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ABSTRACT

The accurate determination of the biological effects
of low doses of pollutants is a major public health
challenge. DNA microarrays are a powerful tool for
investigating small intracellular changes. However,
the inherent low reliability of this technique, the
small number of replicates and the lack of suitable
statistical methods for the analysis of such a large
number of attributes (genes) impair accurate data
interpretation. To overcome this problem, we com-
bined results of two independent analysis methods
(ANOVA and RELIEF). We applied this analysis
protocol to compare gene expression patterns in
Saccharomyces cerevisiae growing in the absence
and continuous presence of varying low doses of
radiation. Global distribution analysis highlights the
importance of mitochondrial membrane functions in
the response. We demonstrate that microarrays
detect cellular changes induced by irradiation at
doses that are 1000-fold lower than the minimal
dose associated with mutagenic effects.

INTRODUCTION

Estimation of health risks associated to low doses of genotoxic
components in the environment is a public health challenge.
For example, the assessment of a `safety limit' on exposure to
ionizing radiation is the object to permanent debates for new
environmental policies and laws. Actually, the possible effects
of ionizing radiation capture the imagination of the public.
The mining and processing of radioactive materials for use in
medicine, power generation, consumer products and industry
inevitably generate emissions and waste. Not only is there an
ever-present danger of an accident, like the ®re at Chernobyl
Center 3, but the widespread use of nuclear power and the
accumulation of nuclear waste raise questions concerning the
possible harmful effects of low doses of radiation released by
these sites. The threshold dose concept, designed to account

for negative effects being observed only above a certain
threshold dose, remains controversial. Now that complete
genome sequences and methods for genome-wide analysis of
the transcriptome, such as microarrays, are available, it is
possible to study the gene expression pattern in response to
changes in environment (1,2). Most studies of this type have
been carried out with high doses of genotoxic agents or in
drastically changed growth conditions such as glucose (3),
oxygen (4) or amino acid (5) starvation. In this study, we
monitored transcriptional changes induced in yeast
populations growing in an environment with low level of
radiation. We develop a new data analysis method, combining
the results of two independent methods, to accurately detect
small changes in the whole transcriptome. We demonstrate
that microarray-based transcriptional analysis is a
powerful tool to detect biological effects of environmental
modi®cations.

MATERIALS AND METHODS

Strains and growth conditions

The diploid Saccharomyces cerevisiae strain D7 (trp5-12/
trp5-27, ilv1-92/ilv1-92, ade2-40,119/ade2-40,119) was used
in all experiments (6). Exponentially growing cells were used
to inoculate standard rich glucose (YPD) medium at 30°C, to a
density of 2 3 104 cells/ml. Cells were cultured for 20 h,
without shaking, in a thin layer of medium (4 mm) to facilitate
oxygenation. The culture plate was placed on a layer of
agarose containing various amounts of 32P, to reproduce a
radioactive environment (b-rays, 1.71 MeV) with low dose
rates. The dose rate emitted by the 32P radioactive layer was
directly proportional to the isotope concentration since the
thickness of the layer was larger (>1 cm) than the mean track
length (0.79 cm in water) of the electrons. We estimate a
correlation of 2 mGy/h per mCi/ml of 32P, taking into account
an attenuation of 72% due to the distance of the cells from the
radioactive surface (1.2 mm). Most of the electrons (99.4%)
were absorbed by the cells and the media. After 20 h of
culture, cells were observed under a microscope. They were
counted and the frequency of budding cells was measured. For
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all the dose rates tested, the density of cells at the end of the
culture period was 2±5 3 107 cells/ml, with ~30% budding
cells. The frequency of recombinants and mutants was
estimated as described by Zimmermann et al. (6) by measur-
ing plating ef®ciency on solid minimal medium (YNB, Difco)
supplemented with adenine and tryptophan (Ilv± mutants) or
with all amino acids except tryptophan (Trp+ recombinants).

Microarray analysis

Microarray slides were made by Corning (23 microarrays) and
Hitachi (10 microarrays), using patented techniques. Most of
the ORFs of S.cerevisiae (6135 Corning; 5804 Hitachi) were
represented on the microarrays. Total RNA was extracted
from cells cultured in various conditions by the phenol and
glass beads method. Fluorescently-labeled ®rst-strand cDNA
was synthesized by reverse transcription (2 h at 42°C) with the
superscript II enzyme (Life Technology), with 20 mg of total
RNA treated with DNase I (2.5 mg) and primed with 3.5 mg
(dT)7 oligomer in the presence of Cy3-dUTP or Cy5-dUTP
(Amersham) for the Corning microarrays and using indirect
labeling kit (FairplayÔ Microarray Labeling, Stratagene) for
the Hitachi microarrays. RNA was digested with 4 U of RNase
H and 5 U of RNase A, at 37°C for 15 min. Labeled cDNA was
separated from unbound ¯uorescence by ®ltration through a
micro®lter (Qiagen). The Cy3- and Cy5-labeled cDNAs were
pooled, denatured and mixed with 40 ml of hybridization
buffer [25% formamide (omitted for Hitachi microarrays), 53
SSC, 0.1% SDS], 0.66 mg/ml yeast tRNA and 0.66 mg/ml
(dA)7. Mixtures were hybridized overnight in a Corning
hybridization chamber, in a 42°C water bath. The slides were
then removed from the chamber, washed for 5 min in 23 SSC,
0.1% SDS at 42°C, four times for 1 min each in 0.13 SSC,
four times for 1 min each in 0.13 SSC, and then twice with
water at room temperature. For all hybridizations, a Cy-3
¯uorescently-labeled cDNA control population was prepared
from the same pool of RNA extracted from ®ve independent
cultures in rich medium.

Hybridized microarrays were scanned using a Genepix
4000B machine (Axon Instruments). Separate images were
acquired for each type of ¯uorescence, at a resolution of 10 mm
per pixel. Images were analyzed with Genepix pro 3.0 (Axon),
after manual recti®cation of the outline of each spot. The
median values for both types of ¯uorescence were used for
each spot. A quality control standard (QCS) was estimated,
calculating the difference between the median pixel values
within the spot (spot) and in the background (bkgrd), corrected
with the square root of the sum of the standard deviations
(stdev).
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Data with non-signi®cant QCS values for both types of
¯uorescence were considered to be missing.

Normalization for cDNA microarray data

Data from cDNA microarrays are in¯uenced by many
experimental parameters other than differential expression,
resulting in systematic variations in the measured intensities.
These parameters cannot easily be quanti®ed by standard
quanti®cation methods. To compare measurements from
different microarray experiments, the measured intensities
must be normalized. The main assumption underlying
normalization is that there is a functional coherence between
a true biological difference and the corresponding measured
values. The calculation of crude ratios of signal intensity in
intensity-dependent dye normalization methods seems pre-
ferable to global methods such as mean or median normal-
ization. We used the location and scale normalization
procedures originally developed by Yang et al. (7). These
methods correct for intensity and spatial dye biases, by use of a
robust local regression. They use the Splus LOWESS function
(Insightful) to perform robust local regression. We applied
these methods to obtain a scaled within-print-group normal-
ization to account for spatial dependence in dye biases, with
scale adjustment between the blocks. To make this method
more robust, we did not consider saturating points (with
saturating ¯uorescence intensities) when estimating LOWESS
®ts. However, as these points contain relevant information, all
measured intensities were normalized with the estimated
LOWESS curves. The normalized data for each spot were
de®ned as the estimation of the relative expression levels in
experiments with irradiated populations (I values) and non-
irradiated populations (NI values). Each set of normalized data
corresponding to one microarray will be referred as an
instance.

Statistical analysis

We used three global analysis methods to select the most
differentially expressed genes, namely SAM (8), ANOVA
(analysis of variance) (9,10) and RELIEF (11,12) standard
versions of SAM and ANOVA were used in the experiments,
whereas we optimized the RELIEF algorithm for high
dimensional data. SAM and ANOVA are parametric methods
that assume that the data for each class are normally
distributed. (Note that we performed one ANOVA per
gene.) They are based on the Student's t-test and calculate
the threshold at which the null hypothesis (13,14) (i.e. that the
two groups of data are drawn from the same distribution) can
be rejected. These methods measure a distance between two
normal distributions estimated from the data. Strictly speak-
ing, they only apply when the variances within each class are
equal, which is questionable in our context. However, SAM
partly corrects this by introducing an additional constant to the
variance in the denominator of the formula for the relative
difference in gene expression. In contrast, RELIEF is a non-
parametric method that considers each instance as a point in
the attribute space (here a 6135-dimensional space). RELIEF
calculates, for each instance, the mean distance to its k-nearest
neighbors in another class and the mean distance to its
k-nearest neighbors in the same class. It compares these
distances for a given gene (for a given instance) by consider-
ing the associated dimension (here the relative gene expres-
sion of this gene). RELIEF then calculates the weight of this
gene by averaging across all instances. The weight of a gene is
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thus a function of the variation of its relative expression level
within each class compared to the variation between classes.
Indeed, the correlation between class and relative gene
expression seems to be stronger if the intra-class variation is
small compared to the extra-class variation. In a way, this
weight measures the ability of one given gene to distinguish
between classes. The parameter k controls the trade-off
between sensitivity and robustness to noise (in our case,
k = 3 was empirically determined to be the best choice).

To estimate the signi®cance of the correlation measured by
RELIEF between relative gene expression and class, we
compared it to the correlation obtained when the classes are
arbitrarily assigned to the instances. We labeled instances such
that one class contained 12 experiments and the other one
contained six experiments, in accordance with the original
distribution. We repeated this procedure a thousand times to
obtain the average number of genes with a correlation level
greater than a given threshold. The same procedure was
applied for ANOVA.

The data management was facilitated by the use of the
`AMADEA' software (Isoft Corp.). Promoter sequences were
analyzed by use of the RSA tool (http://rsat.ulb.ac.be/rsat/).
The transcription factors were identi®ed in the SCPD database
(http://cgsigma.cshl.org/jian/).

RESULTS

Experimental design

To generate a homogeneous and controlled low-level radiation
environment, we used a layer containing a controlled amount
of radionuclide as an emitter. Diploid S.cerevisiae cells were
allowed to grow exponentially for 12 divisions (20 h) in the
presence of various dose rates of radiation. None of the dose
rates tested (<2 Gy/h) affected cell growth. Indeed, the number
of living cells and the frequency of budding cells were similar
in populations growing with and without irradiation. We ®rst
estimated the range of doses that induced genetic changes such
as mutations or recombination events. As already observed
with acute irradiation, the frequencies of recombination and
mutation events increased with the dose rate (Fig. 1).
However, we did not observe any mutagenic effects at dose
rates below 100 mGy/h. We then investigated the possibility
that lower doses could induce transcriptional changes that do
not result in genetic modi®cations. For this purpose, we

compared the expression pro®les of six independent irradiated
(I) cultures that were exposed to a dose rate of 15±20 mGy/h
for 20 h with those of 12 independent cultures grown without
radiation (not irradiated, NI). We used DNA microarrays to
characterize the gene expression patterns in the two sets of
cultures (I and NI). The same control cDNA mixture, prepared
from a pool of independent cultures grown without irradiation,
was used in all experiments. For each spot, we calculated the
ratio of normalized quantitative values obtained for the two
types of ¯uorescence. We combined results of two indepen-
dent analysis methods to determine the maximal number of
`informative' genes corresponding to the best correlation
between the two methods and the minimal level of `false
positive'. The expression levels of these genes estimated by
microarray analysis of populations exposed to various dose
rates were used to determine the lower dose of irradiation
inducing detectable transcriptional changes.

Estimation of the `signi®cance' of the transcriptional
changes in exposed populations

As massive amounts of data were generated, data analysis
methods were required to determine whether changes in
relative gene expression were signi®cant. Unfortunately,
unsupervised clustering (Hierarchical clustering; 15) of rela-
tive changes in gene expression did not cluster culture
conditions according to treatment group (data not shown).
Recently, Cheok et al. encountered a similar problem when
trying to study the effects of a drug in human leukaemia cells
(16). We thus used methods able to rank genes according to
their ability to distinguish between our growth conditions. We
used a standard ANOVA (17) and the recently advocated
technique SAM (8). The two methods gave relatively similar
results (see Supplementary Material Table S1). They calculate
for each gene a quantile function of Fisher statistics with a high
score corresponding to a signi®cant difference in expression
between I and NI samples. However, these standard statistical
techniques relying on the t-test are based on assumptions that
are not fully relevant to this context. Indeed, ANOVA and
SAM assume that the data for relative gene expression across
cultures follow a Gaussian distribution. Moreover, these
techniques are sensitive to various types of noise that are
frequent in microarray data. As they look at each gene in
isolation, they may not pick up very important correlations
between genes involved in the same or related biological

Figure 1. Comparison of the frequencies of recombination (A) and mutation (B) events induced by continuous irradiation at different dose rates. The
recombinant frequency and the mutation frequency were measured as described in Materials and Methods for each independent culture exposed for 20 h to
the dose rate of radiation indicated in Abcissa.

PAGE 3 OF 7 Nucleic Acids Research, 2004, Vol. 32, No. 1 e12



processes. We therefore used a dedicated version of RELIEF
(11), an attribute estimation technique that does not make any
assumptions about the distribution or the independency of the
genes. This method calculates the weight of a gene as a
function of the variation of its relative expression level within
each class compared to the variation between classes.

To determine the statistical signi®cance of the biological
effect of radiation, we measured the correlation between the
relative expression level of each gene and the class, and we
compared it to the null hypothesis (absence of correlation). If
there is a true correlation between relative gene expression and
class, then, for a given correlation level, more genes should
appear to be correlated in experiments than in the null
hypothesis conditions. Indeed, we observed a marked differ-
ence between the experimental and randomized curves. The
experimental curves were out of the 95% con®dence interval
(Fig. 2) when analysis was performed using either RELIEF
(Fig. 2A) or ANOVA (Fig. 2B). Our results strongly support
the conclusion that gene expression pro®les differ in irradiated
populations and non-irradiated ones.

A new method of global analysis highlights the induction
of mitochondrial processes

We designed a global graphic analysis method to identify the
main processes affected by irradiation. The method was based
on the assumption that if the induced response involves a
biological process associated with the activity of a set of
genes, then a large proportion of these genes should be found
to be relevant in our ranking of gene signi®cance. In other
words, these correlated and relevant genes should appear more
frequently at the highest ranks than should genes associated
with unaffected biological processes, which should be
uniformly distributed throughout the ranking. To identify the
cellular processes that are most affected by irradiation, we
therefore plotted, for both rankings (ANOVA and RELIEF),
the frequency of genes belonging to a given biological process
occurring within the n top ranked genes with various values of
n, producing a so-called `distribution function' (Fig. 3). Only
processes involving more than 15 genes were considered.
Most of the processes included involved genes that were
randomly distributed throughout the ranking (only some are
presented on Fig. 3). In contrast, with both rankings, three
processes appeared to be clearly over-represented among the
highest ranks: oxidative phosphorylation, ATP synthesis and
oxidative stress (Fig. 4). These three processes all take place
on the inner membrane of mitochondria and cooperate to
produce ATP and to control the reactive oxygen intermediates
produced during respiration and upon exposure to radiation.
Thus, we demonstrate that a global analysis can be used to
identify processes that are involved in the speci®c cellular
response to irradiation.

Combining two analysis methods to spot genes
responding to low dose exposure

We wanted to analyze the genes involved in the response to
irradiation in more detail. The main dif®culty encountered was
choosing a threshold of probability or weight beyond which
the number of genes that are falsely considered as being
informative of the growth conditions is too high. For example,
a conventional method consists in setting a minimal fold
change in gene intensity. Using such a method, we found that
the expression of only 86 of the 6135 genes was altered by a

Figure 2. Scatter plots of relative differences in gene expression. Scatter
plot of the genes as a function of their weight calculated with the RELIEF
(A) or their P value calculated with ANOVA (B) are represented for experi-
mental data (black) or random distribution of the experiments (dotted line).
High scores represent signi®cant difference in gene expression between I
and NI samples. The random distribution was obtained by 1000 experimen-
tal permutations of the experimental data. The gray lines indicate the 95%
con®dence intervals of the random distribution.

Figure 3. Identi®cation of the cellular processes affected. Genes were ranked by RELIEF (A) and by ANOVA (B) and grouped according to the cellular
process involved. The ordinate corresponds to the percentage of genes involved in a given process with a rank below the value indicated on the abscissa.
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factor two or more in the I populations as compared to the NI
populations. However, only half of these 86 genes were among
the top ranked genes according to RELIEF (corresponding to a
weight >0.2) or ANOVA (corresponding to a P value <0.01).
We consider that the 2-fold change method is insuf®cient,
because it does not take into account the intra-class variance.
The failure of this method to discover signi®cant genes has
already been reported by Tusher (8) and by Townsend (18). As
it is dif®cult to know which ranking is the most accurate, we
decided to combine the two rankings (given by the ANOVA
and RELIEF methods) and we select genes that were identi®ed
as being informative of the growth conditions by both
methods. We ®rst examined the correlation between both
rankings by calculating the percentage of common genes for
different numbers of top ranked genes (Fig. 5). The curve
shows a very unique shape with a maximum for the 500 top
ranked genes, which corresponds to the highest correlation
between the two rankings. We found 278 common genes in the
500 top ranked genes. These genes were named `Continuous
Irradiation-Induced Response' (CIIR) genes (Supplementary
Material, Table S1). The probability of having such a large
number of genes common to both lists by chance is almost 0
(P < 10±160 according to the hypergeometric law). The CIIR
genes were identi®ed according to their I/NI ratio (calculated
for each gene by dividing the mean of the I values by the mean
of the NI values). Genes with an I/NI ratio greater than 1 were
considered to be induced and genes with an I/NI ratio lower
than 1 were considered to be repressed. About half the CIIR
genes (118) were accordingly classi®ed as being repressed and
the others (160) as being induced.

To identify potential transcription factors that could be
involved in the response to continuous exposure to low dose
rate of radiation, we looked for common sequence motifs in
the 800 nucleotides immediately upstream from the coding
region of the 278 CIIR genes. Among the six-nucleotide
motifs found in the regulatory regions only one motif (agcgga)
was present signi®cantly more frequently (P < 0.0003 in a chi-
square test) than in the entire genome. This motif was found
upstream from 38 induced genes (AGP1, ATP19, COX4,
COX6, CUP1-1, CUP1-2, CYT1, FUN34, FYV6, GDH2,

IRA2, LSM2, MET28, MIR1, MRPL38, NHP6B, PEX4,
PRM4, PTR3, RIB4, SDS23, SOD1, SPL2, VRP1, VTC1,
YHB1, YNG1, YBR230C, YBR262C, YCL046W,
YEL006W, YER071C, YHR121W, YIL057C, YJR078W,
YKR088C, YLR262C-A and YPL261C). The (agcgga) motif
is bound by three different transcription factors, including
CUP2, which regulates the response to copper ions, and HSE/
HSF, which is activated by stress conditions resulting in the
formation of abnormal proteins. Very little is known about the
third factor (UAS2CHA) that binds the (agcgga) motif, except
that it seems to be involved in the cell cycle.

We examined the cellular distributions of the proteins
encoded by the CIIR genes using the Snyder database (http://
bioinfo.mbb.yale.edu/genome/yeast/localization.cgi). No spe-
ci®c trend was observed for the products of the repressed
genes. In contrast, the genes induced by continuous irradiation
tended to encode mitochondrial proteins: 34% of the induced
CIIR gene products (55/160) compared to only 12% of all the
localized proteins (710/5882). Interestingly, 20 of the 55
mitochondrial CIIR proteins have no known function. The
mitochondrial CIIR genes included 21 genes coding for
proteins involved in oxidative phosphorylation, ATP synthesis
and oxidative stress. In contrast, the number of CIIR genes
encoding nuclear proteins was lower (15%) than the relative
abundance (27%) of these proteins in the cell (19). These
results suggest that most of the protein changes induced by
continuous irradiation occur outside the nucleus.

The responses to low dose continuous exposure and to
acute irradiation are partially different

It is currently assumed that the effects of low doses can be
estimated by extrapolating the data obtained for much higher
doses. We tested this hypothesis by studying the transcrip-
tional response induced by a short (2 min) but intense (100 Gy/
min) period of irradiation. At this radiation dose, 75% of cells
survived and the cell cycle was arrested for 4 h (data not
shown) (20). As the transcriptional response to acute irradi-
ation was sequential, with early and late inductions, we
followed the kinetics of the transcriptional response for 5 h
(six time points were analyzed). We analyzed the expression

Figure 4. Schematic diagram of the oxidative phosphorylation pathway.
The proteins shown in cream were not induced by continuous exposure to
ionizing radiation. The numbers indicate the names of the subunits in the
protein complex. The names of the CIIR genes encoding the proteins in
each complex are reported.

Figure 5. Analysis of the correlation between the ANOVA and RELIEF
rankings as a function of the size of the gene set. The percentage of com-
mon genes was calculated for different numbers of top ranked genes (n, in
abscissa) by ANOVA and RELIEF (diamonds). The percentage of `false'
common genes in two independent random drawings of size n was calcu-
lated by applying the hypergeometric law (circles). The difference between
the two curves indicates the percentage of correlated top ranked genes be-
tween the ANOVA and RELIEF rankings (triangles).
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pro®les of the 278 CIIR genes and we found that 65 CIIR
genes were induced by both continuous and acute exposure
and 42 were repressed by both treatments (Supplementary
Material, Table S1). Most of the genes involved in ATP
synthesis, oxidative phosphorylation, Cu2+ ion homeostasis
and electron transport were induced by both treatments,
con®rming the key role of these processes in the response to
irradiation. Interestingly, the transcriptional levels of 64% of
the CIIR genes (177 genes: 96 induced and 81 repressed) did
not change after exposure to 200 Gy (Supplementary Material,
Fig. S1). This suggests that the transcriptional response to
continuous exposure differs from that induced by short
exposure to a high dose rate.

Transcriptional changes can be detected at dose rates as
low as 0.1 mGy/h

CIIR genes were selected by comparing non-irradiated popu-
lations and populations exposed to doses of 10±20 mGy/h.
These dose rates are higher than the mean level of radiation in
the environment. We therefore carried out 14 assays with dose
rates of between 0.01 and 10 mGy/h. We estimated global
changes in the population exposed to these low doses by
calculating separately for each microarray the mean values
(induction factor or repression factor) of the relative expres-
sion of all the induced or repressed CIIR genes respectively.
The induction factor depends on the dose received by the cells,
and decreases with dose rate (Fig. 6). At dose rates as low as
0.1 mGy/h, the average induction factor was signi®cantly
higher than that of the non-irradiated populations. In contrast,
the repression factor appeared to be less predictable and was
not clearly correlated with dose rate. However, the results
obtained for this factor were similar to those obtained for the
induction factor, with values clearly changing at a dose rate of
0.1 mGy/h.

DISCUSSION

This study describes a new method to identify when gene
expression is speci®cally modi®ed by extra cellular con-
ditions. Genome-wide expression analysis using cDNA
microarrays has been widely used to explore remodelling of
gene expression in response to changes in environment. The
high variability inherent to this technology requires the use of
dedicated statistical methods essential for drawing reliable
inferences from microarray data. In this work we compared
two independent analysis methods, one based on classical
Student's t-test and the other being an attribute estimation
technique, for their ability to discriminate transcription
program between exposed populations and non-exposed
populations. Both methods indicate that transcriptional change
is signi®cant between the two populations and highlight the
speci®c induction of genes involved in oxidative phosphoryl-
ation and ATP synthesis processes. However the careful
analysis of the list of genes ranked as the more relevant by the
two methods show that both methods differ in their ranking.
Only half of the relevant genes were ranked in the 500 more
signi®cant by both methods (see Supplementary Material,
Table S1). It is dif®cult to determine at this stage, if the genes
selected by only one analysis method are irrelevant. We chose
to reduce the number of relevant genes to those selected by
both methods. Doing so, we reduce the number of `false

positive' to 16% of the genes considered as signi®cant (Fig. 5).
This result indicates that groups of genes rather than
individuals should be considered for further analysis.

The two methods we used come to agreement on the main
functions altered by growth under low radiation. They point
out the induction of numerous genes coding for proteins of the
inner mitochondrial membrane. This ®nding highlights the
important role of mitochondria in response to irradiation.
Numerous drugs have been shown to target mitochondria.
Most of them induce long-term defects in mitochondrial DNA
(rho± mutants). We measured the frequency of mitochondrial
mutants by testing growth of colonies on a glucose-limited
medium (21). The irradiated cell population contained <0.2%
`petite' as did the non-irradiated control. This result indicates
that mutagenesis of mitochondrial proteins cannot explain the
transcriptional change observed in the exposed populations.

The detection of transcriptional changes in response to low
doses of radiation raises questions concerning the nature of the
signal detected in these conditions. Indeed, the amount of
DNA damage is negligible at these dose rates (about one DNA
damage/yeast genome/mGy). Ionizing radiation causes a
temporary increase in intracellular free radical concentration
due to the radiolysis of water. It has been shown recently that
the oxidatively damaged proteins accumulate with replicative
age being retained in the mother cells during cytokinesis (22).
The cumulative effects of dose exposure in growing cells
could be partially explained by the asymmetric inheritance of
damaged proteins. On another hand, we cannot exclude that
oxidative intermediates may accumulate in the growth
medium. Several studies on mammalian cells have shown
that reactive oxygen species (ROS) are released by cells after
irradiation. A radiation-induced `bystander' effect has been
observed in cells treated with growth medium from gamma-
irradiated cultures (23,24). The authors of these studies
observed changes in intracellular calcium levels, mitochon-
drial membrane potential and ROS levels. However, it is not
clear how such a process occurs in cultures exposed to low
doses of radiation since the doses currently used to detect the
bystander effect (0.5 Gy±5 Gy) are much higher than those
used in our study. Moreover, the bystander effect has never
been observed in yeast (probably because of the low
permeability of yeast cell walls and the lack of cell contact).

Figure 6. Induction factors and repression factors as a function of dose rate.
The factors were calculated for experiments with various doses as the mean
value for expression ratio of the induced (black boxes) and repressed (gray
boxes) CIIR genes. The mean value and variance of factors from several
experiments are reported for each dose rate analyzed.
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It is generally believed that intracellular ROS are primarily
produced by the mitochondria. Given the harmful effects of
ROS, numerous protective mechanisms are likely to have
evolved to limit oxidant production and release. One possible
way of decreasing mitochondrial oxidant production is to
increase metabolic uncoupling between oxygen consumption
and ATP generation. Such uncoupling produces heat and
decreases the amount of oxygen gas released (25). Cells could
use a similar mechanism to eliminate the intracellular free
radicals induced by ionizing radiation.

Our results suggest that estimating induction and repression
factors might be a useful way of assessing the level of
exposure of a population. The distribution of the radiation-
induced damages in the population is stochastic and the
number of cells that are not damaged should increase as the
dose decreases. Thus, as the irradiated population is hetero-
geneous, we can assume that the decrease in the induction
factor with the dose is probably due to the decrease in the
proportion of `responding' cells in the population, rather than
to the decrease in the level of the response in each cell.

In conclusion, we have devised a new method that can be
used to detect the biological effects of pollutants in the
environment. This method is based on the measurement of
transcriptional changes and the combination of the results of
two analysis techniques. It is 1000 times more sensitive than
the detection of genetic mutations. It is noteworthy that this
work provides no evidence as to whether continuous exposure
to low-dose radiation is harmful or bene®cial for life. It simply
demonstrates that unicellular organisms, such as yeast, detect
low levels of radiation in the environment and respond by
modifying their transcriptional activity.

SUPPLEMENTARY MATERIAL

Supplementary Material, including the list of genes and
functions present on the microarray and the table of
CIIR genes, are available at NAR Online. Raw data are
available at http://microarrays.curie.fr/publications/Mdutreix.
The version of Relief developed for this research will be
available at the following URL http://www.Iri.fr/~chris/
bioinfo/BioRelief.
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