
Supplementary materials

Appendix A. Semantics of Hoare triples for gene networks

We define the semantics of a trace specification via a binary relation
between states and sets of states. This relation characterises all the possible
realisations of the trace specification. The general ideas that motivate our
definition are the following:

• Starting from an initial state η, a trace specification without existential
or universal quantifier is either realised by associating with η another
state η′, or is not realisable and η′ does not exist. For example, the
atomic expression v+ associates η′ with η (where ∀u 6= v, η′(u) = η(u)
and η′(v) = η(v) + 1) if and only if the transition η → η′ exists in the
state space. If, on the contrary, this transition does not exist, the trace
specification is not realisable.

• Existential quantifiers open a sort of space of possibilities for η′: Ac-
cording to the chosen trace specification under each existential quanti-
fier one may get different associated states. Consequently, one cannot
define the semantics as a partial function that associates a unique η′

with η; a binary relation is a more suited mathematical object (denoted
; in the sequel).

• A universal quantifier induces a sort of unity/solidarity between all the
states η′ that can be obtained through each trace specification under
its scope. All these states have to satisfy the postcondition (Defini-
tion Appendix A.2) . For this reason, we define a binary relation that
associates a set of states E with the initial state η: “η ; E”. Such a
set E can be understood as grouping together the states it contains in
preparation for checking the forthcoming post condition.

• When the trace specification p contains both existential and universal
quantifiers, we may consequently get several sets E1, · · · , En such that
η

p
; Ei, each of the Ei being a possibility through the existential quan-

tifiers of p and all the states belonging to a given Ei being together
through the universal quantifiers of p. On the contrary, if p is not re-
alisable, then there is no set E such that η

p
; E (not even the empty

set).

30

Definition Appendix A.1. (Mathematical semantics of a trace specifica-
tion). Let N = (V,M,EV , EM ,K) be a grn, let S be the state graph of N
whose set of vertices is denoted S and let p be a trace specification for N .
The binary relation

p
; is the smallest subset of S ×P(S) such that, for any

state η:

1. If p is the atomic expression v+, then let us consider the state η′ =
η[v ← (η(v) + 1)]: If η → η′ is a transition of S then η

p
; {η′}.

2. If p is the atomic expression v−, then let us consider the state η′ =
η[v ← (η(v)− 1)]: If η → η′ is a transition of S then η

p
; {η′}.

3. If p is the atomic expression v := i, then η
p
; {η[v ← i]}.

4. If p is of the form assert(e), if η |=N e, then η
p
; {η}.

5. If p is of the form ∀(p1, p2): If η
p1
; E1 and η

p2
; E2 then η

p
; (E1∪E2).

6. If p is of the form ∃(p1, p2): If η
p1
; E1 then η

p
; E1, and if η

p2
; E2

then η
p
; E2.

7. If p is of the form (p1; p2): If η
p1
; F and if {Ee}e∈F is a F -indexed

family of state sets such that e
p2
; Ee, then η

p
; (

⋃
e∈F Ee).

8. If p is of the form (while e with I do p0):

• If η 6|=N e then η
p
; {η}.

• If η |=N e and η
p0;p
; E then η

p
; E.

This definition calls for several comments.
The relation

p
; exists because (i) the set of all relations that satisfy the

properties 1–8 of the definition is not empty (the relation which links all
states to all sets of states satisfies the properties) and (ii) the intersection of
all the relations that satisfy the properties 1–8, also satisfies the properties.

A simple atomic expression such as v+ may be not realisable in a state
η (if η → η′ is not a transition of S). In this case, there is no set E such

that η
v+
; E. The same situation happens when the trace specification is an

assertion that is not satisfied at the current state η.
Universal quantifiers propagate non-realisable trace specifications: If one

of the pi is not realisable then ∀(p1, · · · , pn) is not realisable. It is not the

case for existential quantifiers : If η
pi
; Ei for one of the pi then η

∃(p1···pn)
; Ei

even if one of the pj is not realisable.
When a while loop does not terminate, there is no set E such that

η
while...
; E. This is due to the minimality of the binary relation

p
;. On

31

the contrary, when the while loop terminates, it is equivalent to a trace
specification containing a finite number of occurrences of the sub-trace p0 in
sequence, starting from η.

The semantics of sequential composition may seem unclear for readers not
familiar with commutations of quantifiers. We give an example to explain
the construction of

p1;p2
; (see Figure A.5):

p2p1

F1=

ηa

ηb

ηc

η

E4

E1

E2

E3

F2=

gives: η
E1 ∪ E4

E2 ∪ E3

E2 ∪ E4

E1 ∪ E3

p1; p2

Figure A.5: An example for the semantics of sequential composition

• Let us assume that starting from state η, two sets of states are possible
via p1: η

p1
; F1 = {ηa, ηb} and η

p1
; F2 = {ηc}. It intuitively means that

p1 permits a choice between F1 and F2 through some existential quan-
tifier and that the trace specification leading to F1 contains a universal
quantifier grouping together ηa and ηb.

• Let us also assume that

– starting from the state ηa, two sets of states are possible via p2:
ηa

p2
; E1 and ηa

p2
; E2,

– starting from the state ηb, two sets of states are possible via p2:
ηb

p2
; E3 and ηb

p2
; E4,

– and there are no set E such that ηc
p2
; E.

When focusing on the traces of (p1; p2) that encounter F1 after p1, the traces
such that p1 leads to ηa must be grouped together with the ones that lead
to ηb. Nevertheless, for each of them, p2 permits a choice of possibilities:

32

between E1 or E2 for ηa and between E3 or E4 for ηb. Consequently, when
grouping together the possible futures of ηa and ηb, one needs to consider the
four possible combinations: η

p1;p2
; (E1∪E3), η

p1;p2
; (E1∪E4) η

p1;p2
; (E2∪E3)

and η
p1;p2
; (E2 ∪ E4).

Lastly, when focusing on the traces of (p1; p2) that encounter F2 after p1,
since ηc has no future via p2, there is no family indexed by F2 as mentioned
in the definition and consequently it adds no relation into

p1;p2
; .

Let us remark that, if η
p
; E then E cannot be empty; it always contains

at least one state. The proof is easy by structural induction of the trace
specification p (using the fact that a while loop which terminates is equivalent
to a trace specification containing a finite number of occurrences of the sub-
trace p0).

Definition Appendix A.2. (Semantics of a Hoare triple). Given a grn
N = (V,M,EV , EM ,K), let S be the state graph of N whose set of vertices
is denoted S. A Hoare triple {P} p {Q} is satisfied if and only if:

For all η ∈ S satisfying P , there exists E such that η
p
; E and for all

η′ ∈ E, η′ satisfies Q.

The previous definition implies the consistency of the trace specification p
with the state graph: If the specification p is not realisable starting from one
of the states satisfying pre-condition P , then the Hoare triple cannot be
satisfied. For instance if some v+ is required by the trace specification p
but the increasing of v is not possible according to the state graph, then the
Hoare triple is not satisfied.
As an example, let us consider the grn in Figure A.6 and its state graph.

1. The Hoare triple {(a = 0) ∧ (b = 0)} a+; a+; b + {(a = 2) ∧ (b = 1)}
is satisfied, because

• for all states that do not satisfy the pre-condition, the Hoare triple
is satisfied by definition,

• there is, in this example, a unique state satisfying the precondition
(a = 0) ∧ (b = 0) and from this state, the trace specification
a+; a+; b+ is possible and leads to the state (2, 1) and

• the state (2, 1) satisfies the postcondition (a = 2) ∧ (b = 1).

2. The Hoare triple {(a = 2)∧ (b = 0)} b+; a−; a− {(a = 0)∧ (b = 1)} is
not satisfied because from the state satisfying the precondition, the first

33

µ1

µ2

µ3

b

a

1

1

0

0 2

a b
(2) (1)

¬(b ≥ 1)

a ≥ 2

a ≥ 1

Figure A.6: (Left) The graphical representation of the grn N = (V,M,EV , EM ,K) with
V = {a, b}, the bounds of a and b are respectively 2 and 1, M = {µ1, µ2, µ3}, ϕµ1

is
(a > 2), ϕµ2 is (a > 1), ϕµ3 is ¬(b > 1). Finally the family of integers is {Ka = 1,
Ka,µ1 = 2, Ka,µ3 = 2, Ka,µ1µ3 = 2, Kb = 1, Kb,µ2 = 1}. (Right) Representation of its
state graph.

expression b+ is realisable and necessarily leads to the state (2, 1) from
which the next expression a− is not consistent with the state graph.

3. The following Hoare triple contains two existential quantifiers and a
universal one:
{(a = 0)∧(b = 0)} ∀(a+, b+);∃(a+, b+);∃(ε, b+) {(b = 1)} (remember
that ε denotes the empty trace and is an abbreviation for assert(>)
where > stands for a tautology).

• We have clearly (0, 0)
∀(a+,b+)
; {(1, 0), (0, 1)}

• Since we have (1, 0)
∃(a+,b+)
; {(2, 0)} and (1, 0)

∃(a+,b+)
; {(1, 1)} and

(0, 1)
∃(a+,b+)
; {(1, 1)}, we deduce (0, 0)

∀(a+,b+);∃(a+,b+)
; {(1, 1), (2, 0)}

and (0, 0)
∀(a+,b+);∃(a+,b+)

; {(1, 1)}.

• We have trivially (1, 1)
∃(ε,b+)
; {(1, 1)}

• Moreover we have both (2, 0)
∃(ε,b+)
; {(2, 0)} and (2, 0)

∃(ε,b+)
; {(2, 1)}

• We deduce that the considered trace specification p can lead to 3
different sets of states: (0, 0)

p
; {(1, 1), (2, 0)}, (0, 0)

p
; {(1, 1)}

and (0, 0)
p
; {(1, 1), (2, 1)}.

Because the postcondition is satisfied in both states (1, 1) and (2, 1),
the two last sets of states which are in relation with (0, 0), satisfy the
postcondition. Consequently although the first set does not, one can
deduce that the Hoare triple is satisfied.

34

Appendix B. Soundness and Completeness

As usual in Hoare logic, The soundness and completeness of the logic can
only ensure a partial correctness of the Hoare triples because the while loops
of the trace specifications do not necessarily terminate.

Appendix B.1. Soundness

The soundness of our modified Hoare logic means that: Given a network
N = (V,M,EV , EM ,K), if ` {P} p {Q} according to the inference rules of
Section 5 (and after substituting the symbols K... by their value in N), then

for all states η that satisfies P , if there is a set E such that η
p
; E, then

there is at least a set E ′ such that η
p
; E ′ and ∀η′ ∈ E ′, η′ |=N Q.

The proof is made as usual by induction on the proof tree of ` {P} p {Q}.
Hence, we have to prove that each rule of Section 5 is sound. Here we
develop only the Increase rule and the Sequential composition rule since
the soundness of the other inference rules is either similar (Decrease rule),
trivial (Assert rule, Quantifier rules, Assignment rule, Empty trace rule and
Boundary axioms) or standard in Hoare logic (Iteration rule). Let us note
that the soundness of the Sequential composition rule is not trivial because
its semantics is enriched to cope with the quantifiers.

Let η be any state of N .

Increase rule: { Φ+
v ∧ Q[v←v+1] } v+ {Q} (where v is a variable

of N)

From Definition Appendix A.2, the hypothesis is

H η |=N Φ+
v and η |=N Q[v ← v + 1]

and we have to prove the conclusion

C there exists E ⊂ S such that η
v+
; E and ∀η′ ∈ E, η′ |=N Q

Let us choose E = {η′} with η′ = η[v ← η(v) + 1]. From Notation 5.1,
the hypothesis η |=N Φ+

v is equivalent to (η → η′) ∈ S, which in

turn, according to Definition 4.4, implies η
v+
; {η′}. Hence, it only

remains to prove that η′ |=N Q, which results from the hypothesis
η |=N Q[v ← v + 1]. 2

35

Sequential composition rule:
{P1} p1 {P2} {P2} p2 {Q}

{P1} p1;p2 {Q}
From Definition Appendix A.2, we consider the following three hy-
potheses:

H1 for all η1 ∈ S such that η1 |=N P1 there exists E1 such that

η1
p1
; E1 and ∀η′ ∈ E1, η

′ |=N P2

H2 for all η2 ∈ S such that η2 |=N P2 there exists E2 such that

η2
p2
; E2 and ∀η′′ ∈ E2, η

′′ |=N Q

H3 η |=N P1

and we have to prove the conclusion:

C there exists E ⊂ S such that η
p1;p2
; E and ∀η′′ ∈ E, η′′ |=N Q

Let us arbitrarily choose a setE1 such that η
p1
; E1 and ∀η′ ∈ E1, η

′ |=N

P2 (we know that E1 exists from H1 and H3).

For each η′ ∈ E1, we similarly choose a set Eη′
2 such that:

η′
p2
; Eη′

2 and ∀η′′ ∈ Eη′
2 , η

′′ |=N Q (we know that the family {Eη′
2 }η′∈E1

exists from H2 and the fact that η′ |=N P2 for all η′ ∈ E1)

Let E = (
⋃
η′∈E1

Eη′
2), we have: η

p1;p2
; E from Definition 4.4 and

∀η′′ ∈ E, η′′ |=N Q (from the way the union is built). 2

Appendix B.2. Completeness and weakest precondition

Completeness of Hoare logic is defined as follows. Given a network N =
(V,M,EV , EM ,K), if the Hoare triple {P} p {Q} is satisfied in N (according
to Definition Appendix A.2) then ` {P} p {Q} (using the inference rules
of Section 5 and after substituting the symbols K... by their value in N). We
prove the completeness by establishing that one can compute the weakest
invariants of all while loops and that the backward strategy gives a proof of
{P} p {Q}.

The main difference with respect to the classical completeness proof is
that we navigate into a finite state space, so that we will not have to care
about the incompleteness of arithmetic or restrictions about weakest loop
invariants. In the following proposition, we see that one can compute the
weakest invariant for each while occurrence in the trace specification. Only

36

practical reasons in order to facilitate proofs justify to ask the specifier to
include loop invariants into trace specifications: Often, a slightly non minimal
invariant considerably simplifies the proof tree.

Proposition Appendix B.1. (Existence of the weakest loop invariant).
Given a grn N = (V,M,EV , EM ,K), let us consider two assertions Q and
e, and a trace specification p. There exists a weakest loop invariant I such
that the Hoare triple {I} while e with I do p {Q} is partially correct.

The following proof is constructive and gives a way to compute I (see re-
mark Appendix B.4).
Proof:

1. In the first step of the proof, we build a set D as a countable union.

• Let q0 = {η ∈ S | η |=N Q∧¬e} be the set of all states that satisfy
Q without entering the while loop.

• given qi, let qi+1 = {η ∈ S | η |=N e and ∃E ⊂ S, η
p
; E and E ⊂

qi}. From Definition Appendix A.2, for each i, qi is the set of states
that induce exactly i while loops and such that the resulting states
satisfy Q.

• Let Dn =
⋃n
i=0 qi. The sequence of Dn is increasing and because

S is finite, it is stationary. So D =
⋃∞
i=0 qi exists and can be

inductively computed.

2. In the second step of the proof, we show that the characteristic formula
of D is a loop invariant.

• Because D is finite, there is a formula I such that η |=N I iff
η ∈ D: I ≡ ∨η∈D 1η where 1η ≡

∧
v∈V v = η(v)

• I is a loop invariant because for each state η that satisfies I, there
is an integer i such that η ∈ qi.

– If i > 0, then η satisfies I ∧ e and by definition, there is a set
E such that η

p
; E and E ⊂ qi−1, consequently E satisfies I

because every state of qi−1 satisfies I.

– If i = 0, then η |=N ¬e, thus η 6|=N e ∧ I, which implies that
{e ∧ I} p {I} is satisfied for η, according to Definition Ap-
pendix A.2 and elementary truth tables.

37

3. In the last step of the proof, we show that each state of D satisfies any
minimal loop invariant.

• Let J be a minimal loop invariant. Assume that there is a state
η ∈ D that does not satisfy J . Then J ∨ 1η (where 1η is the
formula characterizing the state η), is strictly weaker than J . But
it is also an invariant since after i iterations of the while loop from
η, one of the resulting sets of states E satisfies Q. This contradicts
the minimality of J .

• Consequently I is the weakest loop invariant. 2

Theorem Appendix B.2. (Completeness theorem on the genetically mod-
ified Hoare logic). Given a grn N , a trace specification p and a post-
condition Q, the backward strategy defined at the end of Section 2, with the
inference rules of Section 5, computes after steps 1 and 2 the weakest precon-
dition P0 such that {P0} p {Q} is satisfied. In other words, for any assertion
P , if {P} p {Q} is satisfied, then P ⇒ P0 is satisfied (that is, the third step
of the backward strategy).

This theorem has an obvious corollary.

Corollary Appendix B.3. Given a grn N , our modified Hoare logic is
complete.

Proof of the corollary: if {P} p {Q} is satisfied, then, from the theorem
above, there is a proof tree that infers the Hoare triple if there is a proof
tree for the property P ⇒ P0 (which is semantically satisfied because P0 is
the weakest precondition). First order logic being complete and the number
of possible substitutions being finite (the state space being finite), the proof
tree for P ⇒ P0 exists. 2

Proof of the completeness theorem:
Under the following two hypotheses

H1 the Hoare triple {P} p {Q} is satisfied, i.e., for all η satisfying P , there

exists E such that η
p
; E and for all η′ ∈ E, η′ satisfies Q,

H2 for all while statements of p, the corresponding loop invariant I is the
weakest one (Proposition Appendix B.1),

one has to prove the conclusion:

38

C P ⇒ P0 is satisfied, where P0 is the precondition computed from p and
Q by the steps 1 and 2 of the backward strategy with the inference
rules of Section 5.

The proof is done by structural induction according to the backward strategy
on p.

• If p is of the form v+, then the only set E such that η
v+
; E is E =

{η[v ← v + 1]}. The hypothesis H1 becomes:

H1 for all η satisfying P , η′ = η[v ← v + 1] satisfies Q and η → η′ is
a transition of S

and from the Increase rule, the conclusion becomes:

C P ⇒ (Φ+
v ∧Q[v ← v + 1]) is satisfied.

So, H1 ⇒ C straightforwardly results from the definition of Φv+

(Notation 5.1) and we do not use H2 .

• If p is of the form p1; p2, then we firstly inherit the two structural
induction hypotheses:

H3 for all assertions P ′ and Q′, if {P ′} p1 {Q′} is satisfied then P ′ ⇒
P1 is satisfied, where P1 is the precondition computed from Q′ via
the backward strategy

H4 for all assertions P ′′ and Q′′, if {P ′′} p2 {Q′′} is satisfied then
P ′′ ⇒ P2 is satisfied, where P2 is the precondition computed from
Q′′ via the backward strategy

Moreover the hypothesis H1 becomes (Definition 4.4):

H1 for all η satisfying P , there exists a family of state sets F =

{Ee}e∈F such that η
p1
; F and e

p2
; Ee for all e ∈ F and for all

η′ ∈ E = (
⋃
e∈F Ee), η

′ satisfies Q

Lastly, from the Sequential composition rule, the conclusion becomes:

C P ⇒ P1 is satisfied, where P1 is the weakest precondition of
{· · ·} p1 {P2}, P2 being the weakest precondition of {· · ·} p2 {Q}.

39

From H4 (with Q′′ = Q) it results that all the states e ∈ F of hypoth-

esis H1 satisfy P2. Consequently {P} p1 {P2} is satisfied. Thus, from

H3 (with Q′ = P2 and P ′ = P) it comes P ⇒ P1, which proves the
conclusion.

• If p is of the form while e with I do p′, then, by construction of the
backward strategy, applying the Iteration rule, we get P0 = I, and the
conclusion results immediately from H2 .

• Similarly to the soundness proof, we do not develop here the other
cases of the structural induction. They are either similar to already
developed cases (Decrease rule) or trivial (Assert rule, Quantifier rules,
and Assignment rule).

This ends the proof. 2

Remark Appendix B.4. Soundness and completeness being now established,
one can extend Proposition Appendix B.1 by giving a purely symbolic compu-
tation of the weakest loop invariant I of a while loop. Following the notations
of the proof of Proposition Appendix B.1:

• The set of states q0 is characterised by the formula Q0 ≡ ¬e ∧Q,

• In addition, assuming that the trace specification p terminates, the set
of states qi+1 is inductively characterised by the weakest precondition
Qi+1 obtained via the backward strategy of the proof of {Qi+1} p {Qi}
(this is due to the soundness and completeness of our calculus).

• From this construction, we deduce that the first integer n such that
qn+1 ⊂ Dn (where Dn =

⋃n
i=0 qi) is the first n such that Qn+1 ⇒∨n

i=0Qi. This implication is decidable because the set of possible sub-
stitutions is finite.

Proposition Appendix B.1 implies that the integer n mentioned before exists.
Consequently I =

∨n
i=0Qi can be expressed in a purely symbolic way. And

more importantly, this can be done from the solely knowledge of the inter-
action graph. The assertion I is then a constraint on states and parameters
K..., what we used in Section 6.

40

