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Time plays an essential role in many biological systems, especially in cell cycle. Many

models of biological systems rely on differential equations, but parameter identification
is an obstacle to use differential frameworks. In this paper, we present a new hybrid

modeling framework that extends René Thomas’ discrete modeling. The core idea is to

associate with each qualitative state “celerities” allowing us to compute the time spent
in each state. This hybrid framework is illustrated by building a 5-variable model of the

mammalian cell cycle. Its parameters are determined by applying formal methods on the

underlying discrete model and by constraining parameters using timing observations on
the cell cycle. This first hybrid model presents the most important known behaviors of

the cell cycle, including quiescent phase and endoreplication.
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1. Introduction

Regulatory networks are models based on graphs which we use to obtain a simpler

view of gene regulation. Gene regulation is then the process of turning genes on

and off and is made possible by a network of interactions using regulatory proteins.

Gene regulation guarantees that appropriate genes are expressed at proper times

specially during early development where cells begin their specific functions. Gene

regulation also helps an organism to respond to its environment.

The various existing modeling frameworks differ by the aspects they highlight.

Stochastic models emphasize non-determinism, differential models represent a sys-

tem with a lot of details (transcription, traduction, transports ...) and give precise

trajectories in terms of concentrations, qualitative models focus on the major fea-

tures that explain the observations (only main causalities are taken into account),

and hybrid models link qualitative aspects with continuous variables such as time.
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For gene networks, the qualitative framework due to René Thomas20,21 has become

a standard because it highlights the qualitative nature of gene regulations and pow-

erful software platforms have been designed that help the biologists designing and

analysing models. Unfortunately, the qualitative nature of discrete models leads to

completely abstract time scale: When chronometrical time plays a crucial role in

the biological system, R. Thomas’ discrete method is not sufficient.

Whatever the modeling framework, the main difficulty relies on the identification

of good parameter values. For differential, probabilistic, discrete or hybrid models,

parameters pilot the dynamics, and finding accurate values remains a difficult step.

For discrete modeling frameworks like the one of R. Thomas, formal methods assist

the modeler to automatically select or constrain the parameters in order to get

accurate dynamics2,7. When the models have to handle durations, they can be

described in terms of differential systems or in terms of hybrid models. Whereas

parameter identification in differential systems is a hard problem even when the

nature of differential systems is well known, hybrid modeling frameworks can still be

assisted by computer-aided methods to help the modeler to set up the parameters.

In the context of gene networks, several hybrid frameworks have been designed

in order to take into account timing informations4,5,6. In this article we introduce a

new hybrid modeling framework where the discrete kinetic parameters of Thomas’

approach are extended into “celerities” (real number values), allowing us to deduce

the time spent in each discrete state. To illustrate the ability of this hybrid modeling

framework to represent timing information, we model the well studied cell cycle,

that gives several daughter cells starting from a parent cell. In this paper, we focus

on mitosis which produces two daughter cells.

The behavior of the cell cycle in mammals can be summed up as follows. Cell

cycle displays four phases which are always linked in the same order: G1, S, G2

and M. Each of these phases is controled by a protein complex made of a Cyclin

and a Cdk (Cyclin dependant kinase). For example, Cyclin A/Cdk2 governs the S

phase of cell cycle. Checkpoints exist for G1/S and G2/M transitions. They allow the

cell to control that DNA is not damaged before continuing cell cycle and the second

checkpoint additionally controls that DNA is properly replicated before starting

mitosis (M phase). At the end of mitosis, that is after cell division, progeny cell can

stop cell cycle in order to remain in an idle state G0 called quiescent phase. This

phase terminates when the cell starts a new cell cycle. In another particular case of

the cell cycle, the endoreplication allows the cell to terminate earlier the classical

behavior by stopping the cell cycle at the first step of mitosis (no cellular division):

Cell starts mitosis (prophase step) but it is stopped just before cell division. The

cell directly goes towards the middle or end of the G1 phase without leading to the

development of two daughter cells. Therefore the parent cell grows and its genome

doubles: This phenomenon leads to polyploidy.

In this article, we use biological knowledge on the cell cycle in order to constrain

the parameters of our hybrid model. Because the hybrid model relies on a discrete
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one, we determine parameters using both formal methods for discrete parameter

identification and measurements of time spent in the different phases.

The paper is organized as follows. We first define the hybrid modeling frame-

work based on René Thomas’ discrete one (Section 2). Then Section 3 is devoted

to the interaction graph of the cell cycle. Section 4 focuses on the identification

of parameters of both discrete and hybrid models. Section 5 sketches the results

obtained by simulations. Finally, we discuss the limits of our hybrid model of the

cell cycle in Section 6.

2. Hybrid Modeling Framework

2.1. R. Thomas’ Discrete Framework

In 1973, René Thomas designed a discrete framework well suited for modeling dy-

namics of gene networks20,21. Quantitative concentrations of gene products are ab-

stracted into qualitative levels. This abstraction is an acceptable simplification be-

cause real concentrations are not accurately measurable in vivo and the thresholds

between qualitative levels are chosen in a clever way.

The gene regulations are classically represented by an interaction graph where

vertices abstract gene products and arrows the regulations between them. When

a gene regulates several targets, there is no reason that the regulations take place

exactly at the same concentration. In such a case, we must consider more than two

(on/off) abstract levels to represent the set of targets regulated by the gene. These

genes are said multivalued. The dynamics of a model is driven by kinetic parameters,

that give the qualitative variations for each gene product. From these parameters,

a state transition graph showing the behaviors of the system can be easily built.
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Fig. 1. (Left) Graphical representation of a gene regulatory graph with multiplexes. Dashed lines

represent participation of variables in multiplexes (not present in Definition 1). (Center) State

graph obtained with parameters Kx,{} = 0, Kx,m2 = 1, Ky,{} = 0, Ky,m1 = 1. (Right) Hybrid
trajectories obtained by the following celerities: Cx,{},0 = −1.5, Cx,{},1 = −4, Cx,{m2},0 = 1.5,

Cx,{m2},1 = 4, Cy,{},0 = −3.33, Cy,{},1 = −3, Cy,{m1},0 = 2.4 and Cy,{m1},1 = 3.

Here we complete the first formalization2,3 of this approach using multiplexes,

that specify, via a logical formula, the cooperation or concurrency between two or

more regulators of the same target (see Fig. 1, left). Vertices are called variables
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because these latter can gather genes which are co-expressed.

Definition 1. A gene regulatory network with multiplexes (grn for short) is a tuple

N = (V,M,E,K) satisfying the following conditions:

• V and M are disjoint sets, whose elements are called variables and multiplexes

respectively.

• G = (V ∪M,E) is a labeled directed graph such that:

(a) edges of E start from a multiplex and end to a variable.

(b) every variable v of V is labeled by a positive integer bv called the bound of v.

(c) every multiplex m of M is labeled by a formula ϕm belonging to the language

L inductively defined by:

i. If v belongs to V and s ∈ N, then v > s is an atom of L.

ii. If ϕ and ψ belong to L then ¬ϕ, (ϕ ∧ ψ) and (ϕ ∨ ψ) also belong to L.

• K = {Kv,ω} is a family of integers indexed by v ∈ V and ω ⊂ N−(v), where

N−(v) is the set of predecessors of v in G (that is, the set of multiplexes m such

that m→ v is an edge of E). Each Kv,ω must satisfy 0 6 Kv,ω 6 bv.

Definition 2. (States, satisfaction relation and resources). Let N be a grn

and V be its set of variables. A discrete state of N is a function η : V → N such

that η(v) 6 bv for all v ∈ V . The satisfaction relation |=N between a state η of N

and a formula ϕ of L is inductively defined by:

• If ϕ is an atom of the form v > s, then η |=N ϕ if and only if η(v) > s.

• If ϕ ≡ ¬ψ then η |=N ϕ if and only if η 6|=N ψ.

• If ϕ ≡ ψ1∧ψ2 then η |=N ϕ if and only if η |=N ψ1 and η |=N ψ2; and we proceed

similarly for the other connectives.

For v ∈ V , a multiplex m ∈ N−(v) is a resource of v at state η if η |=N ϕm. The

set of resources of v at state η is defined by ρ(η, v) = {m ∈ N−(v) | η |=N ϕm}.

According to Definition 2, a resource is a multiplex whose formula is satisfied

at the current state. The parameter that gives the variation of variable v is the one

associated with the set of resources of v at the current state. We call focal point the

state whose coordinates are given by the parameters associated with each variable.

Definition 3. (State Graph). Let N = (V,M,E,K) be a grn. The state graph

of N is the directed graph S defined as follows: The set of vertices is the set of

states of N , and there exists an arc (called transition) η → η′ if one of the following

conditions is satisfied:

• for all variables v ∈ V we have η(v) = Kv,ρ(η,v), and then η′ = η.

• there exists v ∈ V such that η(v) 6= Kv,ρ(η,v), and

η′(v) =

{
η(v) + 1 if η(v) < Kv,ρ(η,v)

η(v)− 1 if η(v) > Kv,ρ(η,v)
and for all variables u 6= v, η′(u) = η(u).
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The first item of Definition 3 expresses a stable state: The focal point coincides

with the current state. The second item expresses when it is possible to go from a

state to another one: If the value of the variable v is lower (resp. greater) than the

parameter value associated with v, then this variable can increase (resp. decrease)

by one unit. Note that at each step, only one variable can evolve. The construction

of the state graph is illustrated on the toy example in Fig. 1 (center).

The combinatorics of acceptable parameter values is exponential (because the

number of parameters associated with a variable depends on the number of pos-

sible resources). In order to decrease this combinatorics, we admit the Snoussi’s

condition18: ∀v ∈ V, ∀ω, ω′ ⊂ N−(v), if ω′ ⊆ ω, then Kv,ω′ 6 Kv,ω.

2.2. Hybrid modeling based on Thomas’ modeling

Definition 4 introduces the hybrid gene regulatory networks, a formalism using

Thomas’ discrete states, and adding continuous variables allowing the handling

of time. The celerities can be viewed as abstract speeds.

Definition 4. A hybrid gene regulatory network (HGRN for short) is a tuple N =

(V,M,E, C) where V,M,E satisfy the two first items of Definition 1 and where

C = {Cv,ω,n} is a family of real numbers indexed by (v, ω, n) triplets where v ∈ V ,

ω ⊂ N−(v) and n is an integer such as 0 6 n 6 bv.

0 1

Cv,ω,3Cv,ω,2 Cv,ω,3 Cv,ω,0 Cv,ω,1Cv,ω,0 Cv,ω,1

v v

Kv,ω Kv,ω

321032

Cv,ω,2

Fig. 2. Relationship between Thomas’ parameters and celerities. Here, each discrete state is sup-

posed to have the same set of resources ω for a given variable v. (Left) If Kv,ω = 1 then below this
discrete level, celerities are positive, above it, they are negative (see arrows). In the state where

v = 1, the celerity is null. (Right) Kv,ω is supposed to be equal to 0 and the variable v is attracted

towards 0: The celerity in the discrete state where v = 0, is negative or null.

There is a strong connexion between the discrete Thomas formalism and our

hybrid formalism: The sign of the celerities can be deduced from the discrete pa-

rameters. The discrete parameters describe the focal point towards which the system

is attracted, and, because the celerities express the directions of trajectories, their

signs are constrained by the focal point. In Fig. 2, we represent a set of states that

differ only by the value of a variable v and we assume that they share the same set

of resources ω for v. Let n = 0 · · · 3 be the states of v. When Kv,ω differs from 0

or bv, three cases have to be considered (Fig. 2-left): If n is below Kv,ω, we have

Cv,ω,n > 0, if n is above Kv,ω, we have Cv,ω,n < 0 and if n is equal to Kv,ω, we

have Cv,ω,n = 0 because v has already reached the value towards which the variable
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is attracted. If the parameter Kv,ω equals 0 or bv (Fig. 2-right), two choices can

be made: One can consider as previously that, when the value of v is equal to the

parameter, the variable no longer evolves (Cv,ω,0 = 0 or Cv,ω,bv = 0), or one can

consider that the variable is attracted towards the external boundary and in this

case, for all n, the signs of celerities Cv,ω,n are constant.

Definition 5. Let us consider a HGRN N = (V,M,E, C). A hybrid state of N is a

couple h = (η, π) where :

• η is a function of V in N such as ∀v ∈ V, 0 6 η(v) 6 bv; η is called the discrete

state of h,

• π is a function of V in the real interval [0, 1]. π is called the fractional part of h.

Whereas η represents the qualitative part of the current state, the fractional

part reveals the exact position (π(v))v∈V inside the discrete state. For each variable

v ∈ V , the set of hybrid coordinates of v {(η(v), π(v)) | π(v) ∈ [0, 1], η(v) = n} can

be interpreted as the real interval [n, n+ 1].

Definition 6. Let us consider a HGRN N = (V,M,E, C) and a hybrid state h =

(η, π). The touch delay of v noted δh(v) is the time allowing v to reach the border of

the current discrete state. For each v ∈ V , δh is the function of V in R+ defined by:

• if Cv,ρ(η,v),η(v) = 0, then δh(v) = +∞,

• if Cv,ρ(η,v),η(v) > 0, then δh(v) = 1−π(v)
Cv,ρ(η,v),η(v)

,

• if Cv,ρ(η,v),η(v) < 0, then δh(v) = π(v)

|Cv,ρ(η,v),η(v)| .

Definition 6 gives the times necessary for the variables to reach a border of the

current discrete state. When experimental data allow us to derive the time spent in

a state, the touch delay leads to constraints on celerities.

We do not formalize here the whole dynamics associated with such a hybrid

model because the behavior is intuitive: Starting from a hybrid state h = (η, π), the

celerities define a linear evolution inside the discrete state until touching a border.

At the border, several situations can appear. Let us consider that the trajectory

reaches a border separating two discrete states that differ by the value of variable v.

(1) If the second discrete state can accept trajectories from the border (celerities of

v in both neighbor states have the same sign), then the trajectory goes into the

second discrete state and can be extended using celerities of the second one.

(2) If the second discrete state prevents trajectories to enter (celerities of v in both

neighbor states have opposite sign), then the trajectory cannot enter the second

discrete state and then slides along the border according to celerities of the other

variables.

If the reached border is an external one (η(v) = 0 and Cv,ρ(η,v),0 < 0 or symmet-

rically v = bv and Cv,ρ(η,v),bv > 0), the trajectory cannot cross the border and it

slides as in the previous case.
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Fig. 1 (right) is a representation of the hybrid trajectories of the toy example.

Directional vectors represent the relative celerities in each discrete state.

3. Molecular aspects of the Cell cycle

3.1. Sketch of the cell cycle functioning

Cell proliferation realized by the cell cycle is essential for individual survival. It

ensures tissues renewal or cell growth. Mitosis is a biological phenomenon giving

rise to two daughter cells starting from a unique cell. The offspring have the same

characteristics than parent cell. The cell cycle is classically divided into 4 phases

called respectively G1, S, G2 and M, which come one after another, leading to cell

division, see Fig. 3 (left). Between G1 and S and between G2 and M, there exist

two checkpoints: If conditions are not satisfied, the cell cycle stops and there is no

cell division.
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Fig. 3. (Left) Cell cycle phases. (Right) Molecular aspects of cell cycle.

From a molecular point of view, the cell cycle is mainly controled by complexes

made of a cyclin and a kinase of the family Cdk17, see Fig. 3 (right):

(1) The cell cycle starts when entering into G1 phase depending on growth factors

present in the cell. During this phase, the cell prepares replication and increases

its size. The growth factors stimulate the Cyclin D/Cdk4-6 complex, ensuring

the activation of Cyclin E/Cdk2. This last complex allows the cell cycle to pass

G1/S checkpoint12 (verification of the non-damage of DNA).

(2) During S phase, Cyclin A/Cdk2 is indirectly stimulated by Cyclin E/Cdk2.

Then the cell continues to grow and its centrosome is replicated.
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(3) During G2 phase, cell prepares its division and achieves replication: The Cyclin

A/Cdk2 activates Cyclin B/Cdk1 so that it passes through the G2/M check-

point (verifications of non-damage of DNA and ending of replication).

(4) The M phase represents the steps of mitosis to make two daughter cells. In

particular, a surveillance mechanism exists which recognizes the kinetochores

attached on mitotic spindles that activates APC protein: The latter activates

proteins triggering the cleavage of sister chromatids (metaphase/anaphase tran-

sition).

All these complexes are synthesized and degraded successively during a cell cycle,

but several complexes can be expressed simultaneously. These complexes are also

stimulated by kinases (Cdc25 or CAK complex) and they are inhibited by CKI (Cdk

Inhibitors like p21 or p27) or by kinases like Wee1. Even if the molecular interaction

map of the mammalian cell cycle is well known and rather large14, here we focus

on essential components that regulate cell cycle.

In addition to the classical cell cycle, one observes a quiescent phase called G0

that is the state when cell neither divides nor prepares division. Cells can enter G0

at the end of cell division, and then they do not proliferate. They can remain in the

quiescent phase from a few hours to several years19. Then cells can re-enter into a

new cell cycle starting in G1 phase.

Endoreplication is also linked to cell cycle10: Cells can start mitosis without

finishing it. These cells duplicate their DNA (a cell with more than 2 copies of its

chromosomes is said polyploid) and their cytosols grow. In mammals, megakary-

ocytes making platelets in blood have 128 copies of their chromosomes.

3.2. A simplified 5-variable Gene Network

Our interaction graph modeling molecular aspects of cell cycle is inspired by a John

Tyson’s model23, which has been designed to represent mammalian or yeast cell

cycle. We add supplementary biological phenomena in order to get an interaction

graph specific for mammals, in which both checkpoints and surveillance mechanism

of mitosis are taken into account. In Fig. 4, the simple multiplexes (with a unique

input and a unique output) are replaced by arrows labeled by a sign and a threshold.

For example:

• The arrow from SK to A is labeled by +2. It codes for the multiplex with formula

(SK > 2) pointing towards A,

• The arrow from SK to En is labeled by −1. It codes for the multiplex with formula

¬(SK > 1) pointing towards En.

Our model differs from Tyson’s model by the three following aspects:

• First, we include the CAK complex (Cyclin H/Cdk7) in SK: CAK is an activator

of Cyclin E/Cdk215 whose activation is necessary to pass the G1/S checkpoint.

Because CAK and Cyclin E/Cdk2 are both in SK, an autoregulation of SK is
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+ 1 + 1+ 2 + 1

¬(En > 1︸ ︷︷ ︸
ϕl

∨ (EP > 1 ∧ En > 1)︸ ︷︷ ︸
ϕr

)

Entity Proteins and complexes

represented in the variable

SK Cyclin E/Cdk2, Cyclin H/Cdk7

A Cyclin A/Cdk1
B Cyclin B/Cdk1

En APCG1 , CKI (p21, p27), Wee1

EP APCM , Phosphatases

Fig. 4. A simplified 5-variable gene network of the mammalian cell cycle. APCM is a complex

involved in surveillance mechanism in order to enter into anaphase (third step of mitosis). The

combined effects of the APCG1 , p27 and Wee1 inactivate Cdk1, Cdk2, Cdk4 and Cdk6.

added. Moreover, because Cyclin E activates Cyclin A (involved in A), SK acti-

vates A. Knowing that CAK activates first Cyclin E/Cdk2 then Cyclin A/Cdk2,

the level of the autoregulation of SK is lower than the level of the activation of

SK on A. We chose accordingly the thresholds: The autoregulation of SK takes

place at level 1 and the regulation of SK on A at level 2. Thus, SK is multivalued.

• Secondly, in the Tyson’s model, Cyclin A and Cyclin B are both represented by

a unique variable. We split these cyclin complexes because they act in different

phases whose durations are different.

• The last modification is the addition of the multiplex m: It describes, via a logical

formula, the conditions under which B is inhibited by EP and En. It is well known

that these variables, when simultaneously present, inhibit B22 (part ϕr of the

formula). However, other biological knowledge points out that En inhibitors are

sufficient13 (part ϕl of the formula). The formula of m can then be simplified: An

equivalent formula is ¬(En > 1). Thus EP could be removed from the interaction

graph. Nevertheless, we decide to keep EP because the APCM protein acts during

the surveillance mechanism of mitosis9 which we want to represent.

4. Parameter Identification

4.1. Identifying Discrete Parameters from traces

SK is three-valued and the other variables are boolean. The number of states is

24×3 = 48. In the sequel, we note “abcde” the state where SK = a, EP = b, A = c,

B = d and En = e. For example, the state (SK=0, EP =0, A=1, B=0, En=0) is

denoted 00100. Thomas’ dynamics is controled by 26 parameters (see Table 1).

We constrain the set of parameters using a “genetically modified” Hoare logic1.

Classical Hoare logic for imperative programs has been introduced to prove correct-

ness of programs. Hoare introduced the notation {P}p{Q} to mean “If the assertion

P (precondition) is satisfied before performing the program p and if the program

terminates, then the assertion Q (postcondition) will be satisfied afterwards.” This

constitutes de facto a specification of the program under the form of a triple, called
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Table 1. Constraints on discrete parameters. By abuse of notation, and because simple multiplexes

(with a unique input and a unique output) are replaced by a labeled arrow, resources can be either

multiplexes or variables.

Parameter Parameter Parameter Parameter

KSK,{} = 0 KB,{} = 0 KA,{} = 0 KEn,{} = 0

KSK,{A} > 0 KB,{A} - KA,{En} = 0 KEn,{A} = 0

KSK,{SK} = 0 KB,{m} - KA,{B} - KEn,{SK} -

KSK,{A,SK} = 2 KB,{A,m} = 1 KA,{SK} - KEn,{EP} -

KA,{En,B} - KEn,{A,SK} -

KEP,{} = 0 KA,{En,SK} - KEn,{A,EP} -

KEP,{B} = 1 KA,{B,SK} - KEn,{SK,EP} -

KA,{En,B,SK} = 1 KEn,{A,SK,EP} = 1

Hoare triple.

Here, we view an experimental trace of the gene network as a program. The

elementary instructions of this “program” are the observed transitions in the state

graph of the gene network: An assignment of the form x := x + 1 or x := x − 1

corresponds to an actual observation at this time of the experiment, where the gene

x has increased (which we note x+ for simplicity), or respectively decreased (which

we note x−). Such an observation tells us that there is a transition somewhere in

the state graph where gene x has changed its abstract expression level.

The first constraints are deduced from the classical behavior of the cell cycle:

Its cyclic behavior starts from 00001, goes through a sequence of transitions and

goes back to 00001. Both precondition and postcondition are then the constraints

defining the state 00001. We have to determine the program corresponding to the

sequence of transitions. Although the transitions between phases are known, the

precise order of transitions inside a same phase is not. This leads us to consider

twelve hypothetical sequences of transitions for the cell cycle. For lack of space, we

consider only one of them leading to the following Hoare triple:


SK = 0
EP = 0
A = 0

B = 0
En = 1

SK+;SK+;En−;A+;SK−;SK−;B+;A−;EP+;En+;B−;EP −


SK = 0
EP = 0

A = 0

B = 0
En = 1


Using the genetically modified Hoare logic1, we obtained 13 exact values of pa-

rameters, and one inequality (KSK,{A} > 0), see Table 1. Among the 34 × 222 =

339 738 624 possible parameter valuations, only 213 = 8192 valuations satisfy the

constraints.

Other constraints can be deduced from experimental timing properties, which

cannot be used in the purely discrete modeling framework of Thomas. So, we switch

to our enriched hybrid modeling framework to take benefit of time measures.
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4.2. Determining Celerities of Hybrid models from temporal traces

According to Definition 4, there are 56 celerities. Among them, 6 celerities are use-

less because the resources and the state are incompatible: For instance CSK,{SK},0
applies to states where η(SK) = 0 and SK is a resource of itself. However, when

η(SK) = 0, SK cannot be a resource of itself. Moreover, the sign of many celerities

is known from biological observations shown in Table 2 (the arrows give the sign of

associated celerities).

Table 2. Biological observations of the 5 variables during cell cycle. The first row represents the

sequence of discrete states (see Section 4.1) crossed by the classical behavior of the cell cycle.

00001 10001 20001 20000 20100 10100 00100 00110 00010 01010 01011 01001

G1 S G2 M

SK ↗ ↗ Max Max ↘ ↘ Min Min ↗ ↗ ↗ ↗
EP Min Min Min Min Min Min Min ↗ ↗ Max Max ↘
A Min Min Min ↗ ↗ Max Max ↘ ↘ ↘ Min Min
B Min Min Min ↗ ↗ ↗ ↗ ↗ Max Max ↘ Min

En Max ↘ ↘ Min Min Min Min Min ↗ ↗ Max Max

In order to constrain celerities, we consider that the cell cycle phase durations

are 10, 8, 4 and 0.5 hours for phases G1, S, G2 and M11. The time spent in each

of qualitative states is approximated assuming that the duration of each phase is

uniformly distributed in each of its states. This hypothesis will have consequences

on the constraints on celerities. Adopting a reasoning way similar to the one of

Section 4.1 (using Hoare logic on discrete models), we determine precisely 5 accurate

points along the cell cycle: These 5 hybrid states allow us to deduce by Definition 6

relationships between time spent in some qualitative states and associated celerities.

In the sequel, we suppose that boolean variables are attracted towards the exter-

nal boundaries because this hypothesis does not change the reachability properties.

Assuming this and according to Section 2.1, the discrete parameters allow the deter-

mination of the sign of the celerities (and conversely): If Kv,ω = 1, then Cv,ω,n > 0;

If Kv,ω = 0, then Cv,ω,n < 0. Thus, we get the sign of 6 celerities leading to Table

3, which contains 38 constraints on celerities.

4.3. Additional Biological Observations

To determine parameters controling behaviors outside of the classical cell cycle be-

havior, we have to take into account alternative observed trajectories, in particular

about the quiescent phase and the endoreplication phenomenon.

(1) We suppose KB,{A} = 0 because EP and En inhibitors of B outweigh the

activator A (A is ressource of B and m is not). Moreover, maintaining mitotic

inhibitors involved in EP prevents the continuation of the cell cycle. Thus, it
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Table 3. Constraints on celerities.

En CEn,{},0 < 0 EP CEP,{},0 < − 3
∆tG1

CEn,{},1 < 0 CEP,{},1 = − 3
∆tM

CEn,{A},0 < − 4
∆tS

CEP,{B},0 = 1
∆tG2

CEn,{A},1 = − 3
2∗∆tG1

CEP,{B},1 >
3

∆tM

CEn,{SK},0 < 0 B CB,{},0 < − 3
∆tM

CEn,{SK},1 < 0 CB,{},1 = − 3
∆tM

CEn,{A,SK},0 <
2

∆tG2
CB,{m},0 <

4
∆tS

CEn,{A,SK},1 > 0 CB,{m},1 >
2

∆tG2
− CB,{A,m},1

CEn,{A,EP,SK},0 =
6−3∗∆tG2∗CEn,{A,SK},0

2∗∆tM CB,{A,m},0 =
4−∆tS∗CB,{m},0

3∗∆tS
CEn,{A,EP,SK},1 >

3
∆tM

CB,{A,m},1 <
2

∆tG2

A CA,{},0 < −
6−(3∗∆tG2+2∗∆tM )∗|CA,{En},0|

2∗∆tM SK CSK,{},0 < − 4
∆tS

CA,{},1 < 0 CSK,{A},0 = 6
2∗∆tG1+6∗∆tM+3∗∆tG2

CA,{B},0 < 0 CSK,{SK},1 = − 4
∆tS

CA,{B},1 < 0 CSK,{SK},2 = − 4
∆tS

0 > CA,{En},0 > − 2
∆tG2

CSK,{A,SK},1 = 3
∆tG1

CA,{En},1 = − 2
∆tG2

CSK,{A,SK},2 >
3

∆tG1

CA,{B,En},0 > 0

CA,{B,En},1 >
4

∆tS
− CA,{B,En,SK},1 > 0

CA,{B,SK},0 < 0

CA,{B,SK},1 < 0

CA,{B,En,SK},0 = 4
∆tS

0 < CA,{B,En,SK},1 <
4

∆tS

is assumed that the presence of EP keeps the activity of En: KEn,{SK,EP} =

KEn,{A,EP} = KEn,{EP} = 1 (using also Snoussi’s condition).

(2) The endoreplication begins in mitosis and ends in G1 without going through cell

division. Because endoreplication skips the first step of G1 and the duration of

G1 is shortened10, we deduce that the trajectory going from mitosis (skipping

cell division) to the first step of G1 is forbidden, leading to the constraint

CA,{SK,En},0 < 0.

(3) The quiescent phase is reachable from the end of mitosis. Because we can stay

in G0 for a long time, the model has to present a cyclic behavior inside the G0

phase. Among the two possible cyclic sequences of transitions inside G0 states,

only one is compatible with previous constraints.

These remarks allowed us to find the set of useful celerities and the 26 discrete

parameters of our model (see Table 4). Note that the discrete parameters do not

make all regulations of Figure 4 functional because the discretisation is too rough to

keep each regulation. At the opposite, each regulation is visible in terms of celerities.
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Table 4. Discrete parameters.

Parameter Parameter Parameter Parameter

KSK,{} = 0 KB,{} = 0 KA,{} = 0 KEn,{} = 0

KSK,{A} = 2 KB,{A} = 0 KA,{En} = 0 KEn,{A} = 0

KSK,{SK} = 0 KB,{m} = 1 KA,{B} = 0 KEn,{SK} = 0

KSK,{A,SK} = 2 KB,{A,m} = 1 KA,{SK} = 0 KEn,{EP} = 1

KA,{En,B} = 1 KEn,{A,SK} = 1

KEP,{} = 0 KA,{En,SK} = 0 KEn,{A,EP} = 1

KEP,{B} = 1 KA,{B,SK} = 0 KEn,{SK,EP} = 1

KA,{En,B,SK} = 1 KEn,{A,SK,EP} = 1

5. Simulations

Several simulations were performed with parameters (celerities and initial states)

picked to satisfy constraints of Section 4.2:

• Equality constraints give exact values of celerities.

• Inequality constraints lead to choices: For each constraint of the form C < 0

(resp. C > 0), we choose C = −1 (resp. C = 1). For each constraint of the form

0 < C < k (resp. 0 < k < C) where k is a constant, we choose C = 0.5× k (resp.

C = 1.5× k). For negative celerities, we choose symmetrically their exact values

by multiplying the constant of inequalities by 0.5 or 1.5.

• The chosen initial state is one of the hybrid states determined in Section 4.2.

Fig. 5 shows the traces for such a simulation: After 22.5 hours (simulated time), the

simulation goes back exactly to the initial hybrid state from which the same behavior

can be repeated infinitely. This cyclic behavior corresponds to the classical cell cycle

trajectory. Moreover, it is a limit cycle because, when starting from a neighborhood

of this cyclic trace, the limit cycle is reached again after a sufficient time.

Other simulations showed that endoreplication and remaining in the quiescent phase

are also possible in the model (results not shown for lack of space).

0 5 10 15 20 25
Time (hour)

0

0,5

1

1,5

2

2,5

3

G1 S G2 M G1

A
B
En
EP
SK

Fig. 5. A simulation representing the classical cell cycle behavior.
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6. Conclusion

We developed in this article a hybrid formalism which is well suited for modeling

time dependant biological phenomena such as the mammalian cell cycle. Indeed, we

built a model which exhibits the limit cycle representing the classical cell cycle, the

endoreplication and the quiescent phase. This has been made possible because of

the wise choice of variables, in particular with the split of the cyclin complexes. The

parameter choice was aided by the determination of constraints, but exact values

rely on hypotheses (constants for exact values of celerities, equidistribution of time

on all qualitative states within a phase). This model constitutes, to our knowledge,

the first hybrid model of the cell cycle, which provides the proof of concept of our

computer-aided method for parameter identification.

Our simulations did not allow us to observe traces remaining a long time in the

quiescent phase, this constitutes the main limitation of our model. We have now

to accurately tune the parameter values in order to get a model presenting such a

trace but we didn’t find any parameter valuations satisfying this specification. If no

valuation of parameters is compatible with a long stay in the quiescent phase, to

improve our hybrid model, we could also make the hypothesis of a regulator which

would modify the celerities during this phase.

Moreover, the model presented here is based on only one of the 12 possible

sequences of transitions of the cell cycle (remember that the exact order of the

sequence of transitions is not known). The next time-consuming task is now to

take into account the other sequences which would lead to other possible parameter

constraints and then to other hybrid traces. More generally, we have to handle

a large set of possible sequences of transitions. Hopefully, this difficulty can be

overstepped because our hybrid modeling framework can be assisted by computer-

aided methods to determine the set of parameters. Thus, our ongoing work is also

to develop an automation of the building of constraints on celerities and to study

the predictability of our hybrid model.

Finally, a long term objective is to make a coupling of our cell cycle model with

a model of the circadian clock16, in order to apprehend the interactions between

these cycles whose functioning plays an important role in oncology8.
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