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Abstract In the course of understanding biological regulatory networks (BRN), scientists usually start by study-
ing small BRNs that they believe to be of particular importance to represent a biological function, and then, embed
them in a larger network. Such a reduction can lead to neglect relevant regulations and to study a network whose
properties can be very different from the properties of this network viewed as a part of the whole. In this paper we
study, from a logical point of view, on which conditions concerning both networks, properties can be inherited by
BRNs from sub-BRNs. We give some conditions on the nature of the network embeddings ensuring that dynamic
properties on the embedded sub-BRNs are preserved at the level of the whole BRN.
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1 Introduction

Framework

Systems biology is the research field that aims at understanding biological complex systems. It does not investigate
individual genes, proteins or RNA at a time, but it studies the behaviors and relationships of all these components in
a cell. The collection of these relationships is called Biological Regulatory Network (BRN). Among these BRNs,
genetic regulatory networks are of particular interest because they react to the environment changes and regulate,
for instance, the growth, replication and death of cells.

The complexity of the interactions between constituents of BRNs (mainly genes and proteins) makes intuitive
reasoning difficult [10,26,28]. Modeling frameworks and simulation techniques are often used to analyze and
understand such complex BRNs. Nevertheless, simulation techniques are not well suited for managing biological
systems, which are large, complex and partially known. Indeed, the lack of precise knowledge about the system
(what constituents/interactions are taken into account? What values are given to parameters? What is the confidence
on these parameters? etc.) constitutes a major difficulty to handle computationally all possible hypotheses on the
system.

Jacob and Monod [21] showed that cell behaviors are governed by their regulatory genes, which can be regarded
as switches turning on or off the involved genes. Then, analysis of their behaviors can be done using qualitative mod-
eling frameworks [12,17,19,29,30]. These qualitative frameworks consist in abstracting continuous concentrations
of constituents into qualitative ones (discrete and finite) preserving qualitative observations (like presence/absence
of a constituent, increasing of the concentration of a target when increasing the one of a regulator…). Moreover, the
qualitative feature of such frameworks is well adapted to represent qualitative reasoning which characterizes a large
fragment of biological studies. In fact, this emphasizes the logical relationships between the network elements, that
can be incorporated into a logical framework to facilitate the study of biological systems [4,5].

In this paper we consider the multi-valued discrete approach developed by Thomas and d’Ari [30], where con-
stituents concentrations are abstracted by integers denoting the thresholds which trigger interactions with other
components in the network. In this formalism, biological systems are described by an interaction graph defining
the static part of the system. A huge but finite set of state transition graphs can be built defining all the possible
evolutions of the system. However, given an interaction graph, there are few dynamic models meeting the set of
biological experiment observations and bringing into play interactions between constituents. In order to cut down in
the class of dynamic models and to preserve only the good candidates, some recent works expressed these biological
experiment observations by temporal properties [4,5] and they used various model-checking techniques to select
suitable dynamic models [3–5,8,11,14,15,22,24,25].

Motivation

These logical approaches based on model-checking techniques have been shown very efficient to study small BRNs
but are not well-adapted for large BRNs. Indeed, we have to deal with the classical state explosion problem: when
the number of considered components is growing, the number of both models and states in each model are growing
exponentially. This intrinsic limitation explains why in practice, only small BRNs are considered. This raises the
following essential issue: what are the results stated on small BRNs which remain valid on larger ones containing
them? More precisely, what are the conditions to impose on the embedding of a sub-BRN into a larger one in
order to ensure that properties expressed on the considered sub-BRN are preserved at the level of the larger BRN?
Unfortunately, BRNs are very complex systems where combinations of sub-BRNs often lead to a global system
getting some behaviors that cannot be defined as direct combinations of behaviors of sub-BRNs. The emergence of
such behaviors results from the way sub-BRNs are grouped together. Thus, without knowing if there exist or not
such emergent properties attached to a global BRN, questioning temporal properties (i.e. biological experimental
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observations) leads us to study the dynamics of the global BRN “from scratch”, i.e without taking benefit of the
dynamics of the sub-BRNs, which can be unacceptable at runtime. On the contrary, if we can state that in some
particular cases, there is no emergent property when combining sub-BRNs, then we can focus on the biological
experiment observations related to interactions between these sub-BRNs. Moreover, this approach corresponds to
the classical method used by most biologists when they study a biological system. In fact, they start by studying
small BRNs that they believe to be of particular importance in representing a specific biological function. The
interactions of this BRN with the external genes, are studied only afterwards even if these external genes potentially
could influence the behavior of the studied part. Of course, this bottom–up approach makes sense only if there
is a preservation of sub-system behaviors as this hypothesis has been done in this paper under some conditions.
Otherwise, systems can only be studied globally because of the presence of emergent properties, that are properties
resting on sub-BRNs that are questioned in the global one (see [1,2] for an abstract mathematical denotation of
emergent properties in complex systems).

Outline

In the paper, we address the issue of behavior preservation through path preservation in dynamic models, seen as
transition systems: states are Cartesian products of abstract discrete values of concentration levels of gene products
[5]. We now succinctly describe our contributions in a simplified and even approximative way. Clearly, (paths of)
dynamic models defined at the level of a global network G cannot be compared directly to (paths of) dynamic
models defined at the level of a sub-network S. Thus, to allow model comparisons along an embedding from S to
G, on the one hand, following a logical approach, we associate to any dynamic model M of G, called generically a
G-model, a S-model R, also called the reduced model of M . On the other hand, by applying quotient technics, the
G-model M can also be viewed as a S-model, denoted Q. Roughly speaking, Q is the quotient model of M obtained
by abstracting it accordingly to genes and thresholds relevant for the sub-network S. From these preliminary con-
structions of two S-models, respectively R and Q, from a G-model M , the issue of behavior preservation consists
in studying the presence of similar transitions in Q and R, and to put the results in the context of reduction and
quotient operations. We identify two remarkable classes of embedding: strict embeddings are such that no gene
outside S regulates genes of S while monotonous embeddings are such that any gene outside S regulating at least
two genes of S, either activates or inhibits all its targets. In the case of strict embeddings, the preservation of
transitions and therefore of paths is complete in accordance with the intuition, since genes in S do not receive
any new regulation via the embedding. In the case of monotonous embeddings, preservation of transitions must be
qualified: for any transition of the reduced model R, there exists a path in M , which gives rise to the same transition
in the quotient model Q. From these detailed studies of transition preservation in reduced and quotient models,
then we get results of formula preservation: all temporal formulas of CTL∗ [14] with comparisons between gene
concentrations as atoms and without the Next operator are preserved for strict embeddings while for monotonous
embedding, preserved formulas are those with negation only attached to atoms, with U(ntil) as unique temporal
operator, and with E(xistential) as unique quantifier over paths.

Structure of the Paper

In this paper, we first present the multi-valued discrete approach developed by Thomas and d’Ari [30] for BRNs
as a logic. We then follow the standard approach for presenting a logic, that is defining a syntax (signatures and
formulas) and semantics (models and the satisfaction relation). In order to ease the read of the paper, we propose to
only present in Sect. 2 signatures, signature embedding and models that is enough to address our path preservation
results along embedding in Sect. 3. Then, we define formulas over BRN signatures and their satisfaction in models
in Sect. 4 from which we can establish our formula preservation results in Sect. 5. In Sect. 6, we will discuss the
results in the context of related works. Finally in Sect. 7 we give some concluding remarks.
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2 BRN: Syntax, Embedding and Semantics

2.1 Signatures

A BRN is represented by a labeled directed graph, called interaction graph. Vertices abstract biological entities, as
genes or proteins, and are called variables. Edges abstract interactions between variables. When a variable i can
activate a variable j , then there exists an edge from i to j labeled by the sign “+”. On the contrary, when a variable
i can inhibit a variable j , then there exists an edge from i to j labeled by the sign “−”. Moreover, the action, acti-
vation or inhibition, between two variables becomes effective only when the concentration of the regulator reaches
a given threshold. Thus, each interaction i −→ j is labeled by a sign and a threshold. In R. Thomas’s discrete
modeling framework, the concentration levels for the variable i can take a finite number of values {0, 1, . . . , bi } and
thresholds related to the actions of i are labeled with an integer between 1 and bi . The knowledge of interactions
between variables, including signs and these qualitative thresholds, is called the static part of BRNs and constitutes
the elements of signatures for a logic dedicated to BRNs.

Definition 1 (Signature) A BRN-signature G is a labeled directed graph 〈V, F, Sn, T h〉 where:

1. V is a finite set whose elements are called variables.
2. F ⊆ V × V denotes the set of edges.
3. Sn is a mapping from F to {+,−}.
4. T h is a mapping from F to N

∗ such that:

∀(i, j) ∈ F, T h(i, j) > 1 ⇒ (∃(i, k) ∈ F, T h(i, k) = T h(i, j)− 1)

Point 4. of Definition 1 gives some restrictions on the way the edges are labeled. If an edge outgoing from a
variable i is labeled by an integer l ≥ 2, then there exist edges outgoing from i labeled by 1, . . . , l − 1. Thus, all
intermediate values are used as thresholds and this well represents their qualitative nature.

Remark 1 Let us emphasize on the particularity of the logic for BRN presented in this paper : signatures are not
simple sets of symbols but are interaction graphs (the static part of BRN). This is what makes tough the definition
of the embedding (see Definitions 2 and 3) as well as the definitions of the consequences of the embedding for both
biological experiment observations expressed over sub-BRNs (see Definition 13) and the dynamics of sub-BRNs
embedded into a larger one (see Definition 8). This will also lead to not obvious proofs of our preservation results
through embeddings.

Notation 1 1. Let G be a BRN-signature as above and let i be a variable in V .G+
i (resp. G−

i ) denotes the set of
successors (resp. predecessors) of i in G, and bi denotes the cardinal of the set of thresholds for i . Formally,
we have:

• G+
i = { j ∈ V |(i, j) ∈ F}

• G−
i = { j ∈ V |( j, i) ∈ F}

• bi = |{T h(i, j) | j ∈ G+
i }|

2. In the following, when we consider two BRN-signatures G1 and G2, the vertices, edges, signs and thresholds of
G1 and G2 will be denoted respectively by V1, F1, Sn1, T h1 and V2, F2, Sn2, T h2 to make clear the underlying
BRN-signature.

In the rest of this paper, the running examples used to illustrate our approach are purely toy examples and thus,
do not represent BRN issued from real case studies. In particular, they are sufficiently small to allow us to draw
their models.

Example 1 Figure 1 shows a network consisting of two genes i and j . More specifically, i activates its own expres-
sion above threshold 1, and inhibits the expression of gene j above the same threshold 1, whereas j inhibits the
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Fig. 1 BRN-signature G1
for the i − j network

Fig. 2 BRN-signature G2

expression of gene i above threshold 1, and the expression of its own gene above threshold 2. The associated
BRN-signature, denoted G1 in the sequel, is given by:

〈 V1 = {i, j},
F1 = {(i, i), (i, j), ( j, i), ( j, j)},
Sn1 = {(i, i) �→ +, (i, j) �→ −, ( j, i) �→ −, ( j, j) �→ −},
T h1 = {(i, i) �→ 1, (i, j) �→ 1, ( j, i) �→ 1, ( j, j) �→ 2} 〉

2.2 Signature Embedding

Biologists can identify small parts issued from a BRN involving a large number of genes. These parts can be
considered as a biological function insofar as it can be proven that the biological function is essentially related to
the concentration levels of the variables occurring in the considered subpart. Thus, an interesting part of BRN is
studied even if it is embedded into the global BRN which controls all cellular processes.

Embedding of BRN-signatures can formalize such an approach. However, a signature embedding cannot be a
simple graph embedding. Indeed, as the thresholds on edges depend on the properties of the graph (the threshold
of the edge i → j cannot be greater than the number of edges outgoing from i), it matters to pay attention to the
preservation of the conditions on the thresholds (Conditions 3 and 4 of Definition 2). In fact, as thresholds are taken
into consideration in signatures, the key point to take into account through the embedding is the preservation of
the equality between thresholds and the numerical order between them. New intermediate thresholds for a given
variable can be introduced when embedding a BRN into another one, but relationships between existing thresholds
have to be preserved in the larger one.

Definition 2 (Signature embedding) Let G = 〈V, F, Sn, T h〉 and G ′ = 〈V ′, F ′, Sn′, T h′〉 be two BRN-signa-
tures.We say that G is embedded into G ′, and we note G ↪→ G ′, if:

1. V ⊆ V ′ and F = F ′ ∩ V × V . (graph embedding)
2. ∀(i, j) ∈ F, Sn(i, j) = Sn′(i, j). (preservation of signs)
3. ∀i ∈ V,∀ j, k ∈ G+

i , T h(i, j) = T h(i, k) ⇔ T h′(i, j) = T h′(i, k).
(preservation of equality of thresholds)

4. ∀i ∈ V,∀ j, k ∈ G+
i , T h(i, j) < T h(i, k) ⇔ T h′(i, j) < T h′(i, k).

(preservation of order between thresholds)

Example 2 Figure 2 presents a BRN-signature G2 that shares with G1 the two variables i and j , and introduces the
new variable k. It is easy to see that G1 ↪→ G2. In the sequel, this embedding will be simply denotedσ12 : G1 ↪→ G2:
the index 12 is a mnemonic sign that indicates that the source and target networks are indexed respectively by 1
and by 2.

Conditions 1 and 2 are clearly verified since all edges of G2 built over vertices of G1 are also in G1 labeled with
the same signs.

Condition 3 requires that the equality between thresholds for outgoing edges in G1 is preserved in G2. In G1,
we only have T h1(i, i) = T h1(i, j) which is preserved in G2 since T h2(i, i) = T h2(i, j).
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Fig. 3 BRN-signature G3

Finally, condition 4 requires that the order between thresholds for outgoing edges in G1 is preserved in G2.
For instance, in G1, j has two outgoing edges ( j, i) and ( j, j) with T h1( j, i) < T h1( j, j). In G2, we have also
T h2( j, i) < T h2( j, j).

We will show in Sect. 5 that the way embeddings are defined in Definition 2 does not allow us to state general
results of property preservation. To preserve BRN properties along embeddings (see Sect. 5), we have to impose
supplementary constraints on embeddings.

Definition 3 (Strict and monotonous signature embeddings) The embedding G ↪→ G ′ is said

• strict if

∀(i, j) ∈ F ′, j ∈ V ⇒ i ∈ V .

• monotonous1 if

∀i ∈ V ′\V, ∀ j, k ∈ V, (i, j) ∈ F ′ ∧ (i, k) ∈ F ′ ⇒ Sn′(i, j) = Sn′(i, k).

Remark 2 Any strict embedding is monotonous.

Thus, a strict embedding means there is no new regulation on variables of embedded BRN, whereas monotonous
embeddings may contain new regulations on embedded variables provided that an external variable has always the
same effect (inhibition or activation) on these variables.

Example 3 The embedding σ12 : G1 ↪→ G2 of Example 2 is not strict because of the entering edge from k toward
the variable j . Nevertheless, because k has only one outgoing edge, this embedding is monotonous.

For the BRN-signature G3 given in Fig. 3 which is obtained from G2 by removing this edge, the signature
embedding σ13 : G1 ↪→ G3, is strict.

To sum up, in the sequel, we use these two embeddings as running examples to illustrate relationships between
the nature of the embedding and the preservation results:

• σ12 : G1 ↪→ G2 is a monotonous embedding (but not a strict embedding)
• σ13 : G1 ↪→ G3 is a strict embedding (and thus also a monotonous embedding)

2.3 Semantics

Models Each variable i in a BRN-signature G is a genetic entity which is characterized at a given point in time by
a concentration level. Since the set of variables and the set of thresholds are finite, the state space generated from
G is finite and defined by:

Definition 4 (States) Let G be a BRN-signature. The state space SG of G is the set of mappings s : V → N such
that for every i ∈ V, s(i) ∈ {0, . . . , bi }.
Example 4 In the BRN-signature G1 of Example 1, variables i and j have respectively 2 and 3 possible concentration
levels: 0 or 1, and 0, 1 or 2.

Therefore, the state space for G1 is SG1 = {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2)} where a state is encoded
as an ordered couple of the form (s(i), s( j)).

1 V ′\V is the set of elements of V ′ which do not belong to V : {x |x ∈ V ′ and x �∈ V }.
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Fig. 4 Resources of i, j and k in G1,G2 and G3

The concentration level of each variable of a given BRN-signature G evolves over time depending on the con-
centration level of its resources i.e. the sets of i’s predecessors in G, corresponding either to activators above their
corresponding thresholds, or to inhibitors below their corresponding thresholds. Hence, a resource is the presence
of an activator or the absence of an inhibitor. However, neither G nor the concentration level of i’s resources give
clues to decide how the level of i evolves. This is a degree of freedom of BRN-signatures which gives rise to a
class of possible G-models, so-called dynamics of G. However, most of the models defining the dynamics of G, do
not describe biological realities. To choose the ones describing such biological realities, some logical approaches
based on model-checking technics have been used (e.g. see [5]). Model-checking allows one to choose interesting
models satisfying a set of biological experiments described by temporal properties.

Formally, resources are defined as follows:

Definition 5 (Resources) Let G be a BRN-signature. The set of resources RG,i (s) of a variable i at state s ∈ SG is
defined by:

RG,i (s) =
⎧
⎨

⎩

{ j ∈ G−
i |(Sn( j, i) = + and s( j) ≥ T h( j, i))}

∪
{ j ∈ G−

i |(Sn( j, i) = − and s( j) < T h( j, i))}
Example 5 Figure 4 gives the sets of resources for the variables (i, j and k) for each state of SG1 , SG2 and SG3

respectively.

Definition 6 (G-models) Let G be a BRN-signature.
Let κ = {(i,W )|i ∈ V ∧ W ⊆ G−

i } be the set of all couples (i,W ) where i is a variable of G and W a subset of
predecessors of i in G.

A G-model is a mapping p : κ → N such that for every (i,W ) in κ , we have p(i,W ) ∈ {0, . . . , bi }.

Intuitively, the mapping p applied to (i,W ) gives the concentration level towards which the variable i tends to
evolve when W corresponds to its set of resources.
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Fig. 5 A G2-model p2 (left) and its reduced G1-model p12 (right)

Example 6 From the BRN-signature G2 of Fig. 2, we have the following set κ:

κ =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

{(i,∅), (i, {i}), (i, { j}), (i, {i, j})}
∪

{( j,∅), ( j, {i}), ( j, { j}), ( j, {k}), ( j, {i, j}), ( j, {i, k}), ( j, { j, k}), ( j, {i, j, k})}
∪

{(k,∅), (k, {i}), (k, { j}), (k, {i, j})}
A possible G2-model p2 is given in Fig. 5 (left).

Signature embeddings σ : G ↪→ G ′ (see Definition 2) have a counterpart on models which is expressed by
a classic forgetful mapping from the “richer” model defined on G ′ to the “poorer” one defined on G [20]. Some
difficulties occur due to some restrictions to make on thresholds. These restrictions are defined by a V -indexed
family of mapping σi that are largely used in the rest of the paper. They are defined as follows:

Definition 7 (Threshold mappings) Let G = 〈V, F, Sn, T h〉 and G ′ = 〈V ′, F ′, Sn′, T h′〉 be two BRN-signatures
such that G is embedded into G ′ by means of the signature embedding: σ : G ↪→ G ′.

For every i ∈ V , let us define the mapping σi : {0, 1, . . . , bi } → {0, 1, . . . , b′
i } as follows:

• σi (0) = 0.
• For every l �= 0, σi (l) = T h′(i, j) with j any variable in G+

i such that T h(i, j) = l.

We have the following obvious result:

Fact 1 σi is strictly increasing: if l < l ′ then σi (l) < σi (l ′).

Proof This is obvious if l = 0. Otherwise, by the definition of a signature, there exists (i, j) and (i, k) in F such
that l = T h(i, j) and l ′ = T h(i, k). Then, σi (l) = T h′(i, j) and σi (l ′) = T h′(i, k) and it is then sufficient to
remark that, by the definition of a signature embedding, if T h(i, j) < T h( j, k) then T h′(i, j) < T h′(i, k). ��

It is now possible to define the reduced model of any model of the “richer” signature.

Definition 8 (Reduced model) Let G and G ′ be two BRN-signatures such that there exists a signature embedding
σ : G ↪→ G ′ and let p′ be a G ′-model. The reduced G-model p from p′ is the G-model defined as follows:

∀i ∈ V,∀W ⊆ G−
i , p(i,W ) = max{l ∈ {0, . . . , bi } | σi (l) ≤ p′(i,W )}

Example 7 Figures 5 and 6 give, respectively, the reduced G1-model from p2, denoted p12, and the reduced G1-
model from p3, denoted p13, along respectively the signature embeddings σ12 : G1 ↪→ G2 and σ13 : G1 ↪→ G3

introduced in Example 3.

From a G-model p, a transition system (SG, T ) can be generated where the transitions in T give the state evo-
lution as described in p. Here, there are two possibilities: either the concentration level of two or more variables
can change simultaneously towards their corresponding target concentration level specified by p, or the change
of a value is always done stepwise (increasing or decreasing by 1), that is only one of the involved variables can
be modified by one unit, at a time. These two possibilities are respectively called synchronous and asynchronous
description of the G-model p. Here, we take the asynchronous description because it is unlikely that, in vivo, several
variables cross their thresholds simultaneously or a single variable crosses several thresholds simultaneously [29].
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Fig. 6 A G3-model p3 (left) and its reduced G1-model p13 (right)

Fig. 7 Asynchronous
transition system
AT S(G2, p2)

Definition 9 (Asynchronous transition system) Let G be a BRN-signature and let p be a G-model. The Asynchro-
nous Transition System generated from p is the directed graph AT S(G, p) = (SG , T ) defined by:

∀s, s′ ∈ SG, (s, s′) ∈ T if, and only if:

– there exists i ∈ V , such that

s′(i) =
{

s(i) + 1 and s(i) < p(i, RG,i (s))
s(i)− 1 and s(i) > p(i, RG,i (s))

– and s′( j) = s( j) for every j ∈ V \{i}.

Example 8 Figure 7 gives the asynchronous transition system AT S(G2, p2) associated to the G2-model p2.

3 Path Preservation Results

In this section, we consider two BRN-signatures G and G ′ such that σ : G ↪→ G ′. Hence, given a G ′-model p′ and
the reduced G-model p obtained from p′, we study the relationships between the asynchronous transition systems
AT S(G ′, p′) and AT S(G, p). We define an equivalence relation � on the states of G ′ leading to a quotient transi-
tion system and then, show how the paths of AT S(G, p) are preserved in AT S(G ′, p′) up to this quotient. Before
establishing these preservation results, let us introduce first some notions and notations about path and quotient of
models over a BRN signature.

3.1 Paths and Quotients of Transition Systems

Let G be a BRN signature and let p be a G-model.
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Path A path in AT S(G, p) = (SG, T ) is a non empty finite or infinite sequence (s0, s1, . . .) such that (si , si+1) ∈ T
for all i ≥ 0. For a state s ∈ SG , the set of paths (s0, s1, . . .) starting from s, that is verifying s0 = s is denoted as
path(s). For a path ρ = (s0, s1, . . .), s0 is noted f irst (ρ).

For a finite or infinite path ρ = (s0, s1, . . .), for an index i such that si belongs to ρ, we note ρi the non empty
path (si , . . .) starting from si and containing all states s j with i ≤ j .

I ndex(ρ) is the set of indexes i such that ρi is defined. We then have the equality si = f irst (ρi ) for any i in
I ndex(ρ).

Any path of the form ρi is called a suffix of ρ. We note ρ ≤ θ (resp. ρ < θ ) when θ is a suffix of ρ (resp. θ is a
proper suffix of ρ, i.e. a path ρi with i > 0).

Quotient Let � be an equivalence relation on SG . The quotient of (SG , T ) by �, denoted (SG, T )/� = (S/�, T/�),
is defined as follows:

• the set of states SG/� is the set of equivalence classes of �, [s] denoting the equivalence class of a state s
of SG ;

• the set of transitions T/� is defined by ([s], [t]) ∈ T/� iff there exists s′ ∈ [s] and t ′ ∈ [t] such that (s′, t ′) ∈ T .

3.2 Partition

First, we introduce the partition defined on the set of states of G ′ that allows us to define the quotient transition
system. In the next definition, we introduce a mapping B from SG to the set of subsets of SG ′ , that we will use to
define the equivalence relation �.

Definition 10 (Partition) We define the mapping B : SG → 2SG′ as follows. For every s ∈ SG , B(s) is the set
of states s′ in SG ′ such that for every i in V and using the family of threshold mappings σi : {0, 1, . . . , bi } →
{0, 1, . . . , b′

i } introduced in Definition 7:

σi (s(i)) ≤ s′(i) < σi (s(i)+ 1)

if s(i) < bi , and

σi (s(i)) ≤ s′(i)

otherwise.

The interest of this mapping rests on the two following results:

Proposition 1 The mapping B makes a partition of SG ′ .

Proof We first prove that, for all s1, s2 ∈ SG , if s1 �= s2 then B(s1) ∩ B(s2) = ∅. Indeed, if s1 �= s2 there exists
i ∈ V such that s1(i) �= s2(i). Without loss of generality, suppose that s1(i) < s2(i). Then, s1(i) + 1 ≤ s2(i) and
by Fact 1,

σi (s1(i)+ 1) ≤ σi (s2(i))

If s′ ∈ B(s1) then

s′(i) < σi (s1(i)+ 1) ≤ σi (s2(i))

so s′ �∈ B(s2), and if s′ ∈ B(s2) then

σi (s1(i)+ 1) ≤ σi (s2(i)) ≤ s′(i)

so s′ �∈ B(s1). Thus B(s1) ∩ B(s2) is actually empty. It remains to prove that

∪s∈SG B(s) = SG ′
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Since B(s) ⊆ SG ′ for all s ∈ SG , it is in fact sufficient to observe that, given any state s′ in SG ′ , we have s′ ∈ B(s)
for the state s ∈ SG defined by, for every i ∈ V ,

s(i) = max{l ∈ {0, . . . , bi } | σi (l) ≤ s′(i)}
��

Proposition 2 For every s ∈ SG, every s′ ∈ B(s) and every (r, i) ∈ F:

r ∈ RG,i (s) ⇐⇒ r ∈ RG ′,i (s
′)

Proof Since Sn(r, i) = Sn′(r, i), it is sufficient to prove that

T h(r, i) ≤ s(r) ⇐⇒ T h′(r, i) ≤ s′(r)
Suppose that

T h(r, i) ≤ s(r)

Then, from the definition of σr , Fact 1 and s′ ∈ B(s), we deduce that

T h′(r, i) = σr (T h(r, i)) ≤ σr (s(r)) ≤ s′(r)
Now, suppose that T h(r, i) > s(r). Then

T h(r, i) ≥ s(r)+ 1

and from the definition of σr , Fact 1 and s′ ∈ B(s), we deduce that

T h′(r, i) = σr (T h(r, i)) ≥ σr (s(r)+ 1) > s′(r)
��

Following Proposition 1, we can define the equivalence relation � on SG ′ by:

s′
1 � s′

2 ⇐⇒ B−1(s′
1) = B−1(s′

2)

Example 9 On the right part of respectively Figs. 8 and 9, we give the asynchronous transition systems
AT S(G2, p2) = (SG2 , T2) and AT S(G3, p3) = (SG3 , T3) associated respectively to p2 and p3 (AT S(G2, p2)

has already been introduced in Example 7). States are represented by white boxes that are labelled by the tuple of
concentration level values of the involved variables: for example, 010 or 220 are such labels.

In both figures, colored boxes contain several white boxes (states) and represent the corresponding �-equivalence
classes. They are labelled by names of the form B(s(i)s( j))making clear the relationship between the equivalence
class and the corresponding state of SG1 where G1 is the source signature of the considered signature embeddings,
respectively σ12 : G1 ↪→ G2 and σ13 : G1 ↪→ G3.

Given a G ′-model p′ and its reduced G-model p, we can now study the relationships between asynchronous
transition systems AT S(G ′, p′) and AT S(G, p). In the following, we show two results depending on whether the
embedding is monotonous or strict. Hence,

• we prove that if the considered embedding G ↪→ G ′ is monotonous, and if (s0, s1, . . . , sn) is a path
of AT S(G, p), then AT S(G ′, p′) contains a path going successively through the equivalence classes
B(s0), B(s1), . . . , B(sn). Observe, for example in Fig. 8 that, for the path (02), (01) in AT S(G1, p12), we asso-
ciate the path (130), (030), (020), (021) in AT S(G2, p2) going through the equivalence classes B(02), B(01).
This implies that each finite path of AT S(G, p) is preserved in the quotient transition system AT S(G ′, p′)/�.

• Then, we show a stronger result when the embedding is strict: first, we will show that, if (s0, s1, . . . , sn) is a path
of AT S(G, p) then AT S(G ′, p′) contains, for all s′ ∈ B(s0), a path starting from s′ which goes successively
through the classes B(s0), B(s1), . . . , B(sn). Fig. 9, for example, shows that for the path (00), (01), (02) in
AT S(G1, p13), and for any state in B(00), we can find a path in AT S(G3, p3) going through the equivalence
classes B(00), B(01), B(02). We will show that transitions between different states in AT S(G, p) are preserved
in AT S(G ′, p′)/� and vice versa. Hence, there is a complete preservation of dynamics of any sub-system when
dealing with strict embeddings.
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Fig. 8 Asynchronous transition systems AT S(G1, p12) (left) and AT S(G2, p2) (right)

Fig. 9 Asynchronous
transition systems
AT S(G1, p13) (left) and
AT S(G3, p3) (right)

3.3 Path Preservation for Monotonous Embedding

If the embedding G ↪→ G ′ is monotonous, then any variable i ∈ V ′ that does not belong to G acts on the variables
of G according to a same sign. If this sign is positive (resp. negative), then i is a resource of no variable of G
whenever its level is minimal (resp. maximal). In other words, it is always possible to fix the level of the variables
acting on G so that all the corresponding interactions on G “vanish”. The sub-BRN signature G is then “isolated”
from the larger signature G ′ in which it is embedded. This key idea will be further used to prove the preservation
results in the rest of this section. Intuitively, these results show that the behaviors of the variables of G described
by the G ′-model p′ are, under the “isolation” mentioned above, strongly related to the behaviors of the variables of
G described by the reduced G-model obtained from p′.

Let us first define, for each s ∈ SG , a subset B ′(s) of B(s) in which the variables acting on G are resources of
no variable of G (so that in each state of B ′(s), the “isolation” mentioned above occurs).

Definition 11 Suppose that the embedding G ↪→ G ′ is monotonous. We define the mapping B ′ : SG → 2SG′ as
follows: for every s ∈ SG , B ′(s) is the set of s′ ∈ B(s) such that for i ∈ V ′\V regulating at least a variable of V ,

s′(i) =
{

0 if ∃ j ∈ V, Sn′(i, j) = +
b′

i if ∃ j ∈ V, Sn′(i, j) = −
Let us point out that such B ′(s) sets are defined only for monotonous embeddings. Indeed, if there exists i ∈ V ′\V ,

with at least two variables j1 and j2 in V such that Sn′(i, j1) = + and Sn′(i, j2) = −, then no value can be attached
to s′(i) in B ′(s). Hence, each set B ′(s) is not empty by construction.
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Remark 3 If the embedding G ↪→ G ′ is strict, then the embedding is also monotonous. B ′(s) is defined for all
s ∈ SG and verifies the equality B ′(s) = B(s).

Lemma 1 For every s ∈ SG, every s′ ∈ B ′(s) and every i ∈ V , we have RG ′,i (s′) = RG,i (s).

Proof According to Proposition 2, we have

RG,i (s) = RG ′,i (s
′) ∩ V (1)

It is thus sufficient to prove that RG ′,i (s′) ⊆ V . So let r ∈ RG ′,i (s′). First, if Sn′(r, i) = + then s′(r) ≥ T h′(r, i) > 0,
and since s′ ∈ B ′(s), we deduce that r ∈ V . Then, if Sn′(r, i) = −, we have s′(r) < T h′(r ′, i) ≤ b′

r , and since
s′ ∈ B ′(s), we deduce that r ∈ V . ��
Lemma 2 Let p′ be a G ′-model and let p be the reduced G-model from p′. For every s ∈ SG, every s′ ∈ B ′(s)
and every i ∈ V ,

s(i) < p(i, RG,i (s)) ⇒ s′(i) < p′(i, RG ′,i (s
′))

and

s(i) > p(i, RG,i (s)) ⇒ s′(i) > p′(i, RG ′,i (s
′))

Proof Suppose that s(i) < p(i, RG,i (s)), that is,

s(i)+ 1 ≤ p(i, RG,i (s))

By Fact 1 and the definition of p,

σi (s(i)+ 1) ≤ σi (p(i, RG,i (s))) ≤ p′(i, RG,i (s))

We deduce from the Lemma 1 that

σi (s(i)+ 1) ≤ σi (p(i, RG,i (s))) ≤ p′(i, RG ′,i (s
′))

and from s′ ∈ B(s) we obtain

s′(i) < σi (s(i)+ 1) ≤ σi (p(i, RG,i (s))) ≤ p′(i, RG ′,i (s
′))

Now, suppose that

p(i, RG,i (s)) < s(i)

From the definition of p and s ∈ B(s) we have

p′(i, RG,i (s)) < σi (s(i)) ≤ s′(i)

Using Lemma 1 we obtain

p′(i, RG ′,i (s
′)) < σi (s(i)) ≤ s′(i)

��
The main path preservation result for monotonous embedding follows.

Lemma 3 Suppose that the embedding G ↪→ G ′ is monotonous. Let p′ be a G ′-model and let p be the reduced
G-model from p′.

If (s, t) is a transition of AT S(G, p), then for all s′ ∈ B ′(s) there exists t ′ ∈ B ′(t) such that AT S(G ′, p′) has a
path from s′ to t ′ whose vertices, except t ′, belong to B ′(s).
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Proof Suppose (s, t) to be a transition of AT S(G, p). By definition, there exists i ∈ V such that s( j) = t ( j) for
all j ∈ V \{i} and

t (i) =
⎧
⎨

⎩

s(i)+ 1 and s(i) < p(i, RG,i (s))
or
s(i)− 1 and s(i) > p(i, RG,i (s))

Suppose that s(i) < p(i, RG,i (s)), the proof being similar in the other case. For all s′ ∈ B ′(s), let s′
t be the state of

SG ′ defined by:

s′
t (i) = σi (t (i)) and s′

t ( j) = s′( j) for all j ∈ V ′\{i}
It is easy to see that s′

t ∈ B ′(t). Indeed, since s′ ∈ B ′(s) and since for every j ∈ V ′ \ V we have s′
t ( j) = s′( j), to

prove that s′
t ∈ B ′(t) it is sufficient to prove that s′

t ∈ B(t). Now, since s′ ∈ B(s), and since for every j ∈ V \ {i}
we have both s′

t ( j) = s′( j) and t ( j) = s( j), to prove that s′
t ∈ B(t), it is sufficient to prove that σi (t (i)) ≤ s′

t (i)
and, if t (i) < bi , that s′

t (i) < σi (t (i) + 1). Since σi (t (i)) = s′
t (i) it is sufficient to remark that, if t (i) < bi , then

following Fact 1, σi (t (i)) < σi (t (i)+ 1).
So to prove the lemma, it is sufficient to prove, for all s′ ∈ B ′(s), the presence of a path from s′ to s′

t whose
vertices, except s′

t , belong to B ′(s). We proceed by induction on

d(s′) = s′
t (i)− s′(i)

1. Base case: d(s′) = 1. By Lemma 2,

s′(i) < p′(i, R′
G ′,i (s

′))

From d(s′) = 1 and the definition of s′
t , we deduce that (s′, s′

t ) is a transition of AT S(G ′, p′).
2. Induction step: d(s′) > 1. Let s′′ be the state of SG ′ defined by

s′′(i) = s′(i)+ 1 and s′′( j) = s′( j) for all j ∈ V ′\{i}
Clearly, s′′ ∈ B ′(s). Indeed, since s′ ∈ B ′(s) and since for every j ∈ V ′ \ V we have s′′( j) = s′( j), to prove
that s′′ ∈ B ′(s) it is sufficient to prove that s′′ ∈ B(s). Now, since s′ ∈ B(s), and since for every j ∈ V \ {i}
we have s′

t ( j) = s′( j), to prove that s′′ ∈ B(s), it is sufficient to prove that σi (s(i)) ≤ s′′(i) < σi (s(i) + 1)
(we have s(i) < t (i) ≤ bi ). This is obvious: since s′ ∈ B(s), σi (s(i)) ≤ s′(i) < s′(i)+ 1 = s′′(i) and, since
d(s′) > 1, s′′(i) = s′(i)+ 1 < s′

t (i) = σi (t (i)) = σi (s(i)+ 1).
Moreover, we have also d(s′′) < d(s′) and s′′

t = s′
t . So, by induction hypothesis, there is a path from s′′ to

s′
t whose vertices except s′

t belongs to B ′(s). Then, by Lemma 2,

s′(i) < p′(i, R′
G ′,i (s

′))

and it comes from the definition of s′′ that (s′, s′′) is a transition of AT S(G ′, p′). There is thus a path from s′
to s′

t whose vertices except s′
t belong to B ′(s). ��

By applying several times the previous lemma, we obtain the following result holding on paths instead of
transitions.

Theorem 1 Suppose that the embedding G ↪→ G ′ is monotonous, let p′ be a G ′-model and let p be the reduced
G-model from p′.

If ρ is a path of AT S(G, p), then for every s′ ∈ B ′( f irst (ρ)), there exists a path ρ′ in AT S(G ′, p′), verifying:

• f irst (ρ′) = s′,
• for all indexes i of I ndex(ρ), there exists an index ki in I ndex(ρ′) such that the family (ki )i∈I ndex(ρ) is strictly

increasing, i.e. ∀i, i ′ ∈ I ndex(ρ), i < i ′ ⇒ ki < ki ′
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• ∀ j ∈ I ndex(ρ′),
(∃i, ki ≤ j < ki+1 ⇒ s′

j ∈ B ′(si )) (*)

or

(∀i ∈ I ndex(ρ), ki ≤ j) ⇒ s′
j ∈ B ′(smax(I ndex(ρ))) (**)

where the function max(E) simply gives the largest element of the finite set E.

The case (*) corresponds to nominal indexes of infinite or finite paths while the (**) corresponds to the particular
treatment of the last index of a finite path.

We generically note B ′(ρ)s′
such a path ρ′ as characterized in Theorem 1, and we note B ′(ρ) the set of all paths

B ′(ρ)s′
, with s′ ∈ B ′( f irst (ρ)). Thus, we have :

B ′(ρ) = {B ′(ρ)s′ | s′ ∈ B ′( f irst (ρ))}
Moreover, each ρ′ in B ′(ρ) can be provided with an application I ndexρ from I ndex(ρ) to N, associating to each
i in I ndex(ρ), the integer ki .

3.4 Path Preservation for Strict Embedding

Here, we give a stronger path preservation result when dealing with strict embedding. This comes from the fact
that, for strict embedding, the “isolation” of G occurs not only for states s′ ∈ B ′(s), but for all states s′ ∈ B(s) (cf.
Remark 3).

Lemma 4 Suppose that the embedding G ↪→ G ′ is strict, let p′ be a G ′-model and let p be the reduced G-model
from p′. If (s, t) is a transition of AT S(G, p) then, for all s′ ∈ B(s), there exists t ′ ∈ B(t) such that AT S(G ′, p′)
has a path from s′ to t ′ whose vertices, except t ′, belong to B(s).

Proof Straightforward from Remarks 2, 3 and Lemma 3. ��
In addition, for strict embedding, transitions between different states in AT S(G, p) and the quotient of

AT S(G ′, p′) by � are preserved.

Theorem 2 Suppose that the embedding G ↪→ G ′ is strict. Let p′ be a G ′-model and let p be the reduced G-model
from p′. Then, (s, t) is a transition of AT S(G, p) if and only if (B(s), B(t)) is a transition of AT S(G ′, p′)/�.

Proof If (s, t) is a transition of AT S(G, p), then following Lemma 4, there exists s′ ∈ B(s) and t ′ ∈ B(t) such that
(s′, t ′) is a transition of AT S(G ′, p′), so that (B(s), B(t)) is a transition of AT S(G ′, p′)/�. It remains to prove that
if (B(s), B(t)) is a transition of AT S(G ′, p′)/� then (s, t) is a transition of AT S(G, p). So let (B(s), B(t)) be a
transition of AT S(G ′, p′)/�. There exists s′ ∈ B(s) and t ′ ∈ B(t) such that (s′, t ′) is a transition of AT S(G ′, p′).
By definition, there exists i ∈ V ′ such that s′( j) = t ′( j) for all j ∈ V ′\{i} and

t ′(i) =
{

s′(i)+ 1 and s′(i) < p′(i, RG ′,i (s′))
s′(i)− 1 and s′(i) > p′(i, RG ′,i (s′)).

Clearly, i ∈ V since otherwise s′ and t ′ are in the same equivalence class. Now, suppose that

s′(i) < p′(i, RG ′,i (s
′)),

the proof being similar in the other case. Let j ∈ V . If t ( j) < s( j) then

t ( j)+ 1 ≤ s( j)

so, by Fact 1,

σ j (t ( j)+ 1) ≤ σ j (s( j))
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and since s′ ∈ B(s) and t ′ ∈ B(t ′) we obtain

t ′( j) < σ j (t ( j)+ 1) ≤ σ j (s( j)) ≤ s′( j),

a contradiction. So, s( j) ≤ t ( j) for all j ∈ V . With similar arguments, we show that s( j) ≥ t ( j) for all j ∈ V \{i}.
Consequently,

s(i) ≤ t (i) and s( j) = t ( j) for all j ∈ V \{i}
Since B(s) �= B(t) we deduce that s(i) < t (i). So s(i)+ 1 ≤ t (i) and following Fact 1,

σ j (s( j)+ 1) ≤ σ j (t ( j))

Since s′ ∈ B(s) and t ′ ∈ B(t ′) we obtain

s′(i) < σi (s(i)+ 1) ≤ σi (t (i)) ≤ t ′(i) = s′(i)+ 1.

Hence,

σi (s(i)+ 1) = σi (t (i))

Following Fact 1, σi is an injection, so

s(i)+ 1 = t (i)

and to prove that (s, t) is a transition of AT S(G, p) it remains to prove that

s(i) < p(i, RG,i (s)) (2)

Since

s′(i) < p′(i, RG ′,i (s
′))

we have

t ′(i) ≤ p′(i, RG ′,i (s
′))

and since t ′ ∈ B(t) we obtain

σi (t (i)) ≤ t ′(i) ≤ p′(i, RG ′,i (s
′))

We then deduce from Remarks 2, 3 and Lemma 1 that

σi (t (i)) ≤ p′(i, RG,i (s))

Following the definition of p, it means that

t (i) ≤ p(i, RG,i (s))

and since s(i) < t (i) the inequality (2) is proved. ��
Theorem 3 Suppose that the embedding G ↪→ G ′ is strict, and let p′ be a G ′-model. Let s, r ∈ SG, let s′

1, s′
2 ∈ B(s)

and let r ′
1 ∈ B(r) be such that (s′

1, r
′
1) is a transition of AT S(G ′, p′). Then there exists r ′

2 ∈ B(r) such that
AT S(G ′, p′) has a path from s′

2 to r ′
2 whose vertices, except r ′

2, belong to B(s).

Proof Let p be the reduced G-model from p′. Since (s′
1, r

′
1) is a transition of AT S(G ′, p′), (B(s), B(r)) is a tran-

sition of AT S(G ′, p′)/�, and we deduce from Theorem 2 that (s, r) is a transition of AT S(G, p). Then, following
Lemma 4, there exists r ′

2 ∈ B(r) such that AT S(G ′, p′) has a path from s′
2 to r ′

2 whose vertices, except r ′
2, belong

to B(s). ��
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4 BRN Logic

In this section, we complete the BRN logic by defining the set of well-formed formulas over BRN signatures, and
by giving the definition of their satisfaction for BRN models. This will allow us to address the property preservation
through embeddings using our path preservation results given in Sect. 3.

4.1 Formulas

We propose to express properties over BRN by formulas of the logic CTL�. The logic CTL� combines the expressive
power of Computational tree logic (CTL) and Linear temporal logic (LTL) [14]. CTL is a branching-time temporal
logic where the structure representing all possible executions is tree-like rather than linear while LTL is a linear
temporal logic that implicitly quantifies universally over paths starting from a given state and modelizes linearly
all possible executions. Here, we consider actually the restriction of CTL� by removing the next operator X , noted
respectively CTL�-X [18,31]. For biological applications, the time mandatory for a biological system to change of
qualitative state, i.e the time for a neXt transition, has a large variance. Thus, an experiment along which a state s′ is
observed after a state s does not imply that s′ is a (direct) successor of state s because it is difficult to know if other
states have been visited in between. This explains why the modal operator X is not of big relevance. Hence, formulas
for BRN are simply CTL�-X formulas whose atomic formulas describe comparisons between a concentration level
of a variable with some threshold values. CTL�-X formulas include state and path formulas which are true in a
given state and along a given path, respectively. They are well-formed formulas whose the syntactical rules are
given below where SFor and P For stand respectively for state formulas and for path formulas.

Definition 12 (BRN Formulas or CTL�-X formulas on a BRN) Let G = 〈V, F, Sn, T h〉 be a BRN-signature.
Formulas over G are defined as follows:

SFor ::= Atom(G) |
¬SFor | SFor ∧ SFor |
E P For

P For ::= SFor |
¬P For | P For ∧ P For |
P For U P For

where Atom(G) are all atomic formulas of the form (i ∼ l) where i ∈ V, l ∈ {0, . . . , bi } and ∼∈ {=,<,>}.
We denote by Sen(G) the set of formulas over G.
In the sequel, i ≥ l (resp. i ≤ l) denotes the formula i = l ∨ i > l (resp. i = l ∨ i < l).

As usual, we introduce some notations commonly used when dealing with temporal logics: T for ¬(at ∧ ¬at)
with at any arbitrary element of Atom(G), ϕ ∨ ϕ′ for ¬(¬ϕ ∧ ¬ϕ′), ϕ ⇒ ϕ′ for ¬ϕ ∨ ϕ′,A ϕ for ¬E ¬ϕ,F ϕ for
T U ϕ, and G ϕ for ¬F ¬ϕ.

The intuitive meaning of all these symbols is: F ϕ (resp. G ϕ, ϕ U ψ) for: ϕ will be finally (F) true (resp. is
globally (G) true, ϕ has to be true until (U) ψ becomes true). The prefix A (resp. E) means that the formula is true
for all possible futures represented by paths issued from the current state (resp. for at least one future).

In the context of a signature embedding G ↪→ G ′, formulas resting on G have to be adapted because of thresholds
occurring in atomic formulas. Indeed, the presence of new variables makes side effects on the thresholds by shifting
them. The following definition expresses how to convert formulas in Sen(G) into formulas in Sen(G ′) by following
the simple idea of translating a threshold into an interval of possible values.

Definition 13 (Formula renaming) Let G and G ′ be two BRN-signatures such that G is embedded into G ′. Let us
note σ : Atom(G) → Sen(G ′) the mapping defined by:

• For all (i = l) ∈ Atom(G) with l �= bi , σ (i = l) is i ≥ σi (l) ∧ i < σi (l + 1).
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• For all (i = bi ) ∈ Atom(G), σ (i = bi ) is i ≥ σi (bi ).
• For all (i > l) ∈ Atom(G), σ (i > l) is i ≥ σi (l + 1).
• For all (i < l) ∈ Atom(G), σ (i < l) is i < σi (l).

Let us note σ̄ the canonical extension of σ : Sen(G) → Sen(G ′) on formulas in Sen(G) defined as follows:

• For at ∈ Atom(G), σ̄ (at) = σ(at),
• For other formulas, Boolean connectives and temporal operators are preserved.

Example 10 For the embedding σ12 : G1 ↪→ G2 of Example 2, we have σ12i (1) = 2 and σ12i (2) = 3. Then
σ12i (i = 1) is the formula i ≥ 2 ∧ i < 3. In fact, for this embedding, the threshold 1 is translated into an interval
[2; 2] containing the unique value 2. For the variable j , we have σ12 j (1) = 1 and σ12 j (2) = 3. Thus, σ12 j ( j = 1)
is the formula j ≥ 1 ∧ j < 3 that represents the interval [1;2] containing the two values 1 and 2.

4.2 Satisfaction

The validity of formulas is expressed via a binary relation denoted by |� between models and BRN formulas. This
relation is inductively defined on the structure of formulas. This then requires first to give a meaning of atomic
formulas in Atom(G) for a BRN signature G. For this, we need to extend G-models p by introducing the labelling
function L in AT S(G, p)which associates to each state s of SG the following set of of atomic formulas of Atom(G)
considered as true at s:

L(s) = {(i ∼ l) ∈ Atom(G) | s(i) ∼ l}
When AT S(G, p) is provided with a labelling function L , the resulting transition system is usually called a

Kripke frame. Then, for a state formula ϕ, p |� ϕ if for any state s ∈ SG , (p, s) satisfies ϕ, denoted by (p, s) |� ϕ.
In the same way, for a path formulaπ, p |� π if for any path ρ of (SG , T ), (p, ρ) satisfiesπ , denoted by (p, ρ) |� π .
Formally, the formula satisfaction is defined as follows:

Definition 14 (Formula satisfaction) Let G be a BRN-signature and let p be a G-model. Let s ∈ SG be a state
and let ρ be a path in AT G(G, p). Both relations (p, s) |� and (p, ρ) |� on state formulas and path formulas,
respectively, are inductively defined as follows:

• (p, s) |� at iff at ∈ L(s) for at ∈ Atom(G)
• (p, s) |� ¬ϕ iff (p, s) �|� ϕ

• (p, s) |� ϕ ∧ ϕ′ iff (p, s) |� ϕ and (p, s) |� ϕ′
• (p, s) |� E π iff there exists a path ρ ∈ path(s) s.t. (p, ρ) |� π

• (p, ρ) |� ϕ iff (p, f irst (ρ)) |� ϕ

• (p, ρ) |� ¬π iff (p, ρ) �|� π

• (p, ρ) |� π ∧ π ′ iff (p, ρ) |� π and (p, ρ) |� π ′
• (p, ρ) |� π U π ′ iff there exists a path θ , suffix path of ρ (ρ ≤ θ ), s.t. (p, θ) |� π ′ and s.t. for all suffix paths

η verifying ρ ≤ η < θ, (p, η) |� π .

Let us point out that the satisfaction relation is defined for finite and infinite paths as in [13]. We then deviate
from the standard interpretation of CTL where only total relations and infinite paths are considered.

5 Formulas Preservation Results

In this section, based on the path preservation results given in Sect. 3, we prove two preservation results. In Sect. 5.1,
we show that along strict embedding all BRN-formulas are preserved, while in Sect. 5.2 we show that along monot-
onous embedding only a subset of BRN-formulas is preserved. This subset will contain all the BRN-formulas whose
all negations are directly adjacent to propositional variables in Atom(G).



Embedding of Biological Regulatory Networks and Property Preservation 281

5.1 Along Strict Embedding

Theorem 4 Let G ↪→ G ′ be a strict signature embedding, let p′ be a G ′-model, and let p be the reduced G-model
from p′. For every formula ϕ ∈ Sen(G),

p′ |� σ̄ (ϕ) ⇐⇒ p |� ϕ

Proof Let us define the mapping L′ : SG ′ → 2σ̄ (Atom(G)) defined by:

L′(s′) = {σ̄ (ψ)|∃s ∈ SG , ψ ∈ L(s) and s′ ∈ B(s)}.
It is obvious to show that for every s, s′ ∈ SG ′ such that s � s′, we have L′(s) = L′(s′). Indeed, by the definition
of L′,L′(s′) only depends on the class B(s) of � containing s′. We can then define the mapping L′

/� : S′
G/� →

2σ̄ (Atom(G)) by: L′
/�([s′]) = L′(s′).

Moreover, by Theorem 3, for every s′ � s′′ and for every transition (s′, r ′) ∈ AT S(G ′, p′), we know there exists
a path (s′

0, s′
1, . . . , s′

n) ∈ path(s′′) such that for every i < n, s′
i � s′ and s′

n � r ′. This then proves that � is a
divergence blind stuttering equivalence (dbs for short) according to the definition given in [13]. Let us first recall
the definition of a dbs relation R on Kripke frame (S, T, L): a binary relation R on S is called a dbs relation if, and
only if it is symmetric and

r R s ⇐⇒
⎧
⎨

⎩

L(r) = L(s)
(r, r ′) ∈ T ⇒ ∃ a path (s0, s1, . . . , sn) in (S,T), n ≥ 0, (s0 = s)

∧(∀i < n, r R si ) ∧ r ′ R sn

[13] gives the following result for any dbs relation �dbs :

Theorem 5 [13] For a Kripke frame (S, T, L) and for any two states r and s of S, the following statements are
equivalent:

1. r �dbs s
2. for every CTL�-X formula ϕ, ((S, T, L), r) |� ϕ iff ((S, T, L), s) |� ϕ

Therefore, by applying this theorem for the dbs relation defined on BRN states, we get that (p′, s) and (p′, r)
are elementary equivalent (i.e. they satisfy the same set of CTL�-X formulas), we can deduce that AT S(G ′, p′)
equipped with the mapping L′ and its quotient by � are elementary equivalent on the BRN-formulas built over
σ̄ (Atom(G)), i.e.

∀ϕ ∈ Sen(G), (SG ′ , T ′,L′) |� σ̄ (ϕ) ⇐⇒ (SG ′ , T ′,L′)/� |� σ̄ (ϕ). (3)

Now, we can observe that the definition of B is traced on the renaming of atomic formulas in Atom(G), i.e.

∀s ∈ SG , ∀s′ ∈ B(s), ∀at ∈ Atom(G), (p, s) |� at ⇐⇒ (p′, s′) |� σ̄ (at)

Then, following this observation and the definition of L′, for every s ∈ SG, s′ ∈ B(s) and ϕ ∈ Atom(G), we have:

(p′, s′) |� σ̄ (ϕ) ⇐⇒ ϕ ∈ L(s)

⇐⇒ σ̄ (ϕ) ∈ L′(s′)
⇐⇒ σ̄ (ϕ) ∈ L′

/�(B(s)). (4)

On one hand, it comes from this that,

∀at ∈ Atom(G), p′ |� σ̄ (at) ⇐⇒ (SG ′ , T ′,L′) |� σ̄ (at).

It is then easy to show, by induction on the structure of formulas, that

∀ϕ ∈ Sen(G), p′ |� σ̄ (ϕ) ⇐⇒ (SG ′ , T ′,L′) |� σ̄ (ϕ). (5)
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On the other hand, it comes from (4) that,

∀at ∈ Atom(G), (SG ′ , T ′,L′)/� |� σ̄ (at) ⇐⇒ p |� at.

Since, by Theorem 2 we know that transitions between different states in AT S(G, p) and AT S(G ′, p′)/� are
preserved, it is then easy to show, by induction on the structure of formulas, that

∀ϕ ∈ Sen(G), (SG ′ , T ′,L′)/� |� σ̄ (ϕ) ⇐⇒ p |� ϕ. (6)

From (5), (3) and (6) we obtain:

∀ϕ ∈ Sen(G), p′ |� σ̄ (ϕ) ⇐⇒ p |� ϕ.

��
Given a set of temporal properties � over a BRN-signature G, �• = {ϕ|∀pG-Model, (∀ψ ∈ �, p |� ψ) ⇒

p |� ϕ}.
Corollary 1 For every strict embedding G ↪→ G ′, and every sets of BRN-formulas� ⊆ Sen(G) and�′ ⊆ Sen(G ′)
such that σ̄ (�) ⊆ �′, we have σ̄ (�•) ⊆ �′•.

Proof Let ϕ ∈ �•, let p′ be a G ′-Model such that for everyψ ∈ �′, p′ |� ψ and let p be the reduced G-model from
p′. As σ̄ (�) ⊆ �′, by Theorem 4, we have p |� �. Therefore, p |� ϕ, and then by Theorem 4 we can conclude
p′ |� σ̄ (ϕ). ��

5.2 Along Monotonous Embedding

Before giving our formula preservation result in the presence of monotonous embedding, we show by a very simple
example that some BRN-formulas cannot be preserved along such embedding. Indeed, let us consider the two
BRN-signatures G and G ′ of Fig. 10. It is easy to see that G (left in the figure) is embedded into G ′ (right in the
figure) and that this embedding is monotonous but not strict. Let p′ be a G ′-model and let p be the reduced G-model
p from p′ (see Fig. 11), as well as the two asynchronous transition systems generated from p and p′. It is easy to
see that the models p′ and p cannot satisfy the same set of BRN-formulas. For example the formula EF(i = 0),
which means that the system will finally pass through a state where i = 0, is satisfied by p but not by p′.

We are going notwithstanding to show a preservation result but on a restricted form of CTL�-X formulas. This
gives rise to a subset of BRN-formulas, called nCTL�-X formulas, whose negations are directly adjacent to atoms
in Atom(G). This subset is defined as follows:

SFor ::= Atom |
¬Atom | SFor ∧ SFor | SFor ∨ SFor
E P For

P For ::= SFor |
P For ∧ P For | P For ∨ P For
P For U P For

Let us point out that the F operator is still usable but not the G operator, since E((at ∨ ¬at) U ϕ) is a nCTL�-X
formula with at in Atom(G) and ϕ a path formula, that can also written as EF ϕ.

Fig. 10 An example of
monotonous embedding
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Fig. 11 a G ′-model p′ (right) and its reduced G-model p (left)

Lemma 5 Let G ↪→ G ′ be a monotonous signature embedding, let p′ be a G ′-model, and let p be the reduced
G-model from p′. Let AT S(G ′, p′) = (SG ′ , T ′) and AT S(G, p) = (SG, T ) the asynchronous transition systems
associated respectively to p′ and p. Let s be a state in SG and ρ ∈ path(s) be a path in AT S(G, p). For every
formula χ belonging to nCTL�-X formulas over Atom(G), we have:

(a) If χ is a state formula, then (p, s) |� χ ⇒ ∀s′ ∈ B ′(s), (p′, s′) |� σ̄ (χ)

(b) If χ is a path formula, then (p, ρ) |� χ ⇒ ∀ρ′ ∈ B ′(ρ), (p′, ρ′) |� σ̄ (χ)

Proof First, we consider the case of the state formulas.

(1) χ = a, with a ∈ Atom(G): as s′ ∈ B ′(s), we have (p, s) |� χ iff (p′, s′) |� σ̄ (χ).
(2) χ = ¬a, with a ∈ Atom(G): deduced from (1).
(3) χ = ϕ ∧ ϕ′: the fact that (p, s) |� ϕ ∧ ϕ′ ⇒ ∀s′ ∈ B ′(s), (p′, s′) |� σ̄ (ϕ ∧ ϕ′) follows since, by induction

(p, s) |� ϕ ⇒ ∀s′ ∈ B ′(s), (p′, s′) |� σ̄ (ϕ) and (p, s) |� ϕ′ ⇒ ∀s′ ∈ B ′(s), (p′, s′) |� σ̄ (ϕ′), finally the
fact comes from σ̄ (ϕ) ∧ σ̄ (ϕ′) = σ̄ (ϕ ∧ ϕ′) and from the semantics of the ∧ connector.

(4) χ = ϕ ∨ ϕ. This case can be handled as the previous case (3).
(5) χ = Eπ : suppose that (p, s) |� E π . Then there exists a path ρ ∈ path(s) in AT S(G, p) such that

(p, ρ) |� π . By induction, ∀ρ′ ∈ B ′(ρ), (p′, ρ′) |� σ̄ (π). Since B ′(ρ) contains at least a path starting at any
state from B ′( f irst (ρ)), this implies ∀s′ ∈ B ′(s), there exists a path ρ′ ∈ path(s′) verifying (p′, ρ′) |� σ̄ (π).
By definition this implies ∀s′ ∈ B ′(s), (p′, s′) |� σ̄ (Eπ).

Next, we consider the case of the path formulas.

(6) χ = ϕ: by definition, (p, ρ) |� χ iff (p, s) |� ϕ for s = f irst (ρ). By induction, we have ∀s′ ∈
B ′(s), (p′, s′) |� σ̄ (ϕ). By definition this implies ∀s′ ∈ B ′(s),∀ρ′ ∈ path(s′), (p′, ρ′) |� σ̄ (ϕ). Thus,
∀ρ′ ∈ B ′(ρ), (p′, ρ′) |� σ̄ (ϕ).

(7) χ = π�π ′ with � ∈ {∧,∨}. These cases can be handled in the same way than the case (3).
(8) χ = π U π ′. Suppose that (p, ρ) |� π U π ′. Then there exists a path θ with ρ ≤ θ such that (p, θ) |� π ′

and for all η verifying ρ ≤ η < θ, (p, η) |� π . There exists j such that θ = ρ j . Let ρ′ be a path in B ′(ρ)
provided with its adequate family (ki )i∈I ndex(ρ). By induction, (p′, ρ′k j ) |� σ̄ (π ′) and for all k, 0 ≤ k < k j ,

(p′, ρ′k) |� σ̄ (π). Thus ∀ρ′ ∈ B ′(ρ), (p′, ρ′) |� σ̄ (π) U σ̄ (π ′) holds. ��
By analogy of the definition of the sets B ′(ρ), we also define B(ρ) the set of all paths ρ′ such that for all

indexes i of I ndex(ρ), there exists an index ki such that the family (ki )i∈I ndex(ρ) is strictly increasing, and ∀ j ∈
I ndex(ρ′), (∃i, ki ≤ j < ki+1 ⇒ s′

j ∈ B(si )) or ((∀i ∈ I ndex(ρ), ki ≤ j) ⇒ s′
j ∈ B(smax(I ndex(ρ))). As by

construction B ′(s) ⊆ B(s) and B ′(ρ) ⊆ B(ρ), we deduce the following theorem:

Theorem 6 Let G ↪→ G ′ be a monotonous signature embedding, let p′ be a G ′-model, and let p be the reduced
G-model from p′. Let AT S(G ′, p′) = (SG ′ , T ′) and AT S(G, p) = (SG, T ) the asynchronous transition systems
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associated respectively to p′ and p. Let s be a state in SG and ρ ∈ path(s), with s = f irst (ρ), be a path in
AT S(G, p). For every formula χ belonging to nCTL�-X formulas over Atom(G), we have:

(a) If χ is a state formula, then (p, s) |� χ ⇒ ∃s′ ∈ B(s), (p′, s′) |� σ̄ (χ)

(b) If χ is a path formula, then (p, ρ) |� χ ⇒ ∃ρ′ ∈ B(ρ), (p′, ρ′) |� σ̄ (χ)

The opposite implication is not true because there may exist some nCTL�-X formulas built over Atom(G) that
are satisfied by some state s′ but not by s. For example we can see in Fig. 8 that the formula ((0 ≤ i < 2 ∧ j =
0) ⇒ EF ( j = 3)) is satisfied by ((AT S(G ′, p′), (000)) but ((i = 0 ∧ j = 0) ⇒ EF ( j = 2)) is not satisfied by
(AT S(G, p), (00)).

5.3 Counter-Example Justifying Our Notion of Monotonous Signature Embedding

In this section we give a counter-example to show the relevance of monotony of Definition 3. Let us consider both
BRN-signatures G and G ′ of Fig. 12. We have an embedding G ↪→ G ′ which is not monotonous. Let p′ be a
G ′-model given in Fig. 13 (left) and let p be the reduced G-model built from p′ and G ↪→ G ′ (see Fig. 13-right),
and let us consider the asynchronous transition systems generated from p and p′.
It is then easy to see that Theorem 6 is not true. For example

(p, (11)) |� ϕ = ((i = 1 ∧ j = 1) ⇒ (EF(i = 0 ∧ j = 0)))

while it does not exist s′ ∈ B((11)) such that (p′, s′) satisfies σ̄ (ϕ) = ((i = 1 ∧ j = 1) ⇒ (EF(i = 0 ∧ j = 0))).
That is:

∀s′ ∈ B((11)), (p′, s′) �|� ((i = 1 ∧ j = 1) ⇒ (EF(i = 0 ∧ j = 0)))

Fig. 12 A non monotonous embedding G ↪→ G ′

Fig. 13 A G ′-model p′ (left) and its reduced G-model p (right)
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5.4 Discussion

The results of Sects. 3 and 5.1 give us a modular way to study BRN dynamics. Indeed, let us consider a BRN-
signature G ′. We want to study the dynamics with respect to a set of basic biological experiment observations
�′ ⊆ Sen(G ′). Moreover, let us suppose that G ′ is composed of a sub-BRN G whose dynamics have been already
studied with respect to a set� such that σ̄ (�) ⊆ �′ is the subset of basic biological experiment observations about G.
Hence, we suppose that the set Dyn(G, �) of G-models satisfying the temporal properties in �, is known. Finally,
let us suppose that the embedding G ↪→ G ′ is strict. The procedure to construct Dyn(G ′, �′) is then the following:

For a generated G-model p in Dyn(G, �), we generate all the G ′-models whose reduced form is p. This step is
easy: it consists in generating all the G ′-models p′ such that, for all i ∈ V and W ∈ G−

i ,

p′(i,W ) ∈ {σi (p(i,W )), . . . , αi (p(i,W ))}
where αi (l) = σi (l + 1) if l < bi and αi (bi ) = b′

i .
For each generated G ′-model p′, we apply model-checking techniques to check that p′ satisfies temporal prop-

erties in �′\σ̄ (�).
With such a procedure, BRN dynamics can be studied step by step. Indeed, we start by studying the dynamics

of all subgraphs G defining a strict embedding with G ′ and of minimal size (i.e. G does not contain other sub-
graphs also defining a strict embedding with G ′). For each of them, we determine the maximal set � of biological
experiment observations that rest on such subgraphs G and such that σ̄ (�) ⊆ �′. Then, we generate all the other
minimal subgraphs G ′′ that contain one or more of the previous ones and are also strictly embedded in G ′. We then
compute their dynamics by using the previously described procedure. Finally, we restart this procedure until this is
not possible any more. Computing minimal subgraphs defining a strict embedding is a computable problem having
a polynomial complexity [9]. Finally, this procedure is obviously terminating because at each step we restrict the
number of subgraphs defining a strict embedding with G ′.

In practice, we have no assurance that the BRNs widely studied in the literature can be embedded in the whole
BRN along an embedding that is strict or monotonous. Indeed, networks are often presented in the literature outside
of any context. It is then difficult to know what is the potential influence of outside genes over the models of the
studied models. Nevertheless, the work presented in this paper tends to question the validity of a biological property
expressed as a formula that would be stated without knowing the nature of the embedding.

Considering only strict embeddings seems restrictive for practical applications, so the preservation of all CTL∗-
X properties is unlikely, although the discussion of this extreme case provides important intuition. Indeed, it was
expected that strict embeddings give rise to strong preservation results. But it was not obvious at the beginning of
the study that we would be able to identify another interesting class of embeddings, that is, the one of monotonous
embeddings. Then, one can wonder how relevant the assumption of a monotonous embedding is for real biological
systems. For instance, in the interaction graph between transcription factors in E. coli, that one can find in the data
base RegulonDB [16], more than 90% of the interactions starting from a given vertex share, in average, the same
sign. In fact, this high index is due to a large proportion of trivially monotonic regulators: those which are the source
of a unique regulation with a unique sign. Nevertheless, if such regulators are excluded, the percentage goes down
to 82% and thus remains rather high. The “monotonous assumption” then appears to be reasonable.

6 Related Works

The work presented in this article is a continuation of earlier works made by some or all of the authors and can also
be related to some other works.

6.1 Biological Experiments as Temporal Formulas

As previously sketched, the main interest of modelling biological experiments as temporal formulas lays in the fact
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that it becomes possible to design dedicated automatic tools based on model-checking techniques. Applications of
model checking techniques for the analysis and verification of qualitative models of BRNs have demonstrated their
usefulness for understanding the dynamic behavior of these networks. The SMBioNet tool [5,22] cuts down in the
whole class of models to select the ones that satisfy some given biological experiment observations. In SMBioNet,
biological experiment observations are expressed in Computation Tree Logic [14]. In [25], we propose an alterna-
tive approach combining symbolic execution and LTL model-checking techniques: instead of enumerating all the
models satisfying a given (set of) formula(s), a constraint over the set of parameters p(i,W ) is computed such that
any solution of the constraint provides a model satisfying the considered formulas.

We can also mention another tool whose purpose is very similar to the one of SMBioNet: the GNA tool [11]
automatically checks that a given dynamic model satisfies some biological experiment observations expressed in
CTL or in regular alternation-freeμ-calculus [4,24]. As in [25], [7] handles the family of parameters p(i,W ) under
a symbolic form, using constraint logic programming to analyze properties of targeted BRNs.

These applications outlined certain limitations when dealing with large BRNs because of the classical state
explosion problem. Our work aims at alleviating these limitations by promoting the usage of model checking on
some small sub-BRNs. In the present paper, under some assumptions on the form of the embedding, we have
obtained some property preservation results ensuring that formulas resting on the sub-BRN can be lifted at the
level of the global BRN. Hence, every BRN satisfying such assumptions on some sub-BRN embeddings can be
qualified as modular according to the meaning we gave to this word in [1,2]. Indeed, we have introduced an abstract
mathematical denotation highlighting the fact that a system may be qualified as complex (resp. modular) when
some global properties cannot be (resp. are) directly derived from local properties satisfied by subsystems.

6.2 Preservation Results along Embedding of Biological Regulatory Networks

This paper is a direct extension of [23] with complete proofs of the main results and with new results and additional
examples. Among others, in [23] we proved that CTL-X formulas (i.e. the subset of state formulas in CTL∗-X)
are preserved along strict embedding of BRN. In this paper, we have weakened this condition by also consider-
ing monotonous embeddings, that allow us to preserve larger class of formulas. We have then shown that CTL∗-X
properties are preserved for strict embeddings, while we get a loose preservation result for monotonous embeddings.

In [6,27], the authors also studied the preservation of BRN behaviors along embedding. In [6], the authors focus
on dynamics associated to a BRN, and give a sufficient and necessary condition to strictly preserve the whole
behavior (or dynamics) along an embedding. [27] takes place in a Boolean setting and gives some results on how
to derive attractors for a global Boolean network from attractors of a subnetwork. The attractors in [27] are either
steady states or sets of states where any trajectory issued from dynamics can not leave when it reaches one of the
states constituting the attractor.

In this paper, we choose to study the preservation of temporal properties along embedding: a BRN embedding
can preserve some temporal properties without preserving all (properties of) dynamics. This observational point
of view (a temporal logic formula can be the transcription of a biological experiment observation) leads us to add
hypotheses (strict or monotonous qualification) on embeddings to conclude on a property preservation.

7 Conclusion

In this paper, we have proposed to revisit the multi-valued discrete approach for BRNs using a logical formal-
ism. BRN-signatures are made of graphs, denoting the static part of BRN. Formulas are temporal logic formulas
over atoms expressing comparisons between concentration levels of gene products with some abstract discrete
values. Models are asynchronous transition systems deduced from the knowledge of parametrization giving the
concentration level toward which a variable is attracted. Lastly, the satisfaction relation is simply deduced from
the one defined for CTL�. In order to study how properties expressed on a small BRN are preserved or not when
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it is embedded within a larger one, we have equipped our BRN formalism with signature embedding. Their main
particularity is that they capture the fact that a concentration level or threshold relative to a network is converted
into an interval of concentration levels. We have proved in this paper two results depending on the nature of the
embedding: on one hand, when considering strict embedding, CTL�-X properties are preserved; whereas, when
considering monotonous signature embedding, nCTL�-X properties of the small BRN are also preserved in the
large.

In complex system analysis, such as BRNs, fixed points and cyclic behaviors play a crucial role. On one hand,
homeostatic mechanisms allow an organism or a cell to maintain internal equilibrium in face of external variations.
This leads to the presence of cycles in the state transition system. On the other hand, differentiation mechanisms
have often a counterpart which is expressed in the state transition system in term of multi-stationarity. These two
features are fundamental in systems biology since they allow one to explain a huge panel of biological functions.
Thus, it becomes important to investigate what are the conditions to have on embeddings and/or models to preserve
multi-stationarity and homeostasis. This last point will have to be connected to Siebert’s works [27] who studies
preservation of such properties but in Boolean network framework.
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