same reasoning we deduce that thestsexi
us € G~ (up) which regulates:; uncertainly: z,,, = 0y,u, < Xy, = Su,u,- MoOreover, as,, is singular,
ug #£ .

By iteration, one constructs a sequengeu, us...u,, Whereuy, = v, such thats,; # ug andx,;, = sy, ,
for all 7 > 0. Since the set of variablés is finite, there existg such that the variables,, u, us, ..., u;_; are
different and that,, = u; with k£ € {1,2,...,1 — 1}. We havex,, = s,,,,_, andx,, = s,,u,_,- BY setting
U = U = Uk, Xy = Suy;_; = Suuy,_,- SINCEUI_ # up_1, u regulates two different variables with the same
threshold, contradicting our assumption that all outghméds are different. O

Now it is possible to state the following theorem which preteat the discretization preserves the steady states.

Theorem 3.2. A qualitative statex is steady iff there is a continuous steady stat®{x).

Proof: Let QR be a qualitative regulatory network built @@ = (V. E), x a qualitative state and € D(x) a
continuous one. According to the definition of the steadirgggen in [18]z is steady if:

Ty = Xy(x) if 2, & O, and Ty € Xy(x) if 2, € Oy, Yo e V.
If = is steady ther is steady because for alle V:
1. If z, ¢ ©,, we haver,, = X,(x) sod,(z,) = d,(X,(x)) which is equivalent te,, = X,,(x).

2. If z, € ©,, x, = dy(z,) is a singular qualitative value and we havg € X,(z) =]a,b[. Since the
functiond, is increasingd, (a) < d,(z) < d,(b). Thend,(z,) C |d,(a),d,(b)| (see definition 2.2) that
is dy(xy) C dy(]a, b]) which is equivalent ta, C X, (x).

If x is steady, there is one continuous steady stafe(i) because for alb in V:

1. if x, is regular then following theorem 3x, = X, (x) <= d,(z,) = d,(&X,(z)) for all z € D(x), in
other words;z, and X, (x) are in the same domaiR(x). Asz, ¢ ©, andX,(z) € D,(x,), the attractor
X, (x) is steady.

2. Letus suppose now that = |¢ — 1, ¢|. Sincex,, C X,,(x), thenX, (x) is a singular value denoted txy, b|
(with a < b). For eachr € D(x), the attractort, (z) is an non empty intervdty, 5] such thatl, («) = |a|
andd, (8) = |b|. Since|q — 1,¢| C |a,b|, we have

lal <lg—1,q| <|b] <= dy(a) <dy(zy) < dy(B)
= 1z, €a,f]
= 1y € Xy(x).

1We have excluded the cases where the attractors are eqasothresholds.
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O

Since the functionX,, : Qqr — Q. gives the qualitative attractor of variableat the qualitative state, it
would be more suitable to expre3s, as a function of the qualitative stateindependently of the continuous
stater € D(x). In this perspective let us define the regular/singularueses and the qualitative parameters.

Definition 3.1. (Regular/singular resources)
Let QR be a qualitative regulatory network built @h= (V. E) andv € V.

e The set of regular resourcés, (x) of v at the statex is the set of predecessors @fvhich acts positively
onwv (effective activators or non effective inhibitors):

Ry(x) = {u € G (v) | (x4 > Sup @Ndaryy = +) OF (x4 < Syp ANy, = —) } .

e The set of singular resourc8s(x) of v at the statex is the set of predecessors«oivhich acts uncertainly
onu:

SU(X) = {U €G- (7)) | Xy = Sm}} .
Note thatu c Rq;(X) |ﬁ i’auu (mu’ 97“)) — k'm) andu € S’U(X) |ﬁ fauv (.f[;v’ 97“1) = ]0, kjuv[ fOI’ a” Tr € D(X)

Definition 3.2. (Qualitative parameters)
Let QR be a qualitative regulatory network built @i = (V, E'). The qualitative parameteis = {K, .} is a
family of integers indexed by couplés, w) such that:

e v belongs to/” andw is a subset o7~ (v),
e K,, =0if w=0andK,, € {0,...,b,} otherwise,
cewCuw = Ku,w < Ku,w’-

An instantiation of these qualitative parameters is caitethe remainder, anodelof the qualitative regulatory
network. For example of figure 2-a, four among six qualifparameters have to be instantiatéd, ,,, K, .,
Kyuv andK, , sinceK,, 3 = K, y = 0 by definition.

Definition 3.2 allows us to set dowik, ,,| = du(% > uecw kuv), because

1 if w = 0 therf dy(5= 3 e, buw) = du(0) = |0] elsed, (32
hypothesis thaty- >, c,, kuv) & O,

kuy) € {]0], 1], ..., |by|} under the

ucw

2. ifwCu then(i Y ucw Fuv) < (% > ucw Fuv), @andsincel, is anincreasing functiom{,,,(% Y ucw kuv) <
dy (3= ucur Fuv)-

Then it is possible to define the functid, : Qqr — Q, as a function of regular/singular resources and of the
qualitative parametergk, ., }.

Theorem 3.3. Setting K, .| = dy (5= Y, c,, kuv) the functionX,, is given byX,, (x) = K, r, x), Ku,R, (x)us, ()|

UEw

2With the conventior}", ., a = 0.
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Proof: Using equations 2 and 4, we hatg¢(z) = A ZueG 7% (z,,04,). The contribution of all pre-
decessors which are not resources (regular or smgulan),llls So we can write, for alk € D(x), &,(z) =
(Aiﬂ D ueRy (x) Fuv) + AL > ues, (x) 10, kuy [ With the convention)_, .y a = 0. If S, (x) is empty, thenX, (z) =

)\]_,, ZUGR,,(X) kuv' ThUSXU( ) d ( o ZueR,,,(x) kuv) = |K’U,RU(X)| = |K’U,RU(X)7KU,RU(X)USU(X)|'
On the other hand, i§,(x) is not empty, X, (z) = (/\iﬂ 2oueR, (x) Fuv) + }0, AL D ues, (x) Fuo [ This can be

written aSXU(x) = i| )\Lﬂ ZUGR,,,(X) kuu s )\]—“ ZUER,,(X)US,,(X) kuu [ Thus

Xy(x) = dy G % > ueR, (x) Fuv % D ueR, (x)US, (x) Buv D :

As du(iﬂ D oueR, (x )k v) = Ky r, )] anddu(%ﬂ D ueRy (x)USy (x) Kuo) = Ky R, (x)us, (x)], We haveX, (x) =
Ky k() KR, (x)Us, (x) | @ccording to 6. 0

With this theorem, the qualitative parameters are suffictendefine the attractors of each state for a given
qualitative regulatory network. For the running exampddle of figure 3 gives the symbolic attractors expressed
as the vector of the qualitative valués,(x) = K, r,(x). Ku.r,(us,(x|,v € V. Then the attractors are
explicitly computed for an instanciation of qualltatlverameters We deduce from these attractors the tendency
of each variable which allows us to define a state graph, ositian system, representing the dynamics of the
network.

Definition 3.3. (Asynchronous state graph)

Let QR be a qualitative regulatory network built @i = (V, F). The asynchronous state graph (or state graph
for short) SG associated to a model 6jR, is a directed grap8G = (S, T) whereS is the set of qualitative
states ofQR, andT is the set of transitions between qualitative states suath th

1.x — x € Tif x is steady,
xi = Af(x,) andx, < X,(x)

2.x —»x' € Tif Jv €V such that or and x),=x,VueV\{v}
xi, = A, (x,) andx, > X, (x)

whereA;f andA, are the evolution operators defined as following:

1] if x, = 1.dlif x. = lol and 0
A+(Xu) — |Qaq+ ‘ Xy |Q‘ and A,(Xu) _ ‘q . ,q\ Xy |q‘ q>
v

To explain this definition we have to notice that the attrecidefine the state towards which the system tends
to evolve. We consider that two variables cannot evolve Kanaously, that is why the state graph is said
asynchronous. When several variables tend to evolve atem Gitate, additional information is needed to select
which one first changes. In fact the values of time delayscaisal to each variation of variables, are to be known
to define which one effectively evolves first [27]. As we haweinformation about time delays, all possible
variations are considered. As a consequence a state fohwhiariables tend to evolve, hassuccessors.

Practically to built a state graph associated to a qualéatgulatory network built o6z = (V, F), we have
to instantiate the qualitative parametéis= {K, . | v € V,w C G~ (v)}. Note that there is a finite number of
models associated to a qualitative regulatory networlcesithe number of possible instantiations of parameters is
itself finite. Thus, the qualitative approach allows withraté number of models to study the qualitative features
of the infinity of continuous dynamics associated to a reguwanetwork.

In the Thomas’ approach, the logical parameters are defiméioei same way. Thus the models associated
to a qualitative regulatory network are the same in both eggnes (in particular there is the same number of
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models), but the state graphs deduced from these modelsflarernt. Indeed, the attractor of a variahleat
the statex can be written with our notation by " (x) = K, r,(x) Wherex is a state of R. Thomas (a vector of
integers) and whereis the qualitative regular state identifiablext¢x, = |x,| for all v € V). Thus the attractors
of the states of Thomas’ approach are the attractors of guiaestatesX, (x) = |X! (x)|. The R. Thomas’
state graph contains only transitions between regulaesitd similarly to the previous definition,— x is a

transition ifx is steady ana — x’ is a transition if:

x! = x, + 1 andx, < X7 (x)
Jv € V such that or and x|, =x,VueV\{v}
x! =x, — 1 andx, > X5 (x)

Figure 3 uses definition 3.3 to construct the asynchronaate gfraph associated to the running example with
particular values for qualitative parameters. It is congpaio the R. Thomas’ state graph, for which only one of
the three continuous steady states is abstracted by aajivalione.

statesc symbolic attractors attractors tendencies

Xy Xy Xy (x) X, (x) Xu(x) Xu(x) | w v

o o] Koo Koo 2| o |~

0] 10,1 | [Ku0, Kuol Koo 0,2 ol | N\

o 1] Kol Koo 0] o |~ N

a1 0,1] 0] Koo Koo, Kol |21 [0,1] |~ 7
N 10,1] 10, 1] | Ko, Kuwl Ko, Kopul | 0,2 [0,1] |~ ~»
w2 v 0 1| Kl Ko K |00 030 [N N
R L I B o I P

’ [ 10,1} [Ka,0, Ku ol Kool 020 1] |~
i K. o] Kool o [N

1120 (0] | [Kuw, Kuuo Kool 2| I S

1121 10,1] | Ko 0, Kuuo] Kool 020 1] |~

L2l 1| (K, Kl Kool 0,2 1] |~ o

12 0] Ko uo Kool 2| i |~

12010, 1] | [Kuu, Kujuol Kool 2| i |~

12 [ Ko Kool 2| L e

R. Thomas’ state graph State graph with singular states

S 2L

(2,@ 0L [H=—[01,]t|<—T1L[1]  [1.,2)
bocp ot

_____ & 10[,0,1/=10,1[,[0,1]  [1[,J0,1]  [1,2[,[0,1] |2[,]0,1]

Figure 3. State graphs deduced from the running examplééoqtialitative parameter¥,, y = 0, K, , = 2, K, = 2,
Kuuo =2, K, g =0andK, , = 1.
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4. Functionality of feedback circuits

Most often, there is a huge number of models associated tpuéatery network since the number of parameters
K, . associated to each € V is exponential according to the number of its predecessbh&se parameters
are often unknown and thus, the major issue of the modelitigitsgds to select the suitable set of parameters
which give a qualitative behavior coherent with the experital knowledge on the system. Three different kinds
of dynamic properties are often used to aid the selectionitdlsie models: steady states, multistationarity and
homeostasis. The selection of models which presents a getaof steady states remains a simple application
of definition of steady states (see section 3). On the othed Hae two other dynamic properties are not directly
expressed in term of parameters, and their detection ineangivodel is not trivial. Hopefully the feedback circuits
theory [28] allows us to link multistationarity and homeass to parameters and to select appropriate models.

In a feedback circuit, each variable has an influence onigetdut also an indirect effect on all following
elements including itself. A feedback circuit is saidsitive (resp. negativé if each variable has a positive
(resp. negative) influence on itself. The sign of the cir@idetermined by the number of negative interactions:
the circuit is negative if the number of negative interatcsias odd, otherwise it is positive. It has been shown
that it is possible to associate to a feedback circuit a glpignamic behavior: in aegative circuit, a high
concentration of a variable tends to make decrease itselfr@versely). Thus the circuit makes the concentration
of each variable to tend to (or oscillate around) an equiliorconcentration. It then generates homeostasis. In a
positive circuit, a high (resp. low) concentration of a variable tends to mbkerease (resp. decrease). Thus
each variable can stay at a low or high concentration and diséiye circuit generates multistationnarity. A
feedback circuit, which presents a typical dynamic behagisaid 'functional’. Several other properties on the
behabior of feedback circuits have been proved: at leaspoagive regulatory circuit is necessary to generate
multistationarity whereas at least one negative circuitdsessary to generate a stable oscillatory behavior[28,
22,14, 6, 17, 19]. One can then demonstrate th&tinctional disjointed positive feedback circuits genet&t
steady states among whieR are regular.

In the sequel we first introduce the notion of charactersttites of a feedback circuit which play a fundamen-
tal role: the steadiness of one of them leads to the fundtigrad the circuit. We then prove in our framework as
Snoussi and Thomas did in the context of R. Thomas theory {ti&] among singular states only characteristic
states can be steady. The condition of steadiness of a tdi@sc state can be rewritten in term of constraints
on parameters. The proof of these conditions by Snoussi hoth&s is quite technical in their modeling because
they do not formally express the qualitative attractorsinfjglar states. After comparison of both state graphs
for a model which verifies the condition of functionality, \ye&ve a theorem which shows that the dynamics of
Thomas are preserved in our modeling.

4.1. Characteristic states

A circuit can be described by the finite set of arcs which cosepit. A characteristic state of a circuit [18] is
defined as a state in whichis a singular resource of iff (u — v) is an arc of the circuit. This notion of
characteristic state can be extended to the unions of dispicircuits.

Definition 4.1. (Characteristic state of a union of circuit9

Let QR be a qualitative regulatory network built @i = (V, E) and letC' a union of disjointed circuits. The
statex is characteristic of” if we have:w is a singular resource afiff . — v is an arc of the union of circuits,
thatisifC = {u - v € E|u € S,(x)}.

Note that a characteristic state is singular and that thexeseveral characteristic states associated to a union
of circuits if it does not contain all variables of the netkorSome examples of unions of disjointed circuits
with their characteristic states are given in Figure 4. fiassible to demonstrate the following useful property: a

SCircuits are disjointed if there is no vertex which belongsrore than one circuit.
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Ci ={u—u} Cy={v— v} Cs={u—uv—-v} Ci={u—v,v—>ww-—u}
b) c Cy Cy = Cy UGy Cy

Xy Xy Xy Xy Xy Xy Xy Xy Xy Xy Xy Xy

0,1 {0 0] 0 (1,2 0] 0, 1] [1.2[ 0] 1,2] 0,1 10,1

0,1 {0 1] 0 [1,2] 1] 0, 1] J1,2[ 11

0,1 [1] 0] (1,20 0]

0, 1] 1] 1] 120

10,112 0] 20 1,2 0]

0,112 1] 20 (1,20 1

Figure 4. Unions of disjointed circuits of a regulatory netl(a) and their characteristics states (b).

singular state such that each variable with a singular @i value is uncertainly regulated by another variable,
is a characteristic state.

Property 2. Among singular states, only characteristic states candaelgt

Proof: Let QR be a qualitative regulatory network built @i = (V, E') and letx a non characteristic singular
state. One can deduce from the previous remark that therevasiablev € V such thatx, is singular and
S»(x) = 0. We deduce that the attractor ot this state is a regular qualitative valkig(x) = |K, g, |- Since
a singular value cannot be contained in a regular qualéatalue x, Z X, (x), andx cannot be steady. O

4.2. Constraints for functionality of feedback circuits

To select suitable models, it can be useful to translatetimality of feedback circuits in terms of constraints
on parameters. Thomas realized that the functionality efiliack circuits is directly linked to the stationnarity
of characteristic states: a circuit is functional if oneaasated characteristic state is steady [18]. For a funation
negative circuit, the steady characteristic state acts adteactor since for all variables implicated in the citcui
if the concentration is above (resp. below) the out-thresihothe circuit, the negative effect on itself tends to
make it decrease (resp. increase). On the other hand, forcéidnal positive circuit, the steady characteristic
state is unstable, because for each variable of the citwaiislightest departure from the threshold is sufficient to
make topple down the variable under or over its threshold.

In our modeling, the constraints for steadiness of chariatie states can be expressed as constraints on
parameters, which give thus the constraints for functibnalf associated circuit: let be a characteristic state
of a circuitC. Itis steady iff for each variable, x, C X, (x).

e For each variable: not implicated inC, S, (x) = 0 andx, C X,(x) <= x, = X,(x) <= x, =
‘Ku,Ru(x)"
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e For each variable. implicated inC, we haveS, (x) # 0 andx, = syy = |quv — 1, quv| Wheregy, is the
threshold rank labeling — v € C, then

Xy C Xu, (X) — |q“,1) - 13 QUU‘ c |Ku,,R,,,,(x)a Ku,R,,,(x)US,,,(x)‘
— Ku,Ru(x) <quw—1 and gy < Ku,Ru(x)USu(x)

— Ky Ru(x) < Guo < Ky Ry, (x)US0 (x)-
Snoussi and Thomas deduced similar constraints in theiefimegdwhich are given in the following theorem.

Theorem 4.1. [18] For a given model, there exists a steady charactersséite of a circuitC' if there are two
regular qualitative states (in the Thomas model)andx~ such that:

e for each variable: not implicated inC, x,, = x;f = X' (x*) = X[ (x7)
e for each variable; implicated inC' whose the successor @t is v,

+_
. X, =
if vy = + then { u = Guo

X = — 1
. Guov and XfT (Xi) < Quov S XﬁT(X+)
= Quv — 1

= Guu

>
g £ &£

if vy = — then {

whereg,, is the threshold rank off — v. The statesx™ andx~ are called the adjacent regular states of the
characteristic state of the circuit and they give respebtithe minimal and maximal attractors.

The notion of resources permits us to develop the constrahthe previous theorem in terms of parameters.
We assimilate botk™ andx~ in the modeling of Thomas to the corresponding qualitategutar states in our
modeling. The characteristic statavhich hasx™ andx~ for adjacent states, is defined as the only characteristic
state ofC' which verifiesx,, = x, = x, for all » not implicated in the circuit. By definition, the resourcds o
each variable of the circuit at the state are not in the circuit. Since for all not implicated in the circuit we
havex, = x,, thenR,(x~) = Ry(x). In contrast, by definition of the state”, each variable implicated in
the circuit is a resource of its successor in the circuit. $ohave for allu, R, (x") = R, (x) U S,(x) (with
Su(x) # 0if u is implicated in the circuit an8,, (x) = () otherwise). Thus:

e for each variable: not implicated inC, we haveS, (x) = () and

x, = X0 (x) = x{ = [Kyr, o)) <= xu= Kir,ml with e € {+, —}

e for each variable: implicated inC whose the successor (his v, we haveS, (x) # () and

X (x7) < quo < X (xT) = Kypypo) < G S Kyryper) = Kuru) < Quv < Kury (008, ()

Thus the constraints elaborated for the Thomas’ modeliagranslated in our modeling in terms of constraints
on parameters.
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4.3. Examples and comparison with R. Thomas modeling

In the previous subsections, we highlighted that charstitestates play a central role for the circuit functiobali
and we showed that the conditions for functionality are #irae in the R. Thomas modeling and in our one. Now
we compare the dynamics of models for which some circuitdaretional. Let us consider first the example
which contains a unique vertex which acts on itself podiive negatively:

L : ’UQ—,]_ L. : u:>+,1

We deduce from these two loops the following symbolic attrec

L_: x, | X, (x) Ly: x, | Xy (x)
|0] Ko, 0] Ko o]

[0,1] | |K,,9, Kvw| < characteristic state> [0, 1] | |K, g, Ky,
1] Ko ol 1] Koo

The loops are functional if the associated characterigite§), 1| is steady, that is if

|0?1‘ C XU(‘Oa 1|) — Kv,(]) <1< Ku,u-

Thus,KU,@ = 0andK,, = 1 is the only one possible instantiation of parameters satigfthese constraints.
The attractors and the tendencies for both models become:
L_: x, | Xy (x) | Tendencies Ly: x, | Xy (x) | Tendencies
0] 1] e |0] 0] ~
[0,1] | 10,1] ~ + steady characteristic state  |0,1] | |0, 1] ~
1 |0] hY |1] 1 ~

The state graphs can then be deduced:

R. Thomas state graph state graph with singular states
. ()
L: 0o 1 0] — 0,1} <— 1
—

Ly Co 1@ CIU\ Q \1|:>

In the 4 state graphs, homeostasis or multistationaritydad by the loop functionality is present. The greatest
difference concerns the negative circuit:

1. The paths of the Thomas’ state graph do not correspondhs patween regular states in our state graph.
When a characteristic state of a negative leop> v is steady, then the Thomas’ state graph is not “con-
tained” in the state graph with singular states (see prggefor details).

2. The state graph reflects a damped oscillation towardshheacteristic state in our modeling and a sus-
tained oscillation for Thomas modeling.

In the Thomas modeling it is not possible to represent theesofg which can be generated by the functionality
of negative circuits. That can infer a confusion about therpretation of the circuit functionality. Let us consider



AT ek R P T IY IO TR PR ) PR R IAE

now the qualitative regulatory network of figure 3 contaqivariables with a negative circuit of length 2 and a
positive loop. The following table gives the constraintssteadiness of each characteristic state.

characteristic states ~ Symbolic attractors Contraints for
Xy Xy X (x) Xy (x) functionnality
Circuit - |0a 1‘ |0a 1‘ ‘Ku,@aKum| ‘Ku,(baKv,u Ku,@ <1< Ku,v Kv,@ <1< Ku,u
Circuit + | |1, 2| 0] 1Ko Koo | Koyl Kuy <2 <Kyup Kyu =0
Circuit + | [1,2] 1 Koo Kuul  [Koul | Kup <2< Kuyy Ky =1

The necessary conditions for functionality of both cirsuare compatible in the case of steadiness of the second
characteristic state of the positive circuit. The instatiin of parameters of figure 3 makes functional both
circuits and multistationarity is predicted (functionalgitive loop). This multistationarity is important becaus
the network of the running example is supposed to contropégeaetic switch [2]. Then models which present

a multistationarity have to be considered. In the Thomadeggraph there is only one steady state (the two others
are singular) and from each state it is possible to reacim ibur modeling the multistationarity is represented in
the dynamics since it contains three steady states.

However, the paths between states in the Thomas modelingoasrent with our modeling. Indeed, each
transitionx! — x? of the Thomas’ state graph corresponds to a pdth— x* — x” wherex® andx’ are
identifiable tox' andx? and wherex® is a singular state. The following property gives more dstabout the
coherence between both modelings.

Property 3.

e Letx! — x? (with x! distinct fromx?) be a transition of the state graph of R. Thomas deduced from a

model of a qualitative regulatory netwo€kR built on G = (V, E),
e letu be the only variable which evolves during the transitieh ¢ x2),

e letx® andx’ be the qualitative regular states identifiablecteandx? (x¢ = |x!| andx? = |x2| for all v in
V), and finally letx* be the qualitative singular state betwegrandx®.

Then the qualitative state graph deduced from the same roodtdins the patk® — x* — x® if x? is not steady
(x7 is steady imposes that is a characteristic state of the negative loaps> u).

Proof: Let us set downx? = |g|. Sincex! — x? is a transition of the state graph of R. Thomas and since
xt# %% x, 2 X () = x) # Kur,o)l = gl # [Kugr, (o)l

X =lg+1

o If |g] < |Ky R, (xe)l thenx;, = |g,q + 1 , Sox® — x* is a transition of our state graph, and

g+ 1] < Ky r, (x|

e If x* is not a characteristic state then eitljer — «) ¢ E or the threshold of the auto-regulation
(u — u) is not equal tac?, = |g,q + 1|. SoS,(x*) =  andX,, (x*) = 1Ko ko (x9) ] = KRy (x) |- SO
X, = [q,q + 1| < [Ky R, (xe)| @ndx® — x" is a transition of our state graph.

e If x* is a characteristic state thé¢n — u) € F ands,, = |q,q + 1|. ThusS, (x*) = {u}.

o If the sign ofu — w is positive, a, = +, thenX, (x°) = [Kyr,x) KuRu(x)0{u} =

‘Ku,Ru(x“)uKu,Ru(X“)U{u}" SOXZ = ‘%q + 1‘ < ‘Ku,Ru(xa)aKu,Ru(xa)U{u}‘ andx® — Xb is
a transition of our state graph.

“stable change of phenotype without mutation
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o If ayy = — thenX,(x*) = [Ky R, (x) KuRy (e )0tu} | = [Ku Ry (xo )\ fu)s KuRy (x0) |- SO, ifx,
is not steady we havef, = \q,q + 1| Z ‘KU’R‘“(Xa)\{u}’R‘“(Xa)‘ — q < KU,R.“(X“)\{U} —
g+1< KU,,R.“,(XG)\{U,}- SO‘q, q+ 1| < ‘Ku,R,“(x“)\{u}a Ku,R,,,(x“)| andx® — x’ is a transition of
our state graph.

, Sox® — x* is a transition of our state graph, and

xh =g —1

o If [g| > |K11,,R,,,,(x“)‘ thenx) = |¢ — 1,¢
g — 1] > [Ky R, (xo)l-

e |f x% is not a characteristic state then the demonstration idaimi
e If x* is a characteristic state, thém — u) € F ands,, = |¢ — 1, ¢|. ThusS,(x*) = {u}.

o If ayy = + thenXy (x*) = [Kur, (), Kury ey ofu ] = [Kury, o\ fu} Kur, (o) |- SO, =
g — 1,9 > [Ky R, (xo)\ fu} KuRy (xe) | @NDX° — x" is a transition of our state graph.

o If vy = — thenXu(Xs) = ‘Ku,Ru(xs)a Ku,Ru(xs)U{u}| = ‘Ku,Ru(x“)a Ku,Ru(x"')U{u}" So, IfXZ, is
not steady we have;, = |qg — 1,q| € [Ky g, (x*)s Ku,Ry (x¢)o{u}] = ¢ > Ky R, (xa)ufuy <
q 12> Kyr,xo)ufup- S0l¢ — 1,q| > [Ky R, (xe), Ku Ry (xa)ufuy | @NAX"T — x" is a transition

of our state graph.
O

Application of the previous property to the running exampfePseudomonas aeruginoss straightforward:
since the network does not contain negative loop (circuiength 1) then, for each model, the R. Thomas’ state
graph is “contained” in our one.

5. Conclusion and perspectives

In this paper we present a new qualitative modeling baseti@®Rt Thomas works which allows us to represent
the singular states in the dynamics. Both modelings aredbase dicretization of piecewise-linear differential
equations system. However through our discretization rathfhe steady states of the continuous dynamics are
preserved in our state graph. Moreover:

e the increase in the number of states does not imply an inereathe number of models associated to a
network,

e the state graph reflects the softening of the negative fomaticircuits,
¢ the dynamics do not contradict the R. Thomas’ ones, and

e finally, the theorems of the functionality of feedback citsthave been extended to our modeling, using
the notion of singular/regular resources.

The formal modeling of regulatory networks allows us to taklvantage of the corpus of formal methods to
confront the models to biological knowledge. Now that slagstates, which can play an important biological
role, are included in trajectories, temporal propertiescaning them can be automatically checked on the tran-
sition system. This leads to a more extended set of checkabjeerties which can be involved in the modeling
process. Indeed we want to select models which are coheot¢ranty with the static conditions (functional-
ity of feedback circuits) but also with some known dynamioparties extracted from biological experiments
or hypothesis. We have already implemented a softwaBjoNet [2, 15] (Selection of Models of Biological
Networks), which allows, in the context of Thomas modelititg selection of models for a given regulatory
network satisfying specified temporal properties. Thevgaifé takes as input a qualitative regulatory network,
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some temporal properties expressed as a CTL formula andda &eictional circuits. Then it gives as output
the models which satisfy the specified temporal propertis;ng the NuSMV model checker [4]). The global
methodology of this computer aided modeling process canxtaméed to the formalism presented in this paper.
For a large amount of biological systems, this refinementldvba useful to be more coherent with the biology.

More generally the formal methods can be applied in the fi¢lhiaogical regulatory networks in order
to explicit some behaviors or to model some other biologicadwledge. Let us mention for example that the
introduction of transitions in the regulatory network adiielp to specify how the different regulators cooperate
for inducing or repressing their common target [1]. One da &éake into account time delays[25] between the
beginning of the activation order and the synthesis of tloelpet and conversely for the turn-off delays. These
constitute ongoing or future works of ogenopole® research groups.
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