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Abstract

The classical algorithms to align two biological sequences (Needleman and Wunsch and Smith
and Waterman algorithms) can be seen as a sequence of elementary operations in (max;+) alge-
bra: each line (viewed as a vector) of the dynamic programming table of the alignment algorithms
can be deduced by a (max;+) multiplication of the previous line by a matrix. Taking into ac-
count the properties of these matrices there are only a 1nite number of nonproportional vectors.
The use of this algebra allows one to imagine a faster equivalent algorithm. One can construct
an automaton and afterwards skim through the sequence databank with this automaton in linear
time. Unfortunately, the size of the automaton prevents using this approach for comparing global
proteins. However, biologists frequently face the problem of comparing one short string against
many others sequences. In that case this automaton version of dynamic programming results in
a new algorithm which works faster than the classical algorithm. c© 2002 Elsevier Science B.V.
All rights reserved.
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0. Introduction

When a new DNA or protein sequence is determined, it is generally compared
to all known sequences in order to 1nd those that are similar to the query. Several
indices for computing similarity exist. The 1rst to be used was the global alignment
dissimilarity index given by the Needleman and Wunsch algorithm [19]. A global
alignment, however, is not necessarily the best representation of biological relationships
because some biological functions are associated with patterns or domains. Smith and
Waterman [21,22] then generalized the previous algorithm to search for the best local
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alignment. The limitation of this algorithm is obviously the time. Its time complexity
is quadratic-proportional to the product of the sequence lengths.
Some heuristics have been devised to overcome this limitation. The algorithm BLAST

[1] aims to 1nd the best non-gapped alignments. It is very fast, but does not allow gaps.
The new BLAST [2] takes gaps into account. Another heuristic method called FASTA
[15] 1rst 1nds local alignments without gaps, and afterwards improves the results by
computing the Smith and Waterman alignment in a neighborhood of the non-gapped
alignments. Nevertheless, the most rigorous method to align two biological sequences
with gaps remains the Smith and Waterman algorithm [22]. In this algorithm only
additions and maximizations are needed, one can formulate it in the (max;+) algebra.
In the 1rst section the (max;+) algebra is described and relationships between

(max;+) matrices and graphs are illustrated. Afterwards, in Section 2, the alignment
algorithms using dynamic programming are detailed: ideas of Needleman and Wun-
sch algorithms are presented in the case of a linear function for gap penalty and
then in the case of an aEne function. The local alignment algorithm of Smith and
Waterman is then presented. Section 3 describes how (max;+) algebra can be help-
ful for the dynamic programming algorithms. For the Needleman and Wunsch al-
gorithm with a linear function of gap penalty, when one compares two sequences
A[1; lA] and B[1; lB] of respective length lA and lB, one repeats lA times the (max;+)-
multiplication of a row vector Xl of size lB + 1 by an upper triangular
matrix:

Xl = Xl−1 ⊗ El:

The set of matrices {El}l is simple: there are as many matrices as letters in the al-
phabet � (4 when comparing DNA sequences and 20 when comparing proteins). Each
matrix depends only on the sequence B[1; lB]. The semigroup generated by the set
{Ea; a∈�} is projectively 1nite. Then the set of consecutive products of matrices
El can be pre-computed and an automaton can be built to implement the dynamic
programming alignment problem. Section 4 focuses on the well known automaton of
Cayley and on the orbit automaton which can be built in this application taking into
account the properties of such matrices. When comparing one sequence B[1; lB] with
all sequences of a databank, the automaton is built only once. The algorithm comput-
ing the alignment score after having built automata reduces to a simple scan of the
sequence A[1; lA] with the automaton.
Sections 5–8 report diHerent implications of such automata in diHerent cases:

Needleman and Wunsch, best occurrence of word, Smith and Waterman and aEne
gap penalty function case. The last section gives results obtained in a large scale ap-
plication: the simple case of pattern-matching with errors.

1. Notation, (max;+) algebra and graphs

Our purpose is not to study the (max;+) algebra. However this section allows the
reader to become familiar with this formalism, and to summarize some main results
useful for the remainder of the paper.
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The (max;+) algebra is a traditional name for the semiring (R ∪ {−∞}; max;+)
denoted by Rmax. The two internal operations are noted ⊕ and ⊗, zero and unit are
denoted by � and e: ⊕=max, ⊗=+, �= −∞ and e=0. For any �∈Rmax\{�}; �−1 is
the (max;+) notation for −�. This is an example of an idempotent semiring: the 1rst
internal operation satis1es �⊕ �= �, ∀�∈Rmax. Such semirings are known as dioid
[3]. This structure is widely used in application to graph theory and operation research
[12], and in the study of Discrete Event Dynamic Systems [3,9].
The matrix operations induced by the semiring structure are de1ned and written as

usual. For matrices A and B of the same dimension the addition A⊕B denotes the
matrix where each element is: (A⊕B)i; j =Ai; j ⊕Bi; j =max(Ai; j; Bi; j). If C ∈Rn×p

max and
if D∈Rp×m

max , the product C ⊗D is the matrix in Rn×m
max de1ned by

(C ⊗ D)i;j = ⊕kCi;kDk;j = max
k
(Ci;k + Dk;j):

We will abbreviate the (max;+) multiplication C ⊗D to CD as usual.

1.1. (max;+) matrices and graphs

From each matrix A in Rn×n
max a directed weighted graph can be built over n vertices.

The vertices are numbered from 1 to n, and edges are de1ned as follows:

• the edge from i to j exists iH Ai; j �= �,
• the weight of this edge is Ai; j.

The weight of a path (i1; i2; : : : ; ik) from i to j, i.e. i1 = i and ik = j is the sum of the
weights: Ai1i2 +Ai2i3 + · · ·+Aik−1ik . The maximum weight of paths from i to j is de1ned
as the upper bound of these quantities when the path runs over the set of all possible
paths from i to j. If no path joins i to j, then this maximum weight is −∞. (When
one path exists from i to j going through a vertex belonging to a circuit of positive
weight, then the maximum weight is +∞.) One can prove that the upper bound of
weight from i to j is

(A⊕ A2 ⊕ A3 ⊕ · · · ⊕ An ⊕ · · ·)i;j :
Let us denote by ∗ and + the two following operation:

A∗ = I ⊕ A⊕ A2 ⊕ · · · ⊕ An ⊕ · · ·
A+ = A⊕ A2 ⊕ · · · ⊕ An ⊕ · · · = AA∗;

where I is the identity matrix for Rn×n
max . Then the upper bound of weight of any path

from i to j is given by the component (i; j) of the matrix A+.

1.2. Resolution of linear equations: Ax⊕ b= x

The Needleman and Wunsch algorithm can be seen as a problem of maximum cost
in a weighted directed graph [16]. The previous paragraph says the (max;+) algebra is
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a good structure for such a problem. To write such an algorithm in (max;+) algebra
requires knowledge of linear system resolution. The following theorem and property
will be useful in the following sections. Proofs of these results can be found in [3].

Theorem. If there are only negative or null circuits in the graph associated with
matrix A, the equation Ax⊕ b= x has a solution that is given by x=A∗b. If in
addition there is no circuit with null weight, the solution is unique.

Property. If the graph associated with the matrix A has no circuit with positive
weight, then A∗= I ⊕A⊕A2⊕A3⊕ · · ·⊕An−1 where n is the dimension of matrix A.

2. Dynamic programming alignments

Before using the (max;+) algebra, let us 1rst detail the two algorithms of global
and local alignments: the Needleman and Wunsch algorithm and Smith and Waterman
algorithm. These two algorithms are based on the dynamic programming method.

2.1. Global alignment: Needleman and Wunsch algorithm

Needleman and Wunsch were the 1rst to use dynamic programming to compare
two biological sequences [19]. Their algorithm 1nds a global alignment between two
sequences of any length. Let A and B be two sequences of respective length lA and
lB. This alignment is obtained by maximization of a cost called the “edit cost”. It tries
to transform the 1rst sequence A into the second one B with three exclusive basic
operations:

• Mutation: the letter A[i] in sequence A becomes the letter B[j] in B with a cost of
�(A[i]; B[j]) independent of positions i and j. The substitution costs �(A[i]; B[j]) are
given by a matrix called the substitution matrix. We will abbreviate this notation
to �i; j.

• Insertion: the letter B[j] is inserted in the sequence B with a gap cost � (�¿0).
• Deletion: the letter A[i] in sequence A is deleted with the same gap cost �.

Each previous operation can be seen as a particular alignment pair: respectively [ A[i]B[j] ];

[ −
B[j] ] and [

A[i]
− ]. The main recurrence is then

N (i; j) = max




N (i − 1; j − 1) + �i;j;

N (i − 1; j)− �;

N (i; j − 1)− �


 ; (1)

where N (i; j) corresponds to the alignment score between pre1xes A[1; i] and B[1; j].
Such a gap penalty schema does not represent what we observe in practice. One

insertion event of k letters is more often observed than k distinct insertion events of
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one letter. The 1rst algorithm has been improved to take into account diHerent schemas
of gap penalty [13,20]. If the penalty of an insertion=deletion (indel) of k consecutive
letters is chosen as an aEne function: g(k)= go+ge(k−1) with go¿ge¿0, where go
means gap-open penalty and ge gap-extend penalty, then the basic recurrence becomes

N (i; j) = max




N (i − 1; j − 1) + �i;j;

−go+ max
16k¡i

(N (i − k; j)− (k − 1)ge);
−go+ max

16k¡j
(N (i; j − k)− (k − 1)ge)


 : (2)

Initial conditions are given by

N (0; 0) = 0

N (i; 0) = −g(i); 16 i 6 lA;

N (0; j) = −g(j); 16 j 6 lB:

The 1nal Needleman and Wunsch score (NW score) is the value N (lA; lB).

2.2. Local alignment: Smith and Waterman algorithm

Smith and Waterman generalized the previous algorithm to search for the best
local alignment. The local alignment is a better representation of biological relation-
ships because some biological functions are associated with patterns or domains. It
corresponds to the NW alignment of the subsequences that maximize the NW score.
Given a substitution matrix � and the aEne gap cost function g(:) the Smith and
Waterman algorithm computes eEciently the alignment that maximizes the alignment
score. Its recurrence is given by

S(i; j) = max




0; S(i − 1; j − 1) + �i;j;

−go+ max
16k¡i

(S(i − k; j)− (k − 1)ge);
−go+ max

16k¡j
(S(i; j − k)− (k − 1)ge)


 :

Initializations are given by

S(0; 0) = 0;

S(i; 0) = 0; 16 i 6 lA;

S(0; j) = 0; 16 j 6 lB:

Let SW (A; B) be the maximal value in the matrix S. This value is the Smith and
Waterman score (SW score). Of course if the penalty function is linear, the recurrence
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is similar:

S(i; j) = max



0; S(i − 1; j − 1) + �i;j;

S(i − 1; j)− �;

S(i; j − 1)− �


 : (3)

Subsequent improvements and extensions have been made by Waterman and Eggert
[25] to allow identi1cation of all non-intersecting similar subsequences with similarity
score at or above a preset level. Miller and Myers [16] have applied the Hirschberg
principle “divide and conquer” to reduce the memory space necessary for computing
the alignment, and in another paper [17] they have optimized the alignment algorithm
in the case of a concave function for gap penalties. Here we focus only on basic
recurrences of dynamic programming.

3. Dynamic programming alignments and (max;+) algebra

3.1. Method of transfer matrices for computing the NW score

For two sequences A and B of respective length lA and lB, the classical dynamic
programming alignment is totally symmetrical. In practice, however, one is often inter-
ested in comparing a new sequence against all known sequences in a databank. In this
case we make a distinction between the sequences. The new sequence will be called the
“query sequence” while all databank sequences are called “target sequences”. In the
case of comparing A and B, let us choose B as the “query sequence”. In the comparison
of B to a databank, all computations on B not dependent on the target sequences, can
be done once beforehand in a preprocessing step.
First, let us consider the simpler algorithm with a linear function for gaps: g(k)=−k

× �. With the (max;+) notations the recurrence 1 becomes

N (i; j) = �i;jN (i − 1; j − 1)⊕ �−1N (i − 1; j)⊕ �−1N (i; j − 1): (4)

The initial conditions are given by

N (0; 0) = 0 = e;

N (i; 0) = g(i) = �−i ∀i ∈ [1; lA];
N (0; j) = g(j) = �−j ∀j ∈ [1; lB]: (5)

Let Xn be the row vector of size lB + 1 corresponding to the nth row of the usual
dynamic programming table of the NW algorithm,

Xn = (N (n; 0) N (n; 1) N (n; 2) · · · N (n; lB)): (6)

One can write the recurrence with the vectors Xn:

Xn = Xn−1Cn ⊕ XnDn (7)
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with

Cn =




�−1 �1;n : : : : :

: �−1 �2;n : : : :

: : �−1
. . . :

...
...

...
. . . �lB;n

: : : : �−1




; Dn =




: �−1 : : :

: : �−1 : :

: : :
. . . :

: : : : �−1

: : : : :




;

where

• �i; n is the value of the substitution matrix for letters B[i] and A[n],
• the unspeci1ed values are equal to −∞.

All matrices Dn are independent of n; so one denotes them simply by D. Since all
non-null elements of D are in the 1rst over-diagonal, the associated graph has no
circuit. From the property of Section 1.2 the sequence (

⊕k
i=0 D

i)k∈N converges. More
precisely all powers of D; (Di)i¿lB are null. We have

D∗ =
∞⊕
i=0

Di =




e �−1 �−2 �−3 : : : �−lB

: e �−1 �−2 : : : �−lB+1

: : e �−1 : : : �−lB+2

: : :
. . .

. . .
...

: : : : e �−1

: : : : : e




: (8)

Whatever the row vector b, bD∗ is a solution of the linear equation X =XD⊕ b. In
particular we have

Xn = XnD ⊕ Xn−1Cn = Xn−1 CnD∗︸ ︷︷ ︸
En

; Xn = Xn−1En:

En is upper triangular:

if i ¡ j; Ei;j = (�−2 ⊕ �i;n)⊗ �−(j−i−1) = max(−2�; �i;n)− (j − i − 1)�;

if i ¿ j; Ei;j = � = −∞;

if i = j; Ei;j = �−1 = −�:

One can derive the following result.
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Theorem 1. Let X0 = (e; �−1; �−2; : : : ; �−lB). The Needleman and Wunsch score
between sequences A and B is equal to the last component of vector:

X0E1E2 · · ·ElA :

Proof. X0 is equal to the 1rst row of the usual dynamic progra-
mming algorithm (cf. Eq. (5) and (6)). Moreover we just proved that Xn=Xn−1En.
Each matrix product corresponds to the passing from one row to the following in the
usual dynamic programming table of NW algorithm.
Since the NW score is read at the position (lA; lB) of the usual dynamic programming

table, it is equal to the last component of the last vector.

The transfer matrices are simpler under the additional constraint: �−26�min where
�min is the minimal value of the substitution matrix. This constraint can be interpreted
as follows. When aligning two sequences, one substitution will be preferred to two
consecutive indels. This corresponds to the minimum number of mutational events.
Under this assumption the transfer matrices have similar shape but the terms become:

if i ¡ j; Ei;j = �i;n ⊗ �−(j−i−1) = �i;n − (j − i − 1)�;
if i ¿ j; Ei;j = � = −∞;

if i = j; Ei;j = �−1 = −�:

3.2. The semigroup of transfer matrices En

For a given sequence B, 4 or 20 matrices En exist according to the type of sequence:
if it is a DNA sequence or a RNA sequence, 4 matrices will be necessary. If the
sequence is a protein, 20 matrices are required. The transfer matrix Ei corresponds to
letter A[i]. So the generators are simply {Ea; a∈�} where � is the alphabet used.
If one can describe the structure of the set of matrices obtained by consecutive

products of transfer matrices, one might accelerate the scanning process. First let us
show that for a given sequence B, the set of matrices which can be obtained by such
products is projectively >nite. Let us de1ne the projective space.

De%nition 2. We de1ne the (n−1)-dimensional (max;+) projective space, denoted by
PRn

max, as the quotient of Rn
max by the parallelism relation

if u ∈ Rn
max and v ∈ Rn

max u ∼ v ⇔ ∃� ∈ Rmax\{�}; u = �v:

The projective space PRn×n
max is de1ned similarly as the quotient of the space of (max;+)

matrices Rn×n
max by the parallelism relation:

if U ∈ Rn×n
max and V ∈ Rn×n

max U ∼ V ⇔ ∃� ∈ Rmax\{�}; U = �V:

We say that a subset S ⊂ Rn×n
max is projectively �nite if the quotient set S= ∼ is 1nite,

i.e. iH there are only 1nitely many pairwise non-proportional elements in S.
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We denote by 〈Ea; a∈�〉 the (max;+) multiplicative semigroup generated by {Ea;
a∈�}. It is the set of matrices which can be written as Ea1Ea2 · · ·Eak , with a1a2 · · · ak

∈�∗.

Theorem 3. The semigroup 〈Ea; a∈�〉 is projectively 1nite.

Proof. Let us de1ne Ẽa= �Ea; ∀a∈�.
Let us build the following automaton:

• The set of states is the set of ordinates of any row vector S= {1; 2; : : : ; lB; lB + 1}.
• For each letter a∈�, such that (Ẽa)i; j �= � a transition from i to j exists with the
label a. The transition will be denoted by (i a→ j).

• One associates with each transition (i a→ j) a weight de1ned as (Ẽa)i; j.

This automaton is a graph with several edges from i to j. Since the matrices are upper
triangular, the edges (i→ j) are such that i6j. Each circuit is a loop from k to k with
a null weight.
Let M be a matrix in the semigroup 〈Ẽa; a∈�〉. M can be written as M=

⊗l
i=1(Ẽai).

Since each matrix Ẽa; a∈�, has e on the diagonal, the diagonal components of M
are equal to e. Mi; j represents the maximum of weight of paths with label a1a2a3 : : : al

from i to j.
Let us consider in the previous automaton any path from i to j. Let i= i1; i2; i3 · · · ik

= j be this path. The sequence (il)l=1:::k is increasing. There is only a 1nite set of
paths from i to j if one does not count the loops. Since loop weights are null,
the weight of any path from i to j is in a 1nite set. So Mi; j belongs to a 1nite
set.

Theorem 4. Let N (A; B) be the Needleman and Wunsch score between two sequences
of length lA and lB. Then for a sequence B, the variable

N (A; B) + �× lA = �lA ⊗ N (A; B)

runs over a >nite set of values when the sequence A runs over �∗.

Proof. The previous demonstration proves that the semigroup generated by matrices
{Ẽa= �Ea; a∈�} is 1nite. Moreover, the consecutive product of matrices (⊗lA

i=1 ẼA[i])
can be written as

(
lA⊗
i=1

ẼA[i]

)
=

lA⊗
i=1

�EA[i]

= �lA ⊗
(

lA⊗
i=1

EA[i]

)
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The component (lB + 1) of vector X0(
⊗lA

i=1 C̃A[i]) is(
X0

lA⊗
i=1

ẼA[i]

)
lB+1

= �lA ⊗ X0

(
lA⊗
i=1

EA[i]

)
lB+1︸ ︷︷ ︸

N (A;B)

Thus the result is proved.

This result does not depend on the nature of the parameters �i; j: these parameters
can be natural or real numbers. In both cases the semigroup 〈Ea; a∈�〉 is projectively
1nite.
One can give an upper bound of the size of the semigroup 〈Ẽa; a∈�〉. Let N be

the set of values not equal to −∞ present at any position in any matrices {Ẽa; a∈�}.
One upper bound is

M = |N|(n(n−1))=2(1 + |N|)(n(n−1)(n−2))=6:

4. Automata

Each matrix Ea depends on the 1xed query sequence B[1; lB] and its size is (lB +
1)× (lB + 1). The semigroup 〈Ea; a∈�〉 is in1nite (the diagonal components tend to
−∞). But the semigroup 〈Ẽa= �Ea; a∈�〉 is 1nite.
We would like to build an automaton which associates with any word w the matrix

in this 1nite semigroup that corresponds to the associated consecutive products. If
w= abc, the associated matrix with w is given by E= ẼaẼbẼc. Let us introduce the
mapping from words in �∗ to the semigroup 〈Ẽa; a∈�〉 de1ned by the canonical
extension of the following application:

) : �→R(lB+1)×(lB+1)max ;

a→ Ẽa:

For two words m1 and m2 in �+ )(m1:m2)=)(m1)⊗)(m2).

4.1. Cayley automata

Cayley automaton has a state for each element of group. A transition exists from one
state to a second one when the element from the second state is equal to the product
of the element of the 1rst state and one of the generators. The linear representation of
the Cayley automaton is called the regular representation in the theory of semigroups.
However the term Cayley automaton is preferred in this case because of its intuitive
graph. More formally the structure of Cayley automaton is the following.

• There is a unique initial state, corresponding to the identity matrix,
• all states are 1nal,
• the transition Ẽ1

a→ Ẽ2 exists if Ẽ1Ẽa= Ẽ2, where Ẽ1 and Ẽ2 are two matrices in the
semigroup.
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This automaton is 1nite since the semigroup 〈Ẽa; a∈�〉 is 1nite. It computes )(A)
for each sequence A in time linear in the sequence length. The score N (A; B) can also
be deduced from the automaton

N (A; B) = �−lAX0)(A)




�

...

�

e


 :

In the next section we will show that this property is generalizable in a certain sense. If
 is the unique morphism such that ∀a∈�;  (a)=Ea and if the set X0 (A); A∈�∗,
is projectively 1nite, one can construct another automaton from which the NW score
is deducible.

4.2. Orbit automata

We are not interested in the global semigroup 〈Ea; a∈�〉, but only in the structure
of the orbit of the initial state under actions of the elements of the semigroup. In other
words we attempt to compute for each word w∈�∗; X0 (w), where the application  
is the unique morphism such that ∀a∈�;  (a)=Ea.
The idea is to construct an automaton analog to the Cayley’s but on the orbit of the

initial state. This method is well known for boolean automata. In the case of weighted
automata it is known but less common. This method is due to ChoHrut [7] and has
been used for automata with multiplicities over the (max;+) semiring (see for example
[10,18]).
Let us build the equivalence classes of orbit O= {X0 (A), A∈�∗} with the congru-

ence of proportionality: two elements o1 and o2 of the orbit O belong to the same class
iH there is a �∈Rmax\{−∞} such that o1 = �⊗ o2. Since the semigroup 〈Ea; a∈�〉
is projectively 1nite, the set O is projectively 1nite too. The set of equivalence classes
is therefore 1nite.
One can build an automaton whose vertices correspond to these equivalence classes,

and which compute the score N (A; B) in linear time in the length of the target sequence.
Generally this automaton is not minimal.

• Each state i of the automaton corresponds to an equivalence class of O. We associate
with state i one vector of this equivalence class, denoted by ui.

• The initial state is associated with the equivalence class of the initial vector X0 =
(e; �−1; �−2; : : : ; �−lB).

• All states are 1nal.
• The transition i a→ j exists iH there is �∈Rmax such that uj = �(uiEa), i.e. if vectors

uj and uiEa are proportional. If �= e, both vectors uj and (uiEa) are equal.
• We associate with transition i a→ j the weight �, which represents the proportionality
coeEcient between the vector uj and the vector (uiEa): uj = �(uiEa).
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This automaton computes the vector X0 (A) for any sequence A∈�∗. It is a 1nite
state automaton since the set of equivalence classes is 1nite. The vector X0 (A)=
X0EA1EA2 · · ·EAlA

=XlA is computed in linear time. Indeed the automaton gives directly
the equivalence class of vector XlA . To have the exact vector, one needs to compute the
proportionality coeEcient � between the vector XlA and the vector associated with the
equivalence class. This coeEcient can be calculated in linear time during the scanning
process:

� =
lA⊗

k=1

�k ;

where �k is the proportionality coeEcient associated with the kth transition of the path
in the automaton.

5. Orbit automaton for the Needleman and Wunsch algorithm

The 1rst step is the construction of the automaton. After the automaton has been
built, the sequence comparison between the query sequence B and any target sequence
A reduces to going through the automaton along a path of label A.

5.1. Construction of orbit automaton: algorithm

One enumerates all words in �∗ until the orbit automaton is entirely built. This
process 1nishes since the automaton is 1nite. Any order for enumerating words can
be chosen but we implemented the military order: the 1rst order is the length of the
word and the second is the alphabetic order. For the alphabet �= {a; b}, the military
order is ∅, a, b, aa, ab, ba, bb, aaa, aab : : : where ∅ is the null string.
We recall that on the alphabet �= {a1; a2; : : : ; a|�|} and for a given word w in �∗,

any word of {wai; ai ∈�}, will be called a son of w.
To build the automaton two lists of states have to be maintained: the list L1 is the

list of all already built states, and L2 is the list of all states of which we have not yet
explored the sons.

Algorithm.

(1) Construction of matrices Ea; a∈�.
(2) The unique initial state s0 is associated with the initial vector X0 = (e; �−1; �−2; : : : ;

�−lB). u0 =X0.

Initialization of the two lists:

{
L1 = {s0};
L2 = {s0}:

(3) For each state si (of which the associated vector is ui) of L2, one explores the
sons.
• For each letter a∈�:

◦ Compute u= uiEa.
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◦ If there is a number �∈Rmax and a state sj ∈L1 such that uj = �u, i.e. if u is
proportional to the vector of one of the states of L1, then create one transition
from si to sj, with label a and coeEcient �.

◦ Else create a new state sk , which is added to L1 and to L2. The vector
associated with state sk is uk = u.

• Remove si from list L2.
(4) End when list L2 is empty.

This implemented algorithm is one of the most naPQve algorithms since it lists all words
according to the military order. It can be improved by using some more eEcient
algorithms for computing 1nite semigroups [8].
During phase (3) one needs to make the multiplication u= uiEa. This calculation is

very time consuming: its complexity is O((lB+1)2). Then we come back to the equa-
tion X = uiCa ⊕XD (cf. Eq. (7)). The solution is given by the dynamic programming
recurrence with linear complexity O(lB + 1).
This automaton recognizes all words of �∗. It is deterministic. Fig. 1 presents the

orbit automaton in a simple case. Table 1 gives the size of the Cayley automaton and
the size of the orbit automaton for diHerent query sequences. Moreover, this table gives
the depth of the orbit automaton, which is the maximal length of words that have been
enumerated (according to the military order), to build the automaton. Because of the
chosen order (i.e. military) no other order can build the automaton using only words
with length strictly less than the depth. The orbit automaton size is clearly lower than
the Cayley’s one. Thus we will consider only orbit automata in the remainder of the
paper.

5.2. Computing the score

The algorithm skims the target sequence letter by letter. As one goes along the
sequence one maintains the (max;+) product of successive transition weights: pl=⊗l

k=1 �k where �k is the proportionality coeEcient for the kth transition.
Let us suppose that the 1nal state is k. The vector uk gives the NW score up to a

coeEcient. The last row of the usual dynamic programming table is obtained by the
(max;+) multiplication of the vector uk by the product of successive transition weights.
Then the score NW is equal to the (max;+) product of the last component of vector
uk by the product of successive transition weights.

N (A; B) = uk [lB + 1]

(
lA⊗

k=1

�k

)
= X0 (A)




�

...

�

e



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Fig. 1. Orbit automaton: the comparison of a query sequence against a databank with the Needleman
and Wunsch algorithm reduces to going through an automaton with the databank sequences. In this
example we have chosen for the query sequence the word AAAA, and parameters are respectively:
�(a; a)= 10 ∀a∈{A; T; G; C}, �(a; b)= − 9 ∀a; b∈{A; T; G; C} for a �= b and go= ge=−10. Scanning
a target sequence: the initial state is s0. For each letter “a” read in the target sequence, we move in the
automaton according to the transition of label “a”. At each stage one maintains the (max;+) product of
proportionality coeEcients (weight associated with transition). CoeEcients not shown are 0. All states are
1nal. The score associated with each state (shown by an outgoing arrow) corresponds to the last component
of the associated vector. The %nal score is obtained by the (max;+) multiplication of the score associated
with the 1nal state by the (max;+) product of proportionality coeEcients. For example the path shown by
a dotted line corresponds to the scanning of the sequence ATGAAA. The 1nal score is 40− 10− 10= 20.
The structure of this automaton is due to the intrinsic structure of the query sequence AAAA. Transitions
with non-null proportionality coeEcient generally can go to a state in a lower depth level (example: from
AAAT to AT).

Then we can state the following.

Theorem 5. Let B be the query sequence. After the construction of the automaton
the computation of the Needleman and Wunsch score between B and any sequence
A is linear in length of sequence A.

6. Research of the best occurrence of a word

The problem of the best occurrence of a word in a text is related to the pre-
vious problem. We compare one short sequence (word) to a long sequence. The
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Table 1
Sizes of automata generated by (max;+) matrices for the Needleman and Wunsch algorithm. Query sequences
are DNA sequences. The substitution matrix is +10 for diagonal components and −9 elsewhere, go= ge=
− 10

Words Cayley automaton Orbit automaton Depth
size size

AAAA 15 15 4
ATTA 84 43 5
ATCG 401 84 6
ATCGA 1571 199 8
ATCGAT 5329 439 9
ATCGATC 15272 919 10
ATCGATCG 39048 1873 12

problem is now to determine the locations of subsequences in the long sequence
that are the closest to the word. The 1rst problem of pattern matching is to 1nd
all exact occurrences of a pattern in a long text. Such a problem can be eEciently
solved by diHerent algorithms [6,14]. Baeza-Yates and Gonnet [4] have given an
eEcient algorithm of pattern matching without error which uses dynamic program-
ming in a degenerate case. In this case a row is coded with 64-bit words and the
passing from one row to the following can be done using logic operations on
bit-words.
Approximate pattern matching considers three diHerent type of errors: insertions,

deletions and mismatches (substitutions), but all mistakes have the same weight. Baeya-
Yates and Perleberg developed an algorithm which eEciently 1nds approximate pat-
terns when the maximum error rate is small [5]. The approach of Tarhio and Ukko-
nen [23] has been to modify the algorithm of Boyer-Moore [6] to allow errors. A
generalization of the Baeza-Yates and Gonnet algorithm led Wu and Manber to cre-
ate a new algorithm called agrep (approximative grep [26,27,28]). However, we are
looking for subsequences that are the closest to the word in the sense of Needle-
man and Wunsch, so our method must use the substitution matrix unlike the previous
algorithms.
Let B be the word, lB its length, A the long sequence of length lA. Dynamic

programming solves this problem and the recurrence is the same as for NW scores
(cf. Eq. (4)), but the algorithm diHers by initializations (compare to
Eq. (5)):

N (0; 0) = 0 = e;

N (i; 0) = 0 = e ∀i ∈ [1; lA];
N (0; j) = g(j) = �−j ∀j ∈ [1; lB]: (9)

Now the interesting score is not the last component of the usual dynamic programming
table, but the maximum in the last column: the gap penalties in the sequence A after
each approximative occurrence of B are null.
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With the same notations as the previous section one can write the relation between
the two vectors Xn and Xn−1: Xn=Xn−1C′

n ⊕XnDn with

C′
n =




e �1;n : : : : : :
: �−1 �2;n : : :

: : �−1
. . . : :

: : :
. . . �lB−1;n :

: : : : �−1 �lB;n

: : : : : e




; Dn =




: �−1 : : :

: : �−1 : :

: : :
. . . :

: : : : �−1

: : : : :




:

Notice that the matrix C′
n is not the same as the matrix involved in the case of NW

score (cf. Eq. (7)). The 1rst and last element of the diagonal are now null. The
1rst one imposes Xn(0)= 0; ∀n∈ [1; lA], and the second one prevents weighting the
insertions=deletions at the end of the target sequence. The score is then read in the last
component of the last vector. Denoting Fn=C′

nD
∗, one has the following recurrence:

X0 = (e; �−1; �−2; : : : ; �−lB);

Xn = Xn−1Fn:

The matrix Fn is computable:

Fn =




e F1;j F1;lB+1
� �−1

� � �−1 Fi;j Fi;lB+1

: : : �−1

: : � �−1

� � : : : � � e


 (10)

with

Fi;j =




if i = j = 1; e = 0;

if i = j = lB + 1; e = 0;

if i = 1 �= j; (�−1 ⊕ �i;n)⊗ �−(j−i−1)

= max(−�; �i;n)− (j − i − 1)�;
if i ¡ j; (�−2 ⊕ �i;n)⊗ �−(j−i−1)

= max(−2�; �i;n)− (j − i − 1)�;
if i ¿ j; � = −∞;

if i = j

(
i �= 1;

i �= lB + 1

)
; �−1 = −�:

Each matrix Fa; a∈� diHers from the corresponding matrix of the NW problem. This
diHerence is crucial for the structure of the semigroup. The most important eHect is
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clearly that the set O= {X0Fa1Fa2 : : : Fal ; a1a2 : : : al ∈�∗} is 1nite but the semigroup is
not projectively 1nite any more.

Theorem 6. Let X0 be a vector with >nite coordinates: X0(i) �= � ∀i∈ [1; lB + 1].
The set {X0Fa1Fa2 · · ·Fak ; a1a2 · · · ak ∈�∗} is >nite.

Proof. Let us 1rst build the following automaton.

• The set of states is the set of coordinates of vectors S= {1; 2; : : : ; lB; lB + 1}.
• For each letter a∈�, such that (Fa)i; j �= � a transition from i to j exists with the
label a. The transition will be noted (i a→ j).

• One associates with each transition (i a→ j) a weight de1ned as (Fa)i; j.

(1) Let us prove 1rst that the set of coeEcients (1; j) of any matrix product {(Fa1Fa2
· · ·Fak )1; j ; a1a2 · · · ak ∈�∗} is 1nite.
• (Fa1Fa2 · · ·Fak )1; j is the maximum weight for any path with label a1a2 · · · ak

from 1 to j.
• Let Vj be the set of possible values for the weight of any elementary path from
1 to j. Since the number of elementary paths is 1nite, the set Vj is 1nite.
Let Mj and mj be the maximal and minimal values of Vj.

• Let V ′
j be the set of possible values for the weight of any path from 1 to j.

Loops can now appear in such paths. One path with loops can be decomposed
into a set of loops and a path without loops.
In the graph, all loops (except the loop from 1 to 1) have the same weight:
�−1. Since the 1rst loop has a null weight, one can consider the path which
does not include this 1rst loop.
The weight of any path with loops is equal to the weight of a path without
loops plus a multiple of �−1.

V ′
j ⊂ (Vj ∪ �−1 ⊗ Vj ∪ �−2 ⊗ Vj ∪ · · ·);

where �−k ⊗ Vj is the set of values of Vj multiplied by �−k .
An upper bound of V ′

j is Mj the maximum of Vj.
• Consider a path from 1 to j with k weighted loops. Let c be the weight of this
path. Let kj

0 = �(Mj − mj)=��+ 1. As soon as the path goes through more than
kj
0 weighted loops, the weight of this path is less than mj. Indeed c= ce− k × �
with ce ∈Vj. c¡Mj − (Mj − mj)=mj.
For the same label, another path with better weight exists: all loops are in the
beginning of the path, with no more weighted loops. The weight of this path
belongs to Vj, so it is greater than mj.

• One then has to consider only paths which have no more than kj
0 weighted

loops.
There are only a 1nite number of paths with at most kj

0 loops with weight �
−1.

The null weighted loops do not inTuence the path weight.
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So the set of weights of optimal paths from 1 to j for any word a1a2 · · · ak

belongs to

V ′
j ⊂ V ′′

j = Vj ∪ �−1 ⊗ Vj ∪ �−2 ⊗ Vj ∪ · · · ∪ �−kj
0 ⊗ Vj;

V ′′
j is 1nite, then V ′

j is also 1nite.
(2) Let us prove now that {(X0Fa1Fa2 · · ·Fak )l; a1a2 · · · ak ∈�∗} is 1nite. Let w be the

word a1a2 · · · ak .
• The purpose is to compute X0 (w) where the application  is the unique
morphism such that ∀a∈�;  (a)=Fa.

(X0 (w))l =
lB+1⊕
i=1

X0(i)( (w))i;l

corresponds to the maximal weight of paths with label w, from i to l, where a
path going out of i has a penalty weight X0(i).

• The set U = {(X0 (w))l; w∈�∗} has an upper bound.
An upper bound of set U is maxlB+1i=1 (X0(i))+K , where K is the maximal weight
of elementary paths.

• The set U has a lower bound.

(X0 (w))l ¿ X0(1)( (w))1;l ¿ X0(1)ml:

• U = {(X0 (w))l; w∈�∗} is 1nite.
(X0 (w))l can be decomposed into the weights of an elementary path, some
loops and a penalty.

(X0 (w))l = X0(i) (w)i;l

= X0(i)�−kce;

where ce is the weight of the elementary path. Since U is bounded, k is bounded.
ce and X0(i) belong to 1nite sets, then U is 1nite.

Since {(X0 (w))l; w∈�∗} is 1nite, {X0 (w); w∈�∗} is also 1nite.

Corollary 7. Let X0 = (e; �−1; �−2; : : : ; �−lB). The set {X0Fa1Fa2 · · ·Fak ; a1a2 · · · ak ∈
�∗} is >nite.

Corollary 8. The orbit automaton for the best occurrence problem is >nite.

The size of set {X0Fa1Fa2 · · ·Fak ; a1a2 · · · ak ∈�∗} is clearly greater in the case of
the best occurrence of a word than in the NW case (compare Tables 1 and 2). This
comes from the fact that in the best occurrence case the relation ∼ is no longer useful.
No element of the set {X0Fa1Fa2 · · ·Fak ; a1a2 · · · ak ∈�∗} can be (max;+) proportional
to another vector in this same set (the 1rst coordinate of each vector in this set is
always e, and if two vectors are proportional, they are equal).
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Table 2
Sizes of orbit automata generated by (max;+) matrices for the best occurrence algorithm. The modi1ed
matrices are the same as the original ones except the coeEcient (lB + 1; lB + 1) which is equal to �−1
instead of e

Words Original Matrices Modi1ed Matrices

Orbit automaton Depth Orbit automaton Depth
size size

AAAA 164 14 87 11
ATTA 305 12 139 9
ATCG 365 10 191 8
ATCGA 1680 13 599 12
ATCGAT 6162 16 1840 13
ATCGATC 23116 18 5489 16
ATCGATCG 79205 23 15842 19

Corollary 9. Let B∈�∗. The score of the best occurrence of B in any sequence can
take only a >nite number of values.

Proof. In the orbit automaton all transitions have a null weight. The proportionality
coeEcient (

⊗lA
k=1 �k) is null. There are no more values than states in this automaton.

The automaton size can be reduced. When building matrices C′
n, two e have been

introduced in position (1; 1) and (lB + 1; lB + 1), corresponding respectively to non-
penalty of insertions=deletions at the beginning and end positions in target sequences.
The last element can be kept to �−1, as in the NW case. Then the penalties at the end
positions are no longer null.
If one builds the automaton associated with these new biased matrices, the automaton

has fewer states (compare columns of Table 2). But an additional variable is necessary
when going through the automaton to obtain the right score. At each stage the algorithm
keeps the maximum of scores obtained up to this stage. When the whole sequence has
been read, this maximum corresponds to the score of the best occurrence of the query
sequence. This computation is O(lA), i.e. of the same complexity as the scanning
process.

7. Smith and Waterman algorithm

The same analysis can be done for the Smith and Waterman algorithm, but we have
to remember during this new section that the SW score is not necessary in the last
row or column of the classical dynamic programming table. Let us consider the linear
penalty function for insertions=deletions. The basic recurrence (Eq. (3)) becomes

S(i; j) = (S(i − 1; j − 1)⊗ �i;j)⊕ (�−1 ⊗ S(i − 1; j))⊕ (�−1 ⊗ S(i; j − 1))⊕ e:
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Let Yn be the row vector of size lB + 1 corresponding to the nth row of the classical
dynamic programming table. We have

Yn = Yn−1C′′
n ⊕ YnDn ⊕ T

with

C′′
n =




e �1;n : · · · :

: �−1 �2;n : :

: : �−1
. . . :

: : :
. . . �lB;n

: : : : �−1




; Dn =




: �−1 : : :

: : �−1 : :

: : :
. . . :

: : : : �−1

: : : : :




; T t =




e

e

...

...

e




:

The coeEcient (1; 1) of matrix C′′
n is equal to e to impose Yn(0)= 0; ∀n∈ [1; lA].

One can change the de1nition of matrices C′′
n by setting C′′

n (1; 1)= �−1. This does not
inTuence the property Yn(0)= 0; ∀n∈ [1; lA]. In such a case the 0 of the 1rst coordinate
will be imposed by comparison to vector T , of which the 1rst term is 0.

Dn is independent of n, and D∗ is de1ned in the same way (Eq. (8)). We have
TD∗=T . Let Gn=C′′

n D
∗. The matrix Gn is almost the same as Fn (Eq. (10)). The

only diHerence: the coeEcients (1; 1) and (lB + 1; lB + 1) are now equal to �−1. The
next recurrence stands:

Y0 = (e; e; : : : ; e);

Yn = Yn−1Gn ⊕ TD∗ = Yn−1Gn ⊕ T:

This is an aAne dynamic system. The 1rst iterations are:

Y1 = Y0G1 ⊕ T;

Y2 = Y1G2 ⊕ T = Y0G1G2 ⊕ TG2;⊕T;

Yn =
n+1⊕
k=1

T
n⊗

i=k

Gi

with the convention:
⊗n

i=n+1 Gi= I where I is the identity matrix for R(lB+1)× (lB+1)
max .

The vectors T
⊗n

i=k Gi are associated with suExes of substring A[1; n]. The previous
computation corresponds to searching for the suEx with maximum score among all
suExes of the word A[1; n]. This computation has to be performed for each pre1x
A[1; k]; ∀k ∈ [1; lA]. In the case of the SW algorithm one has to retain the maximal
score among all values in the table. This can be written by

SW =
lA⊕

k=0

|Yk |; where |Yk | =
lB+1⊕
i=1

Yk(i): (11)
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The score is the maximum of norms of vectors Yk , where norm is de1ned by the
maximum of the coordinates of the vector (Eq. (11)).
Linear rewriting: If one increases the size of the system, the system becomes linear.

Indeed, each term of vectors (Yl)l=1:::lA is compared to e. Adding one coordinate which
is null, we have

(e; Yn) = (e; Yn−1)




e (e; : : : ; e)

�

... Gn

�


 :

Let {G̃a; a∈�} be the set of matrices of size lB+2 obtained by adding this coordinate.

Theorem 10. Let X0 be the unit vector of dimension lB +2: X0 = (e; e; : : : ; e). The set
{X0G̃a1G̃a2 · · · G̃ak ; a1a2 · · · ak ∈�∗} is >nite.

Proof. All generator matrices are triangular. The diagonal terms are all negative except
the 1rst one which is null. So the same method as for Theorem 6 gives the result.

In this formulation one computes all values of the classical dynamic programming
table, but one does not retain the maximal score among all terms. Then one introduces
an additional variable to memorize at each stage, the maximal value obtained up to
this stage. Let Y ′

n =(e; Yn;Mn−1) where Mn−1 is this memory which represents the best
score of local alignment between sequence B and A[1; n− 1]: Mn= max(e;Mn−1; |Yn|).
The next relation stands:

(e; Yn;Mn−1) = (e; Yn−1; Mn−2)




e (e; : : : ; e) e
� e

... Gn
...

� e
� (�; : : : ; �) e




:

In the previous equation there is a gap between the index of the vector Yn and the
index of memory Mn−1. Let Ỹn=(e; Yn;Mn). We have

Ỹ n = Ỹ n−1




e (e; : : : ; e) �
� �

... Gn
...

� �
� (�; : : : ; �) e




︸ ︷︷ ︸
Hn

⊕Ỹ n




e (�; : : : ; �) e
� e

... I
...

� e
� (�; : : : ; �) e




︸ ︷︷ ︸
K

; (12)
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Fig. 2. Comparison of automaton sizes associated with the algorithms: Needleman and Wunsch (NW),
best occurrence and Smith and Waterman (SW). For NW, Cayley automata and orbit automata have been
considered. For the best occurrence algorithm both curves represent sizes of orbit automata, the 1rst is
associated with the original matrices (the coeEcient (lB + 1; lB + 1) is equal to 0), the second with the
modi1ed matrices (the coeEcient (lB + 1; lB + 1) is equal to �−1).

K is independent of n. The graph associated with K has no circuit with positive weight.
The matrix K∗ exists. K is idempotent, so we have K =K2 and K∗=K . The solution
of Eq. (12) is given by

Ỹ n = Ỹ n−1 HnK∗︸ ︷︷ ︸
Ln

:

The expression of the SW problem is exactly the same as for the NW problem and
the formulation with automata is the same. Only the matrices diHer and the dimension
of the problem has been increased. The automaton is then expected to be much big-
ger than for the best occurrence algorithm. It is the case when the matrices for the
best occurrence algorithm have been modi1ed but the automaton is smaller if original
matrices have been chosen (Compare Tables 2 and 3). The reason is that one does
not have to compare and store the comparison between two subsequences without any
similarity, contrary to the case of the best occurrence. Fig. 2 represents the automaton
sizes for each type of algorithm.
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Table 3
Sizes of orbit automata generated by (max;+) matrices for SW algorithm

Words Orbit automaton Depth
size

AAAA 86 11
ATTA 190 14
ATCG 286 10
ATCGA 1048 12
ATCGAT 3513 15
ATCGATC 11546 17
ATCGATCG 34624 23

8. A5ne penalty functions

The general case of dynamic programming sequence alignment allows aEne penalty
functions for gaps. The penalty function for a gap of length k is de1ned by: g(k)= go+
ge× (k − 1) ∀k¿1. Moreover we suppose go¿ge.
Let us consider the NW case. The SW case can be easily deduced. The initial

recurrence is given by Eq. (2). Let Xn and Yn be the row vectors de1ned by

Xn(l) = N (n; l);

Yn(l) = max
16k¡n

(Xn−k(l)− (go+ (k − 1)ge)):

The vector Xn represents the row n of the classical dynamic programming table. Xn(l)
is the maximal value for aligning sequences A[1; n] and B[1; l]. The values Yn(l) are
the maximal values for aligning A[1; n] and B[1; l] with an insertion in sequence A at
the end of the alignment.

Yn(l) = max
16k¡n

(Xn−k(l)− (go+ (k − 1)ge))

=max
(
max
26k¡n

(Xn−k(l)− go− (k − 1)ge); Xn−1(l)− go
)

=max(Yn−1(l)− ge; Xn−1(l)− go);

Xn(l) = max




Xn−1(l− 1) + �l;n;

Yn(l);

max
16k6l

(Xn(l− k)− go− (k − 1)ge)


 :

We can rewrite these equations in term of vectors Xn and Yn:

Xn = Xn−1Cn ⊕ XnD ⊕ Yn;

Yn = Yn−1E ⊕ Xn−1F
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with

Cn =




: �1;n : : :

: : �2;n : :

: : :
. . . :

: : : : �lB;n

: : : : :




;

D =




: −go −go− ge −go− 2ge · · · −go− (lB − 1)ge
: : −go −go− ge · · · −go− (lB − 2)ge
: : : −go · · · −go− (lB − 3)ge

: : : :
. . .

...

: : : : : −go

: : : : : :




;

E = −ge ⊗ I;

F = −go⊗ I;

where I is the identity matrix for R(lB+1)× (lB+1)
max . The graph associated with D has no

circuit with positive weight, so D∗ exists and can be easily computed. The previous
equations can be summarized by the following:

(Xn; Yn) = (Xn−1; Yn−1)

(
(Cn + F)D∗ F

ED∗ E

)
:

Exactly the same recurrence is valid for the problem of the best occurrence of a word,
only initialization changes. In the case of the Smith and Waterman algorithm we need
a memory as in the linear case, but the 1nal recurrence is the same in spirit.

9. Applications

The large size of the automaton is the limitation of this new algorithm. Even in
simple cases considered below (with aEne penalty functions and simple substitution
matrices) the automaton size is quite large. Fig. 2 indicates that the automaton size
grows exponentially in the length of the query sequence. Each additional letter mul-
tiplies the automaton size by a factor between 2 and 4, depending on the algorithm:
NW score, best occurrence or SW score. This fact rules out the hope of comparing
proteins (whose lengths range from one hundred to several thousands) with complex
substitution matrices. However, biologists frequently face the problem of comparing
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one short sequence against many other strings. This problem is a generalization of
pattern matching in which each mutation has a speci1c cost depending on the letters
involved.
The classical problem of pattern matching with error can be solved by a variation

of the dynamic programming Needleman and Wunsch algorithm: the gap penalties
are go= ge=1, the substitution matrix is built with 0 on the diagonal and with −1
elsewhere. The process retains the maximum of scores when comparing the query se-
quence and each subsequence of the target sequence. The initializations are strictly
the same as in Eq. (9) and the transfer matrices are given by Eq. (10). The score
is obviously negative or null; it is null iH the word appears exactly in the sequence.
The absolute value of the score is also the number of errors between the word and
the best occurrence of this word. In that case, the 1rst coordinate of vectors is al-
ways 0 (cf. Section 6). So, our algorithm with an automaton does not have to con-
sider the (max;+) proportionality of vectors during the construction of the automa-
ton. Equality is the only interesting case. This constraint is easier to
implement.
The algorithm decomposes into two stages: building the automaton and databank

scanning. The second stage is very fast since the scanning process has linear time
complexity in the size of the databank. The algorithm to build the automaton is more
complex. The size of the 1nite set we are interested in is not known before building
the automaton. However, one can give the complexity of this stage dependent on the
size of automaton Nau. For each state in the automaton one has to consider all possible
transitions from this state, then compare all new states with all states already built.
Therefore, the time complexity is lower than O(N 2

au :|�|=2). With a hash function all
these comparisons can be done faster.
Orbit automaton algorithm and dynamic programming algorithm for pattern matching

with errors have been implemented in LASSAP [11], an intra- and inter-databases high
performance search engine. Table 4 summarizes the gains of our new implementation
of dynamic programming in the case of pattern matching with errors. The results for
the automaton algorithm are satisfactory for short words. If the automaton is stored,
column (2) shows the time of databank scanning which means the time necessary
to scan the entire databank. Theoretically, databank scanning time would be constant.
Observed variations come from the memory management. The bigger the automaton,
the more numerous are the memory rearrangements.
The time necessary to complete the 1rst stage (automaton building) is not constant.

The explosion of time for building the automaton is due to the explosion of automaton
size. Indeed, with the hash function of the present implementation, one observes for
the algorithm of automaton construction, a time complexity almost linear in automaton
size.
It seems that the automaton size is an exponential function of sequence length, but it

depends on the number of generators in the semigroup of matrices. Generally the num-
ber of generators is equal to the alphabet size. In our application the substitution matrix
is very simple: a positive constant on the diagonal and a negative one elsewhere. In
that case, if all letters of the alphabet do not appear in the query sequence, there is one
more generator than there are diHerent letters; otherwise the number of generators is the
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Table 4
Performances of the orbit automaton algorithm compared with the classical dynamic programming algorithm.
For each word and for each target sequence in the SwissProt databank Rel. 34, one seeks the subsequence
of the target sequence that minimizes the number of errors when aligned. Both algorithms are implemented
in LASSAP. Results have been obtained on a SUN 4000, using only one processor. Speeds represent the
ratio MMC=s (million matrix cells per second)

Words Length Dynamic programming Automaton

Time (s) Speed Time (s) Automaton
size

Total (1) (2)

BAAABF 6 15.20 8.37 9.795 0.005 9.79 83
KIIKLHEN 8 19.93 8.51 9.86 0.034 9.826 472
VKIIKLHEN 9 22.25 8.58 10.284 0.087 10.197 1114
AASDTGSTYL 10 24.48 8.66 10.442 0.18 10.262 2397
LVIVSVFDLAS 11 26.68 8.74 10.885 0.405 10.48 4928
KNVIGARRASWR 12 28.69 8.87 12.176 1.237 10.939 12033
RAANQDYVITRTN 13 31.11 8.86 13.935 2.716 11.219 24331
QGQQFPNECQLDQL 14 33.16 8.95 17.389 6.089 11.30 50820
QGQQFPNECQLDQLN 15 35.49 8.96 25.916 13.098 12.818 107408

(1): Construction of automaton.
(2): Scanning process.

size of the alphabet. For example, the protein sequence BAAABF is composed of three
diHerent letters. The number of generators is 4: three matrices for the distinct letters
appearing in the query sequence plus one matrix for any letter not present in the query
sequence.
The number of generators is crucial for the automaton size. For queries of the same

length, a greater number of generators leads to a bigger automaton (cf. Fig. 3).
In the current implementation there is an optimal word length for using this al-

gorithm. According to the diHerence between the execution times with the classi-
cal algorithm and the automaton algorithm, the gain is maximal for a sequence of
length 12 or 13. This algorithm is then interesting if the query sequence is short
(lB613) and if the databank is very large. The time necessary to build automata
must be distributed over an enormous set of target sequences. When databanks in-
crease, the length of the query sequence can increase while gaining in computing
time.
The same kind of ideas has been explored by Esko Ukkonen who has imple-

mented the pattern matching with errors with automata [24]. He focused only on
the occurrences with at most k errors. His algorithm consists of building a 1nite
deterministic automaton. Each state corresponds intuitively to a row of the classi-
cal dynamic programming table. He proposed to reduce the number of states tak-
ing into account that the occurrences with more than k errors are not interesting
at all. In spirit, his algorithm is close to ours but our method can be applied with
any substitution matrix and is the same for pattern matching, NW score and SW
score.
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Fig. 3. InTuence of the number of generators on the size of orbit automaton associated with the algorithms:
Needleman and Wunsch, best occurrence and Smith and Waterman. All query sequences have a length equal
to 7. The number of generators increases from 2 to 8. For the best occurrence algorithm we considered only
the modi1ed matrices.

10. Discussion

This algorithm may not appear to be practical because it seems diEcult to adapt it for
comparing proteins whose lengths range up to several thousands. Actually a version of
this algorithm is implementable for real sequences. The present implementation splits
the stage of automaton building from the stage of scanning. Another possibility is
to build automaton states when needed. Constructing the automaton on the Ty would
accelerate the global process since some states can never be used. Remember that during
the process of automaton construction one has to compute the vectors corresponding
to all possible lines of the classical dynamic programming table. If some associated
states are never used, these computations are useless and a pure waste of time. The
on the Ty construction of automaton allows one to do only necessary computations,
computing only necessary states. In that sense the algorithm is optimized.
This algorithm would work as follows. Let us consider that the automaton is not yet

totally built and that the scanning process skims a particular target sequence. If the
current con1guration has appeared before (i.e. if the scanning process goes through a
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previously computed transition), the algorithm takes advantage of the previous compu-
tations and does not carry out the same ones again. On the other hand, if the current
letter does not correspond to a previously computed transition, a new state is computed.
That computation is equivalent in terms of complexity to the computation of the row
in the classical dynamic programming algorithm. Then the process has to compare this
new state to all previously built ones. This task can be done eEciently and almost
independently of the automaton size with a hash function.
The space complexity due to the automaton size then becomes the main challenge.

This limitation can be overcome by 1xing a maximum size for the automaton. If
this limit is not reached, the new state is computed, otherwise the algorithm goes
back to the classical dynamic programming algorithm to carry out the remainder of the
computations. Then the challenging question is the strategy for choicing the states which
have to be integrated into the automaton. This on the Ty algorithm is implementable
and would not have a total time complexity greater than the classical one.
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