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• Identification of parameters which control the dynamics of biological
systems is one of the major problem of the modelling process.

• The brute-force approach considers each parameter setting, constructs
the associated dynamics (Kripke structure), and confronts it, via any
model checking procedure, with the known temporal properties.

• The brute-force approach faces the combinatorial explosion of the num-
ber of parameter settings (a product of double exponentials).

• A parametric model representing the set of possible transitions (con-
strained Kripke structure) associated with an ad hoc model checking
algorithm can decide, for each state, under which condition on the pa-
rameters the temporal properties are true in that state.
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Abstract

When modelling a complex biological system, the bottleneck of the process
is the determination of parameter values that lead to model dynamics that
are compatible with observations. Even for discrete modelling frameworks,
this step can be limiting. Here we introduce a representation of the whole
family of discrete models that can be associated to a biological system, where
states are shared by all models and transitions are labelled by constraints on
dynamical parameters. A model checking procedure is defined to handle this
new representation. This procedure extracts the conditions on parameter
settings that are compatible with a given dynamical property expressed in a
temporal logic. We prove the correctness of our model checking procedure
and illustrate the advantage of such an approach on some different systems
of biological interest.

Keywords: Biological system analysis, Model Checking, Constrained
Kripke structure, Automated parameter and model synthesis, Frameworks
for model verification of biological systems

1. Introduction

Motivation. One of the major problems when modelling complex biological
systems lies in the identification of the parameters which control their dy-
namics. On the one hand, the observational capacity does not allow direct
precise measurements of these parameters and, on the other hand, the obser-
vations are often global properties of the system (multi-stationarity, cyclical
behavior called homoeostasis,. . .).

For several decades now, a number of observations have been made which
show that certain evolutions of biological systems are qualitative in nature:
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From a functional point of view, each gene of a gene regulatory network can
be seen as either switched on or off. For example, during the famous cell
cycle, the notion of check-point allows the cell to wait for certain qualitative
key events to be carried out before continuing the cycle [1, 2]. With the
same idea, the change of functioning of the energetic metabolism (the so-
called Warburg/Crabtree effect) seems to result from a qualitative change of
the environment [3]. To make the story short, ones of the pioneers of these
qualitative modelling frameworks were R. Thomas [4] and S. Kauffman [5,
6]. And after the advent of formal verification methods, these qualitative
approaches have been revived due to the addition of formal methods to help
the modelling process [7, 8, 9, 10].

Roughly speaking, a biological system is often known by the set of inter-
actions between entities (so-called variables) but the relative strength of the
interactions is unknown. It is indeed very difficult to determine the fate of a
variable under the control of two regulators: Is a unique activator sufficient
to activate the target, or does the target variable need both activators to
be boosted? Worse, sometimes the simultaneous presence of both activators
leads to inhibition (because they form a complex that has a completely dif-
ferent activity). These relative strengths of influences are generally coded by
parameters.

The main question is then to identify the parameters that lead to a dy-
namic that is consistent with all systemic observations. The often used brute-
force approach have been firstly implemented: consider each possible valua-
tion of parameters (parameter setting), construct the associated dynamics of
the model, and then confront it, via any model checking procedure, with the
known temporal properties expressed formally in a temporal logic, see Fig. 1-
top1. Nevertheless, this approach implemented in TotemBioNet [1, 11], faces
the combinatorial explosion of the number of parameter settings to consider
which is a product of double exponentials. Although this enumerative ap-
proach is of great help when the number of parameter settings is reasonable,
it is generally too long to be used extensively in routine.

When the modeller is interested in only one parameter setting, leading
to a model satisfying a particular specified temporal property, several ap-
proaches has been proposed. In [12] the authors propose an approach which

1This graph, and others presented in the paper were designed using the tool yEd
(www.yworks.com/products/yed).
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exploits the capability of symbolic model checkers to efficiently manipulate
implicit descriptions of the state and parameter space. In order to find a
parameterisation satisfying a formula φ, the main idea is to test whether ¬φ
holds. Thus one verifies the absence of a parametrization satisfying φ and
a counterexample to ¬φ thus directly returns a valid parametrization for φ.
Whereas such an approach already proposed in [13] allows one to find a first
parameter setting which lead to a model satisfying the specification formula,
it does not address the issue of finding exhaustivelly the set of parameter
settings validating it.

When the temporal specification concern only long-term behavior, one
can also use state-of-the-art methods for attractor detection [14] to extract
the models satisfying the temporal specification.

When the temporal specification is more general and exhaustiveness is
desired, the diversity of behaviors may be due only to the valuation of pa-
rameters. In that case, the models obtained by valuating the parameters
share the structure of the regulations, leading often to a set of models hav-
ing the same states. It then seems natural to reason about sets of models.
This remark has been highlighted by several authors. For example, in [15],
the different models share the same states and are represented in a single
structure where each transition is labelled by the parameter settings which
are compatible with the considered transition. The LTL model checking has
also been adapted to this structure. Then, the CTL model checking has been
adapted to this combined structure [16] with a parallel implementation in or-
der to get the results in an acceptable time. Finally the model checking has
been improved to manipulate symbolically the parameter setting sets [17].

In this article, we take up this idea of a single structure to represent the
different models, adding a symbolic representation of the parameter settings
within the structure itself. The intuition is to consider each parameter setting
(leading to a certain dynamics) as a kind of variant of a unique parametric
model. This parametric model contains all the transitions that exist in at
least one concrete model. Considering this complete set of transitions, the
usual model checking procedures cannot be directly used for verifying such
a parametric model because of the superposition of all possible dynamics.
However, one can go further if the actual transitions in a given parameterised
model (model resulting from a parameter setting) can be derived from the
parametric model and the parameter setting under consideration. In such
a case, we can imagine a model checking algorithm that takes as input a
parametric model and a temporal logic formula, and decides for each state
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under which condition on the parameters the temporal formula is true in that
state. In other words, the algorithm does not answer whether the formula
is true or not, but under what conditions on the parameters it is true. (see
Fig. 1-bottom).

Figure 1: Top: brute force approach where all parameter settings P are enumerated, a
Kripke structure KSP (see below) is built for each one, and a model-checker is called to
check the formula on each KSP . Bottom: a constrained Kripke structure CKS which
aggregate all the parameter settings is built, a new labelling algorithm is used to compute
the constraints which characterize the family of KSP satisfying the formula.

Related works. Model checking a family of variants has already been pro-
posed in a totally different application domain. A decade ago, A. Classen
and co-workers [18, 19] proposed the concept of Variability-intensive systems
(VIS) which form a very large and heterogeneous class of systems whose
behavior can be adapted by activating or suppressing some predefined fea-
tures. Applied to our case, all models in the family would share the same
sets of states and transitions, but the transitions would be labelled by pa-
rameter constraints that would have to be validated for the transition to
exist. Variability would then be controlled by the parameter setting. In the
context of software engineering, variability mechanisms allow the adaptation
of software to the needs of a particular class of users and the environment.
This kind of systems needs also automated processing for verification and
validation which becomes challenging: as in our case, one has to face the
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combinatorial explosion of the number of possible behaviors. To tackle them,
authors proposed Featured Transitions Systems (FTS) to model and verify
the behaviors of VIS. In a FTS, each transition is annotated with a combi-
nation of features determining which variants can execute it. They defined a
feature-oriented version of LTL [20] or CTL [18], allowing the verification of
properties on a subset of configuration parameter settings. Our goal is to ex-
hibit exhaustively the parameter settings which make true a particular CTL
formula without any knowledge on this subset of parameter settings. The
model checking of VIS as well as extensions based on abstract interpretation
of such variational models [21] or using µ-calculus extensions [22] does not
fulfil this aim of exhaustivity.
When identifying parameters, it may also be relevant to consider information
from properties that cannot be expressed in classical CTL. Thus, different
authors proposed extensions of CTL in order to identify attractors or ma-
nipulate them as specifications [23]. Let us finally mention that the use of
fully symbolic hybrid CTL model checking for parameter/model inference
has been also revisited in [24] for inference of Boolean networks.

Paper structure. In Section 2, the R. Thomas’ framework used to model
biological systems is introduced. The influence graph defines the individual
influence of a variable on others, while the parameter settings define the
overall dynamics of the system. Moreover, temporal logic (CTL) allows the
known behavior of the system to be expressed formally. In Section 3, we
present a brute force approach where parameter settings are enumerated: A
Kripke structure is built for each setting and the temporal property is checked
on each one of these structures. This exhaustivelly collects all settings that
validate the property. In Section 4, we propose a new representation of
a family of Kripke structures, called Constrained Kripke Structure (CKS)
which agregates all the Kripke structures built for each particular parameter
setting. This aggregation was possible because (1) the set of states as well as
basic state properties are shared by all Kripke structures, and because (2) one
can check whether a transition actually exists in a particular Kripke structure
by checking the satisfaction of a constraint expressed on a common set of
parameters. We also present in this section the labelling algorithm for model
checking a CTL formula in a CKS (presented connective by connective). In
Section 5 we present our main results: the proof of the validity of the labelling
algorithm, some implementation considerations about our first prototype,
and last, the application of this new approach on several biological case
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studies. And finally, we conclude in Section 6.

2. R. Thomas’ Framework for Modelling Biological Systems

The framework of R. Thomas is a qualitative approach where the con-
centration values of biological substances are abstracted as discrete levels.
These levels are derived from thresholds at which certain changes occur.

Given a biological system, and some assumptions on the dynamics of this
system, our modelling steps are to:

1. Create an influence graph (with multiplexes) that statically describes
the individual influences between variables. This step can be really
tricky, and can need a lot of discussion with the specialist of the system.

2. Deduce from this influence graph the set of parameter symbols which
represent the relative strength of influences on their common target.
These parameters are used to define the global dynamics of the system
via a parameter setting which assigns a value to each parameter.

3. Find an appropriate translation of the biological knowledge in terms of
a temporal logic formula.

4. Exhaustively find any parameter setting that makes the dynamics,
based on both the influence graph and the considered parameter set-
ting, consistent with this temporal formula.

Step 4 is the so-called parameter identification problem in systems biology,
which is one of the major challenge in R. Thomas’ framework. The set of
parameter settings that are identified provides crucial information about the
relevance of the modelling:

• If this set is empty, then either the influence graph or the formula must
be revised.

• If this set is huge, then the formula needs to be revised as it is not
meaningful.

• Otherwise, the set of parameter settings can be analyzed and used in
a process of model enrichment [25, 26].

Our previous approach successively built a Kripke stucture to model-
check the property for one parameter setting. The challenge of the work
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presented in this paper is to use a global Kripke structure which encompasses
all the parameter settings.

In this section, we first define the influence graph with multiplexes, then
introduce parameters and the Computational Tree Logic (CTL) we use to
express biological properties.

2.1. Influence Graph with Multiplexes
Multiplexes were introduced in [27], as an extension of R. Thomas’ mod-

elling framework [28]. They express, via a logic formula, some conditions
under which an influence occurs. This reduces the number of parameters,
which directly depends on the number of predecessors (see Def. 2).

Definition 1 (Influence Graph with multiplexes). An influence graph with
multiplexes IG = (V,M,A) is a directed graph such that:

• Vertices are variables in V or multiplexes in M (V ∩M = ∅).

• With each variable vi ∈ V is associated a discrete domain Di = [li..ui]
where 0 ≤ li ≤ ui.

• Arcs in A go from multiplexes to variables (A ⊂M × V ).

• With each multiplex m ∈ M is associated a formula φm which ex-
presses the condition under which m influences its target variable(s).
The language of multiplex formulae is defined by:

– Atoms are atomic formulae (vi ⩾ n) with vi ∈ V and n ∈ Di.

– If φ, φ1 and φ2 are multiplex formulae, then ¬φ, φ1□φ2 are also
multiplex formulae, where □ is either ∧, ∨ or ⇒.

Running example : Pseudomonas æriginosa Influence Graph. In [7] we intro-
duced formal methods for selecting the parameter settings compatible with
all the available knowledge on a little system: production of mucus in Pseu-
domonas æriginosa. This system will be used as running example throughout
this article.

Pseudomonas æriginosa is an opportunistic bacterium that can secrete
mucus. Mucus is composed by alginate, a protein named AlgU . MucB
is another protein that is co-expressed with AlgU and they are both co-
activated by a genetic element called an operon. Moreover MucB inhibits
the operon and the operon activates itself through several molecules. When
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these bacteria affect the lung, they cause serious infections via accumulation
of mucus, particularly for cystic fibrosis diagnosed patient [29].

Fig. 2 presents the influence graph of Pseudomonas æriginosa. Orange
nodes are variables and blue nodes are multiplexes. Two levels are used for
MucB (presence or absence) while three are used for Operon to express a
non-mucoid state (level 0), a mucoid state (level 2) and an intermediate state
(level 1) which can switch to mucoid or non-mucoid state. Thus there exists
6 possible states for this influence graph: 2 distinct values for MucB and
3 distinct values for Operon. The set of states will be denoted S in the
following of this article. An arrow from a multiplex to a variable expresses
an influence, according to a threshold property. For example, the arrow from
prod to MucB expresses that when the level of Operon is sufficient (more
than level 1), then MucB is activated. Conversely, the arrow from free to
Operon expresses that when the level of MucB is sufficient (more than level
1), then Operon is inhibited: !(MucB>=1) is the concrete syntax of our tool
TotemBioNet2 to denote ¬(MucB ≥ 1). Thus !(MucB>=1) expresses the
absence of an activation, seen as an inhibition. Last, the arrow from alg to
Operon expresses a self-loop: when the level of Operon is maximum (more
than level 2) then Operon is activated.

Figure 2: Influence graph of the Pseudomonas æriginosa mucus production system. The
dashed arrows are there to make easier to understand the interactions: they can be deduced
from formulae of multiplexes. !(MucB>=1) stands for ¬(MucB ≥ 1) in the concrete syntax
of TotemBioNet.

2The complete concrete syntax can be found at https://gitlab.com/totembionet/
cks-bionet/-/blob/main/CKS-BioNet/doc/userManual.pdf
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2.2. Regulatory Networks
Given an influence graph, parameters represent the relative strength of

influences on a variable.

Definition 2 (Parameters). The parameters of a variable v are denoted
Kv,ω where ω is a subset of the predecessors of v in IG. Kv,ω represents
the direction of evolution of variable v when it is controlled according to the
multiplexes in ω.

• A variable v has 2d
−(v) parameters where d−(v) is the number of prede-

cessors of v in IG.

• K(v) denotes the set of parameters of variable v.

• K is the set of all parameters: K = ∪v∈VK(v).

Definition 3 (Regulatory network). A Regulatory network is a couple N =
(IG,K).

The dynamics of a regulatory network N = (IG,K) is determined by a
valuation of its parameters in K, which is called a parameter setting.

Definition 4 (Parameter Setting). Given a regulatory network N = (IG,K),
a parameter setting P assigns to each parameter Kvi,ω associated with vari-
able vi a value in its discrete domain Di:

P : K → N
Kvi,ω 7→ kvi,ω ∈ Di

The set of parameter settings of N is denoted P.

Note that the space of parameter settings is huge. Indeed, for a regulatory
network N , the number of parameter settings is the product of all possible
values of the parameters associated to each variable. Each parameter of a
variable vi ∈ V can take its value in integer interval Di = [li, ui]. So there are
(ui − li + 1)|K(vi)| possible parameter settings for the parameters of vi where
|K(vi)| = 2d

−(vi) is the number of parameters of vi (i.e. the cardinal of the
set of parts of the set of predecessors of vi, see Def. 2). So, the number of
parameter settings is: |P| =

∏
vi∈V (ui − li + 1)2

d−(vi) .
A parameter setting P ∈ P sets the global dynamics of the system. On

each state, the possible transitions of the system depend on the applicable
parameters of the variables which are determined by the combination of
multiplexes whose formulae are true in that state.
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Definition 5 (Applicable parameter on a state). The applicable parameter
of variable v on a state s ∈ S, is the only parameter kv,ω such that:

• ∀m ∈ ω, φm is true on state s.

• ∀m ∈ pred(v),m /∈ ω, φm is false on state s (where pred(v) is the set
of predecessors of v).

The applicable parameter of v in state s is denoted kv[s]. Each multiplex m,
predecessor of v, such that φm is true on s is called a resource of v in s.

Given a parameter setting P , a variable v and a state s, the value of the
applicable parameter for v on s indicates if, on state s, v tends to increase,
decrease or stay stable.

Example : Pseudomonas æriginosa parameters. Variable MucB has one pre-
decessor thus two parameters are associated with it: KMucB,{} when formula
associated with prod is false and KMucB,{prod} when formula associated with
prod is true (see Fig. 2). In the same way, variable Operon has two prede-
cessors thus four parameters are associated with it: KOperon,{}, KOperon,{free},
KOperon,{alg} and KOperon,{alg,free}.

On state 21 (Operon = 2 and MucB = 1), KOperon,{alg} is the applica-
ble parameter for Operon (because formula alg is true while formula free
is false), and KMucB,{prod} is the applicable parameter for MucB (because
formula prod is true).

2.3. CTL formula
We focus on biological properties which express global behavior such as

the existence of an attraction basin or a sustained oscillation. For such long-
term properties, we need to express some relations:

• About values of variables and combinations of values for several vari-
ables.

• About values of variables in the future, depending on successive tran-
sitions induced by a parameter setting.

The first item leads to the need of logical connectives such as logical or, logical
and, etc. whereas the second item involves the use of temporal connectives.
In other terms, one needs a temporal logic.
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Among the different temporal logics we have chosen the Computational
Tree Logic (CTL). Because the states are shared by all dynamics (derived
from all possible parameter settings), for a given state, whatever the pa-
rameter setting, the value of each variable will remain the same. Thus we
consider CTL formulae inductively built over the set of variables V in the
usual way, using logical connectives, modalities on paths (E Exists, A All)
and modalities on time (X neXt, F Future, U Until, G Generally).

Definition 6 (ϕCTL : set of CTL formulae over V ). ϕCTL, the set of CTL
formulae over V , is defined by :

• An atomic proposition a ∈ AP (AP ⊂ ΦCTL) is either a constant (⊤,
⊥) or v△n where v ∈ V is a variable, n is a natural number and △ is
a comparison operator among <,>,≤,≥,=.

• A CTL formula φ ∈ ϕCTL is either an atomic proposition, or

– ¬φ or φ1▽φ2 where ▽ is a logical connective among ∧,∨,⇒,⇔
– E[φ1Uφ2] or A[φ1Uφ2]

– ⊙φ1 where ⊙ is either EX,EF,EG,AX,AF or AG

with φ, φ1 and φ2 in ϕCTL.

Example : Operon stable states. From literature we know that a non-mucoid
Pseudomonas æriginosa (which does not produce mucus) will never create
mucus, and that when Pseudomonas æriginosa is mucoid (which does pro-
duce mucus), it cannot turn off again. This can be translated by the following
CTL formula:

φ ≡ ((Operon = 0) ⇒ AG[¬(Operon = 2)]) ∧
((Operon = 2) ⇒ AG[¬(Operon = 0)])

It expresses that starting from a state where Operon = 0 (non-mucoid) then
there is no path leading to a state where Operon = 2 (mucoid), and vice
versa.

Given a regulatory network and a CTL formula φ which expresses some
global behavior of the biological system, the parameter identification problem
consists in choosing the parameter settings such that φ is true taking into
account the transitions induced by the values of the parameters.
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3. Identification by Enumeration of Kripke Structures

We first formally define here the Kripke structure for one setting that was
used in our previous enumerative approach and present our associated tool
TotemBioNet. This Kripke structure will be generalized in the next section,
in order to take into account all parameter settings, in a new global approach.

3.1. Kripke Structure for One Parameter Setting
The Kripke structure representing the dynamics of the model associated

with a given parameter setting P is defined as follows.

Definition 7 (Kripke structure associated with parameter setting P ). Given
a regulatory network N = (IG,K) whose variables are denoted v1, . . . , vn and
P ∈ P a parameter setting for N , the associated Kripke structure KSP =
(S,RP , L) is defined as follows:

• S is the set of states: Πn
i=1Di.

• RP is the set of transitions computed as follows:

1. Loops: there is an arc from s to itself if P (kvi [s]) = si,∀i =
1 . . . n.

2. Arcs: there is an arc from sp = (sp1, ..., s
p
n) to sq = (sq1, ..., s

q
n) if

there exists one and only one index i s.t. spi ̸= sqi with either :
sqi = spi +1 and P (kvi [sp]) > spi or sqi = spi − 1 and P (kvi [sp]) < spi .

• L is a labelling function L : S → 2AP where L(s) is the set of atomic
propositions which are true in s.

Remember that P (kvi [s]), the applicable parameter of variable vi on state
s (see Def. 5), is the value towards which vi evolves from s. Thus item 1
(Loops) and item 2 (Arcs) express how the variable vi evolves:

• Stability (item 1): For the variable vi to be stable, vi must have reached
its focal value, thus vi must be equal to the value of its applicable
parameter.

• Transition towards a neighbour (item 2): In order for variable vi to
increase (or decrease) by one level, the value of vi must be less (or
greater) than the value of its applicable parameter.
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Let us remark that whatever the valuation P ∈ P , the Kripke structure
KSP deduced from the parameter setting P is serial (i.e. every state has at
least one successor). In fact, two cases can arise. (i) There is an applicable
parameter whose value is different from the current value of the associated
variable, and in that case there is a transition to another state. (ii) All
the parameters applicable in this state are equal to the current value of the
associated variable, and in that case, there is a loop of s on itself.

Example : Kripke structures for Pseudomonas æriginosa. Fig. 3 provides two
Kripke structures obtained from two different parameter settings P1 and P2

(given in concrete syntax, see right side of Fig. 3). Remember that in state
21, KOperon,{alg} is the applicable parameter for Operon and KMucB,{prod} is
the applicable parameter for MucB. Thus for example, transition from node
21 to node 20 exists in KSP1 because KOperon,{alg} = 2 (Operon stays stable)
and KMucB,{prod} = 0 (MucB tends towards 0). Transition from node 21 to
node 11 exists in KSP2 because KOperon,{alg} = 0 (Operon tends towards 0
by one step) and KMucB,{prod} = 1 (MucB stays stable). Note that self loops
allow the Kripke structure to be serial.

Figure 3: Two Kripke structures associated with the parameter settings P1 and P2. For-
mula φ (see Subsection 2.3) is true on KSP1

and false on KSP2
because starting from

state 21 or 22 the state 01 can be reached. Parameters are written in concrete syntax:
K_VarName:p1:p2:...:pn denotes the parameter of variable V arName under influence of pre-
decessors p1, . . . , pn (e.g. K_MucB:prod stands for KMucB,{prod}).

Given a parameter setting P and a CTL formula φ ∈ ΦCTL, a model-
checker tool can be called to check if φ is true for the KSP Kripke structure.
To solve the previously described parameter identification problem, a brute
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force approach consists then in enumerating the parameter settings, build
the associated Kripke structure KSP and call a model-checker tool. This
enumeration approach is implemented in our tool TotemBioNet.

3.2. TotemBioNet: a Tool for Parameter Identification
TotemBioNet has been widely used to model several biological systems,

where abstraction can provide new insight on the biological system: Mu-
cus production in Pseudomonas æruginosa [7, 11] in different environments,
verification of checkpoint properties in cell cycle [1], and Warburg/Crabtree
effect in central carbon metabolism [30].

TotemBioNet takes as inputs:

• An influence graph.

• The (potentially reduced) domains of each parameter.

• Some formalised behaviors, expressed as CTL formulae for temporal
properties.

TotemBioNet enumerates the parameter settings. Then for each P ∈ P ,
it builds the associated Kripke structure KSP , and calls the model-checker
NuSMV [31]3 to check the CTL formula. The TotemBioNet output, written
in a .csv file, is the set of parameter settings that solves the identification
parameter problem.

Note that hopefully the number of parameter settings can often be re-
duced using biological knowledge. One possibility is thought experiments.
Since the parameter Kv,ω represents the direction of evolution of variable v
when the resources set is ω, the biologist can be able in some cases to identify
this value by hand [30]. Another possibility is to take benefit of information
about a well known path of the system using a so-called Hoare logic [10]. In
that case, some conditions on parameters, that allow the Kripke structure to
exhibit this trace, can be automatically collected by TotemBioNet [1]. This
also reduces the number of parameter settings which have to be enumerated.

The global TotemBioNet process is illustrated in Fig. 4.

3The parameters are actually translated in NuSMV by FROZENVAR because we set
their values by enumeration before building the NuSMV input file. In the first experiments,
we tried to use non-instantiated variables, but this approach was not feasible: it did
not scale up and moreover, the symbolic CTL Model-checker has problems extracting
counterexamples.
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Figure 4: TotemBioNet processing flow

3.3. Related Tools for Parameter Identification
While the analysis of a unique Kripke structure associated with a param-

eter setting is commonly carried out using different tools, the search for all
parameter settings that lead to a Kripke structure satisfying certain proper-
ties, remains a task with few tools. For example, the colomoto platform [32]
provides several tools capable of analyzing the dynamics associated with a
parameter setting via the analysis of the transition graph (BoolNet [33],
GINsim [34]). For verifying the coherence between the traces given by the
transition graph and temporal properties, some of these tools even allow
the verification of associated temporal formulae through the model checker
NuSMV [31]. However, none of these tools allows the enumeration of all pos-
sible dynamics of a non-parameterized network, combined with the formal
verification of properties in temporal logic as TotemBioNet does.

4. Identification based on a Global Constrained Kripke Structure

The aim of this new approach is to aggregate all the Kripke structures
obtained for each of the parameter settings, into a global Kripke structure
which describes all the possible transitions.

4.1. Contraints on Parameters
To be able to express the conditions for a transition on the global struc-

ture to occur, we make an hypothesis: each envisioned transition can be la-
belled by a constraint on parameters that defines the set of settings sharing
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this transition. More precisely, we suppose that for each possible transition
(s, s′) ∈ ∪P∈PRP in any Kripke structure, there exists a constraint c on pa-
rameters of K that makes possible to decide whether this transition (s, s′)
belongs to RP or not: (s, s′) ∈ RP iff the constraint c is satisfied for the
parameter setting P .

Definition 8 (CK : set of constraints on parameters). The set CK of well-
formed constraints over parameters in K is inductively defined by:

• An atom is either a constant (⊤, ⊥) or k△n where k ∈ K is a pa-
rameter symbol, n is a natural number and △ is a comparison operator
among <,>,=.

• A constraint on parameter c ∈ CK is either an atom, or ¬c or c1▽c2
where c, c1 and c2 are constraints in CK and ▽ is a logical connective
among ∧ and ∨.

We define now the set of parameter settings satisfying a constraint.

Notation 4.1 (Satisfaction relation of a constraint). For each couple (P, c) ∈
P × CK, we note P ⊨ c for saying that constraint c is evaluated to true with
the valuation P .

Definition 9 (Parameter settings of a constraint). For each c ∈ CK, we
define JcK = {P ∈ P | P ⊨ c} the set of parameter settings which satisfy the
constraint c.4

4.2. Constrained Kripke Structure for a Regulatory Network
The aggregation of all Kripke structures from the previous section is done

within a constrained Kripke structure: A constraint on parameters is associ-
ated with each transition in order to define the set of parameter settings for
which the transition exists.

Definition 10 (Constrained Kripke Structure over CK). A Constrained Kripke
Structure is a quadruplet CKS = (S,CK, R, L) where :

• S is the set of states of the system.

4In terms of Constraint Satisfaction Problem, JcK is the set of solutions of constraint c
on the Cartesian product

∏n
i=1[li..ui]

|K(vi)|.
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• CK is the set of constraints over parameters.

• R is a relation R ⊆ S × CK × S and each element (s, c, t) of R is
denoted s

c→ t. This expresses that the relation between s and t exists
only under the constraint c. Each element s c→ t is called a transition.

• L is a labelling function L : S → P(AP × CK).

This definition and the associated labelling algorithm presented in Sec-
tion 4.3 are a general framework for model checking formulae on Kripke struc-
tures with constrained transitions. However, we are interested in the appli-
cation domain where CKS is obtained from an influence graph IG = (V,E).

Definition 11 (Constrained Kripke structure for an influence graph). Given
an influence graph IG = (V,E), its associated constrained Kripke structure,
denoted CKSIG, can be constructed in the following way:

• S is the set of states : Πn
i=1Di.

• CK is the set of constraints over parameters.

• R is the set of transitions computed as follows:

1. Loops: For each state s = (s1, s2, ..., sn) ∈ S, there exists a tran-
sition s

c→ s, where the constraint c is : c ≡ ∧i=1...n kvi [s] = si.
2. Arcs: For each state s = (s1, s2, ..., sn) ∈ S, for each variable

index i ∈ [1..n] :
– If si > li (lower bound of vi), then there exists a transition
s

c→ s′ where s′ = s[si ← si − 1] and c ≡ kvi [s] < si.
– If si < ui (upper bound of vi), then there exists a transition
s

c→ s′ where s′ = s[si ← si + 1] and c ≡ kvi [s] > si.

• L is a labelling function L : S → P(AP ×CK) where L(s) = {(a,⊤) | a
is an atomic proposition which is true in s}.

In definition 7, item 1 (Loops) and item 2 (Arcs) expressed how a partic-
ular variable vi evolves. Here, item 1 and 2 express a more general property
over a state (i.e. over all the variable states):

• Stability of a state (item 1): For a state s to be stable, it is necessary
that no variable is attracted to a different value. In other words, all
the applicable parameters have to be equal to the current value of the
associated variable.

17



• Transitions towards a neighbour (item 2): For a state s to evolve, it
is necessary for at least one variable vi to change. To decrease (resp.
increase), it is necessary that the current value of this variable vi is
greater (resp. less) to the lower (resp. upper) bound of that variable
and that vi is attracted to a lower (resp. greater) level than the current
one.

Fig. 5 represents the CKS (without labelling function) for the influence
graph of Fig. 3.

Figure 5: Constrained Kripke structure CKSIG for Mucus production in Pseudomonas
æruginosa. Character "&" stands for operator ∧ (e.g. K_Operon:alg:free=2 & K_MucB:prod=0
stands for KOperon,{alg,free} = 2 ∧KMucB,{prod} = 0).

4.3. Labelling Algorithm
The aim of the labelling algorithm applied to CKS is to label each state s

by couples consisting of a CTL formula φ and the constraint on the parame-
ters so that s satisfies the formula φ. It aims at extending the labelling func-
tion L of the CKS to all ΦCTL. Because the set ΦCTL is infinite, the labelling
algorithm focuses on labelling the states s of the CKS with sub-formulae of
a target formula φ. At the end of the algorithm, for each sub-formula ψ
of this target formula φ (itself included), each state s has to be labelled by
(ψ, cψs ) where cψs ∈ CK is the constraint on parameters which defines all the
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parameter settings P for which the formula ψ is satisfied in state s in the
associated Kripke structure KSP (we note s ⊨P ψ).

Let us consider that one wants to model check formula φ ∈ ΦCTL. As
usual, the labelling algorithm starts with the atomic formulae, and progres-
sively reviews all sub-formulae (from the smallest to the biggest) and finally
labels the states of the constrained Kripke structure with target formula φ.
The sequel describes each of these steps considering all possible connectives.

4.3.1. Choice of Temporal connectives
The algorithm does not need to be able to handle every CTL connec-

tive explicitly, because there are several equivalences between temporal con-
nectives as well as De Morgan’s laws for logical connectives. For example,
¬AFφ ≡ EG¬φ and ¬EFφ ≡ AG¬φ. Therefore, as in propositional logic,
there is some redundancy among the connectives. It can be proved that only
3 temporal connectives are sufficient to express all 8 ones [35]. Several choices
are possible, but here we choose EX, EU and EG (see Appendix A). For
non temporal connectives, we choose ¬ and ∧.

Notation 4.2. Labels. For a state s ∈ S, we denote L(s) the set of labels
associated with s. Moreover we denote Lc(s, φ) the constraint associated with
φ in L(s). The labelling function Lc(s, φ) gives the label ⊥ to every state
and every formula unless s is already labelled by (φ, cφs ), and in such a case
Lc(s, φ) = cφs .

Note that the implementation does not actually need to explicitly label
all states with all subformulas of the target formula, it is just important that
the labelling function returns the "default label" for states that do not yet
have a label containing the subformula in question.

4.3.2. Initialisation Step
Generally the first step of a labelling algorithm consists in labelling each

state with atomic properties which are true in that state. Here we also label
each state by all the couples (a,⊤) such that the atomic proposition a ∈ AP
is satisfied in s (the satisfiability of atom a does not depend on parameter
settings). Since the atom ⊤ is true in all states, we also label each states by
(⊤,⊤).

4.3.3. Procedure for Non Temporal Connectives
1. If φ = ¬ψ, repeat for each state s:
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• If (ψ, c) ∈ L(s), label s with (φ,¬c).
• If s is not already labelled with ψ, label s with (φ,⊤).

2. If φ = φ1 ∧ φ2, repeat for each state s:
• If (φ1, c1) ∈ L(s) and (φ2, c2) ∈ L(s), label s with (φ, c1 ∧ c2).
• Else, do nothing.

4.3.4. Procedure for EX[φ]
Repeat for each state s:

• Seek for each state t such that s c→ t ∈ R and t is labelled by (φ, cφt ).

• Then label state s with :(
EX[φ] ,

∨
t s.t. s c→t ∈ R ∧ Lc(t, φ) = cφt

(c ∧ cφt )
)
.

Note that EX[φ] is true iff there exists at least one successor which is already
labelled by φ. Nevertheless, because we are interested in characterising all
the parameter settings for which the state s is labelled by EX[φ], we have
to consider all the successors.

4.3.5. Procedure for E[φ U ψ]
The processing of the connective EU is a little bit more subtle because

one has to consider paths of length greater than one. This can be done using
an iterative loop whose aim is to track all paths leading to a state where ψ
is satisfied.

1. Initialisation: For each state s already labelled by (ψ, cψs ), label the
state s with (E[φUψ], cψs ).

2. While there exists at least one state s such that JLc(s, E[φUψ])K has
changed5:

• For each state s labelled with (φ, cφs ), one seeks for all states t
such that s c→ t ∈ R and t is already labelled with (E[φUψ], cEUt ).
One labels s with:(
E[φUψ] ,

( ∨
t s.t. s c→t ∧ Lc(t, E[φUψ]) = cEUt

(c ∧ cEUt )
)
∧ cφs

)
(1)

5that is, the semantics of constraints associated with E[φUψ] does change for at least
one state.
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The implementation of such an algorithm depends on the capability of check-
ing a change of the semantics of a constraint. If a normal form of each con-
straint is maintained, this checking can be done at a syntactic level. But
because of an excessive computation cost, one can also use an external tool
in order to test the equivalence of both constraints:

JcsK ̸= Jc′sK ⇔ (cs ⇔ c′s) is not satisfiable.
We do not detail this point, but in Section 5.2 we give some tips for such
implementation mixing syntactic and semantic levels.
The Section 5.1.1 provides a proof of the termination of this algorithm as
well as its correctness.

4.3.6. Procedure for EG[φ]
The subtlety of the processing of this connective remains in the fact that

one has to highlight an infinite path along which the formula φ is true every-
where. Because the set of states is finite, the search of infinite paths reduces
to the search of cycles sharing the same property. Thus the intuition of the
next algorithm is to find the cycles passing only through states satisfying the
formula φ.

1. Initialisation : For each state s already labelled by (φ, cφs ), label the
state s with (EG[φ], cφs ).

2. While there exists at least one state s such that JLc(s, EG[φ])K has
changed6:

• For each state s labelled by both (φ, cφs ) and (EG[φ], cs), one seeks
for all states t such that s c→ t ∈ R and t is already labelled with
(EG[φ], cEGt ). Compute

cEGs =

 ∨
t s.t. s c→t ∈ R ∧ Lc(t, EG[φ]) = cEGt

c ∧ cEGt ∧ cφs

 (2)

If JcEGs K ̸= JcsK, do change the current label (EG[φ], cs) by (EG[φ], cEGs ).
In particular if cEGs is not satisfiable (JcEGs K = ∅), remove the label
(EG[φ], cEGs ) from state s.

6that is, the semantics of constraints associated with EG[φ] does change for at least
one state.
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As for connective EU, the implementation of such an algorithm depends on
the capability of checking a change of the semantics of a constraint. The
Section 5.1.2 provides a proof of the termination of this algorithm as well as
its correctness.

5. Results

In this section we present our main results:

• The validity of the labelling algorithm for constrained Kripke struc-
tures.

• A first prototype that implements the labelling algorithm and computes
the parameter settings which satisfy the biological property.

• The application of this global approach to some biological case studies.

5.1. Validity of the Labelling Algorithm
This subsection is devoted to the validity of the global labelling algorithm.

Given a CKS, two policies are possible for providing the set of parameter
settings making true a given CTL formula. The first one is to enumerate each
possible parameter setting P ∈ P , build the associated Kripke structure, and
use the classical model checking algorithm. The second one consists in using
our labelling algorithm, and then deduce the set of parameter settings con-
sistent with the formula. Intuitively, the constraints on parameters built by
the algorithm are a syntactic representation of the set of parameter settings
making true each sub-formula. The validity of the algorithm focuses on the
semantics of these constraints. The following proofs aim to assert that the
diagram in Fig. 6 is commutative.

From a CKS and a parameter setting, it is straightforward to build the
Kripke structure associated to P .

Definition 12 (Kripke structure deduced from a parameter setting P ). Let
us consider a Constrained Kripke Structure CKS = (S,CK, R, L) and a pa-
rameter setting P . The Kripke structure CKS(P ) deduced from CKS and P
is the Kripke structure (S,R′, L′) where:

• S is the set of states of the system.

• R′ is a relation between states which are present for the parameter set-
ting P : R′ = {(s, t) | ∃c ∈ CK s.t. (s, c, t) ∈ R and P ⊨ c}.

22



Figure 6: Commutative Diagram. Top: global labelling algorithm on CKS that labels si
with (φ, ci) if φ is true at si under constraint ci on parameters. Bottom: classical labelling
algorithm on KSP . CKS(P ) is the projection of CKS on the particular parameter setting
P . (si, φ) appears in the bottom list iff constraint ci is true for parameter setting P .

• L′ is a labelling function L′: → 2AP where L′(s) = {a ∈ AP | ∃c ∈
CK s.t. (a, c) ∈ L(s) and P ⊨ c}.

Let us remark, that, by construction CKS(P ) = KSP (see Def. 7 and 12),
and because of this equality and previously defined hypotheses, the Kripke
structure is serial.

In order to prove the validity of the labelling algorithm, one has to show
that after termination of the algorithm, if (φ, cφs ) ∈ L(s), then for each
parameter setting P ∈ P :

• If P satisfies cφs (i.e. P ⊨ cφs ), then the formula φ is true in state s
when considering the Kripke structure CKS(P ) (i.e. s ⊨P φ).

• If P does not satisfy cφs (i.e. P ̸⊨ cφs ), then the formula φ is false in
state s when considering the Kripke structure CKS(P ) (i.e. s ̸⊨P φ).

In other words7:

∀s ∈ S
(
(φ, cφs ) ∈ L(s) ⇔

(
∀P ∈ P , (P ⊨ cφs )⇔ (s ⊨P φ)

) )
7Remember that in this formula, ⊨ covers the semantics of two universes: ⊨ denotes

semantics of parameters constraints while ⊨P denotes the semantics of CTL formulae in
the Kripke structure KSP .
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5.1.1. Validity of the labelling algorithm for EU connective
Lemma 5.1. Let us consider that, at a certain stage of the algorithm, s is
labelled with (E[φUψ], c1s) and that the next step modifying this label leads to
the new label (E[φUψ], c2s). Then Jc1sK ⊆ Jc2sK

Proof. At the beginning of the algorithm, all the states are labelled with
(E[φUψ],⊥). In other words, for each state s, the set of parameter settings
satisfying the constraint associated with E[φUψ] is empty.
During initialisation, each updated state s trivially satisfies the statement.
Let us suppose now that the statement is true until a stage of the algorithm.
Let us consider a new update of state s.

• If it is the first time that s is labelled with E[φUψ]: the algorithm
associates with this formula a constraint whose solutions constitute a
set which can be only larger than the empty set.

• If the label of s (E[φUψ], cs) is updated by (E[φUψ], c′s):

– If this is the first time the successor t has been taken into account
to label s with the formula E[φUψ] then in the disjunction of
eq. 1, there exists a new option (the one considering this new
successor t), leading to a possible increasing of the set of solutions:
JcsK ⊆ Jc′sK.

– If the update is due to a change of JctK: by recurrence hypothesis,
JctK ⊆ Jc′tK. So Jct ∧ cr ∧ cφs K ⊆ Jc′t ∧ cr ∧ cφs K leading naturally to:
JcsK ⊆ Jc′sK.

This finishes the proof.

Theorem 1. The loop of the EU labelling algorithm terminates.

Proof. Let us consider the vectors of sets of parameter settings
(JLc(s1, E[φUψ])K, JLc(s2, E[φUψ])K, . . . , JLc(sN , E[φUψ])K) where N is the
total number of states. The set of possible vectors is large but finite.
Let us consider the partial order between 2 possible vectors: V1 ⩽ V2 iff for
each coordinate i ∈ [1..N ], we have V1(i) ⊆ V2(i).
The vector associated with the starting point of the algorithm (before the
initialisation step) is the vector of empty sets. And each update of this
algorithm leads to an increasing of the vector. Thus because the algorithm
increases the vector, and that the set of vectors is finite, the algorithm reaches
a fixed point, and the algorithm terminates.
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Lemma 5.2. Let us consider a CKS, a parameter setting P and a given
formula E[φUψ]. For each state s, let (E[φUψ], cs) be the label of state
s computed by the EU procedure such that P ⊨ cs for the first time (no
previously computed Lc(s, E[φUψ]) are satisfied by P ). Then, there exists a
finite path (without cycle) in CKS(P ) which makes E[φUψ] true in s (this
path starts at s and terminate in a state validating ψ).

Proof. The proof consists in constructing a cycle-free path in CKS(P ) that
validates the formula E[φUψ]. This path is constructed inductively, starting
from the end of the path, i.e. from a state validating ψ.

• Trivial during initialisation: if P ⊨ cψs , the path (in CKS(P )) with no
transition starting from state s where ψ is true (P ⊨ cψs ) makes true
the formula E[φUψ] in state s. This path does not contain any cycles.

• Let us assume the proposition is true up to a certain number of itera-
tions and let us now consider the updating c′s of cs: c′s = Lc(s, E[φUψ]))
such that P ⊨ cs for the first time (no previously computed Lc(s, E[φUψ])
are satisfied by P ). The new label is(
E[φUψ] ,

( ∨
t s.t. s

c→t ∧ t labelled by (E[φUψ], ct)

(c ∧ ct ∧ cφs )
))

Since P ⊨ c′s, there exists at least one conjunction such that P ⊨
c∧ ct ∧ cφs . Thus, there exists a transition from s to t1 in CKS(P ) and
t1 is labelled with (E[φUψ], ct1).

– If t1 is also labelled by (ψ, cψt1) and if P ⊨ cψt1 , then the path s→ t1
is a path in CKS(P ) (since P ⊨ cr) and the path makes true the
formula E[φUψ] in CKS(P ) (since P ⊨ cφs and P ⊨ cψt1).

– In all other cases:

∗ P ⊨ c implies that s→ t1 is a path in CKS(P ).
∗ P ⊨ cφs implies that, inside the Kripke structure CKS(P ), the

formula φ is satisfied in s.
∗ Since P ⊨ ct1 , we can use the recurrence hypothesis which

states that, when P ⊨ Lc(t1, E[φUψ])) for the first time, one
builts a finite path without cycle in CKS(P ) which makes
E[φUψ] true in t1.
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These three information pieces allow one to build a finite path
without cycle in CKS(P ) which makes true E[φUψ] in s.

Theorem 2 (Validity of the EU labelling algorithm). Let us consider a state
s labelled by (E[φUψ], cs). Then:

1. For all P ⊨ cs, s ⊨P E[φUψ].
2. For all P ̸⊨ cs, s ̸⊨P E[φUψ].

Proof. 1. This proof is done by the previous lemma.
2. By contradiction. Let us consider P ̸⊨ cs and s ⊨P E[φUψ]. Then,

there exists at least a path s, t1, t2, . . . , tn in CKS(P ) such that tn ⊨P ψ
and all previous states satisfy φ. Among all these paths, we choose the
shortest one which is cycle-free. Since all transitions of CKS(P ) are
transitions of CKS, the exhibited path is also in CKS.
After the first while loop of the algorithm, tn−1 has been labelled by
(E[φUψ], cn−1) and P ⊨ cn−1, after the second loop, tn−2 has been
labelled by (E[φUψ], cn−2) and P ⊨ cn−2, ... and after n loops, s has
been labelled by (E[φUψ], c0) and P ⊨ c0.
Since Jc0K ⊆ JcsK (Lemma 5.1), one deduces: P ⊨ c0 ⇒ P ⊨ cs.
Contradiction.

5.1.2. Validity of the labelling algorithm for EG connective
Lemma 5.3. Let us consider that, at a certain stage of the algorithm, s is
labelled with (EG[φ], c1s) and that after the next step (first update of a label),
the same state s is labelled with (EG[φ], c2s). Then Jc2sK ⊆ Jc1sK.

Proof. The proof is similar to the one for Lemma 5.1. After the initialisa-
tion step of the algorithm, all states satisfying φ are labelled with formula
(EG[φ], cφs ) where cφs = Lc(s, φ). In other words, for each state s satisfying
φ, the set of parameter settings satisfying the constraint associated with this
formula is all possible parameter settings making φ true in s. Note that this
labelling step is by excess: the algorithm labels states with some constraints
that will be more restrictive at a later stage (perhaps until they become un-
satisfiable).
Let us suppose now that the statement is true until a stage of the algorithm.
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Let us consider a new update of state s.
If the label of s (EG[φ], cs) is updated by (EG[φ], cEGs ): The update is due
at least to a change of JctK. By recurrence hypothesis, Jc′tK ⊆ JctK. So
Jc′t ∧ c ∧ cφs K ⊆ Jct ∧ c ∧ cφs K leading naturally to: JcEGs K ⊆ JcsK. This finishes
the proof.

Theorem 3. The loop of the EG labelling algorithm terminates.

Proof. Let us consider the vectors of sets of parameter settings
(JLc(s1, EG[φ])K, JLc(s2, EG[φ])K, . . . , JLc(sN , EG[φ])K) where N is the total
number of states. As previously, the set of possible vectors is finite and we
consider the partial order between 2 possible vectors: V1 ⩽ V2 iff for each
state si, we have V1(si) ⊆ V2(si).
The vector after the initialisation step is the vector where each coordinate
corresponding to a state satisfying φ is equal to the set of parameter settings
Q such that s ⊨Q φ. And each update of this algorithm leads to a decreasing
of the vector. Thus because each step of the algorithm decreases the vector,
and that the set of vectors is finite, the algorithm reaches a fixed point, and
the algorithm terminates.

Theorem 4 (Validity of the EG labelling algorithm). Let us consider a state
s labelled by (EG[φ], cs). Then:

1. For all P ⊨ cs, s ⊨P EG[φ].
2. For all P ̸⊨ cs, s ̸⊨P EG[φ].

Proof. 1. Let us first prove that for all P ⊨ cs, s ⊨P EG[φ]. First of all
we know that P ⊨ cφs (cφs is in all options of the disjunction cs) and
thus s ⊨P φ.
Since P ⊨ cs, there exists at least a sub-formula of the form c ∧ ct ∧ cφs
which is true in s for the parameter setting P . Thus there exists a suc-
cessor t1 (in CKS(P )) which is labelled by (EG[φ], ct1) and P ⊨ ct1 .
We deduce t1 ⊨P φ.
With the same reasoning, we can construct a sequence of states s, t1, t2, . . . , tn
corresponding to a path in P and where each state satisfies φ.
Because the set of states is finite, we can exhibit a circuit with the same
properties. Thus s ⊨P EG[φ].

2. By contradiction. Let us consider P ̸⊨ cs and s ⊨P EG[φ].
By the semantic definition of EG connective, there exists in CKS(P )
a circuit s = s0, s1, s2, . . . , sn such that si ⊨P φ,∀i ∈ [0..n].
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Let us now show that at each step of the algorithm, for each state si
of the previously described circuit, Lc(si, EG[φ]) is satisfied by P (Cf.
Eq. 2 in Subsection 4.3.6), in other words, P ⊨ cEGsi :

• Initialisation labels all these states si with (EG[φ], cφsi), we have
P ⊨ cφsi .

• At each step of the algorithm, the constraint cEGsi is possibly up-
dated with a disjunction of expressions of the form c∧ ct ∧ cφs (Cf.
Eq. 2). One of these conjunctions concerns the transition from si
to si+1 (the successor of si in the circuit). Since si belongs to a
circuit in CKS(P ) in which all states satisfy φ, the successor si+1

of si is such that P ⊨ c (the circuit is in CKS(P )), P ⊨ cφsi (φ
is satisfied in si) and P ⊨ cEGsi+1

(by induction). Finally we have
P ⊨ cEGsi .

After convergence of the loop (item 2 of Subsection 4.3.6), cs which
is the constraint associated with s and formula EG[φ], that is cs =
Lc(s, EG[φ]), is equal to the last computed cEGs . Then P ⊨ cs. Con-
tradiction.

5.2. First Prototype
5.2.1. Overview

We have implemented a first prototype for parameter identification us-
ing the global approach with constrained Kripke structure8. This prototype
takes the same inputs as our TotemBioNet tool. Thus the set of parameter
symbols associated with the influence graph is deduced in the same way as
TotemBioNet does. The labelling algorithm uses an associative map: each
state s is associated with the list of couples [(φi, c

φi
s )i]. The CTL formula

φ to model-check is handled recursively according to its sub-formulae. Each
step of the labelling algorithm adds labels (φi, c

φi
s ) to some states where φi

is a sub-formula of φ. At the end, to compute the parameter settings which
satisfy φ, the constraints of states labelled with φ must be examined.

8See https://gitlab.com/totembionet/cks-bionet.
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5.2.2. Constrained Kripke Structure
The transitions s c→ s′ of CKSIG (see Def. 11) are built “on the fly”.

For each state s ∈ S, next possible states are enumerated: s itself, and
states s′ ∈ S such that there exists a unique i = 1..n such that s′i ̸= si
and s′i = si + 1 (or s′i = si − 1). If one of these states is appropriate to
check the current formula φ, in other words, if it is labelled with a sub-
formula required to ensure the validity of φ, transition s

c→ s (or s c→ s′) is
considered. For example, for EG[φ] appropriate states are states already
labelled with φ. The constraint associated with the transition (s, s′) is built
according to the relation of CKS (see Subsection 4.2). This requires to first
compute the applicable parameter on state s.

5.2.3. Constraint Handling
To improve efficiency, the labelling algorithm eliminates “on the fly” the

transitions whose constraints are syntactically inconsistent with the con-
straint under construction. More precisely, the internal data structure main-
tains a disjunctive form: they are disjunctions of conjunctions of atoms of
the form: k < n, k > n, k = n where k is a parameter symbol and n is a
value in its domain. Each time a new atom is added, syntactic checks and
simplifications are done.

5.2.4. Stop Condition for EU/EG
To stop the loop for model checking a EU or EG formula φ, one has

to check if the current constraint of a state labelled with φ, and the new
disjunction built using all possible successors, represent the same solutions.
To do this, we call the SMT-solver yices [36] on a particular formula, which
is described below.

Let cur be the current disjunction and new the new constructed disjunc-
tion. If the formula ¬((cur∨new) ⇐⇒ cur) is SAT, this means that at least
one parameter setting satisfies new and does not satisfy cur. The loop in the
EU algorithm must therefore be performed once more. For EG connective,
we use formula ¬((cur ∨ new) ⇐⇒ new), and the same reasoning applies.

Note that to improve efficiency, if cur and new formulae are syntactically
equal, the SMT solver is not launched.

5.2.5. Solving the Constraint System
After the labelling step, if one of the initial states has not been labelled

with the CTL formula φ to model check, there is no solution to our param-
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eter identification problem. Otherwise, the parameter settings satisfying φ
are the solutions of the constraint system which contains all the constraints
associated with φ, for all states of the constrained Kripke structure.

To solve this constraint system, we use Multi Valued Decision Diagrams
(MDDs), and more precisely, the Colomoto mddlib library designed by A.
Naldi (https://github.com/colomoto/mddlib) in order to find stable states
in biological systems [9]. We already used this library in previous work in
order to compute intersection of parameter setting sets from different envi-
ronments [11]. To build the MDD of the constraint system, we get for each
state si the constraint ci = Lc(φ, si). These constraints are memorised as dis-
junctions of conjunctions. We naturally use AND combination operator on
MDDs for conjunctions and OR combination operator on MDDs for disjunc-
tions. Fig. 7 illustrates a small MDD for the conjunction of two atoms and
Fig. 8 is an extract of the constraints calculated for Pseudomonas æruginosa.

Figure 7: On the left, atoms K1 < 3 (K1 in [0..3]) and K2 = 2 (K2 in [0..2]). On the
right, the conjunction K1 < 3 ∧K2 = 2. * denotes the reference of a terminal MDD node
and indicates that the corresponding value exists.

Example of constraints obtained for Pseudomonas æruginosa. The formula
φ presented in Subsection 2.3, φ ≡ ((Operon = 0) ⇒ AG[¬(Operon = 2)])∧
((Operon = 2)⇒ AG[¬(Operon = 0)]) is translated as

(¬(Operon = 0) ∨ ¬E[⊤ U Operon = 2])∧
(¬(Operon = 2) ∨ ¬E[⊤ U Operon = 0])

using logical equivalences and CTL equivalences presented in Appendix A.
The constraints computed by the tool for states 10 and 21, written in concrete
syntax, are given in Fig. 8. The constraint is true for state 10 because
Operon = 1 on this state thus φ is trivially true. The parameter setting P1

(see Fig. 3) is a solution of the constraint given line 13. On the contrary,
the parameter setting P2 does not validate any of the constraints since when
KMucB,{prod} = 1, KOperon,{alg} must be greater than 1 (lines 11 & 14 of
Fig. 8).
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1 [10:
2 {(((! (operon=0))|(! E [True U (operon=2)]))&
3 ((! (operon=2))|(! E [True U (operon=0)]))),
4 [or: TRUE]}
5 ]
6 [21:
7 {(((! (operon=0))|(! E [True U (operon=2)]))&
8 ((! (operon=2))|(! E [True U (operon=0)]))),
9 [or: [and:[K_operon:alg=1, K_mucB:prod=0, K_operon:alg:free=1]],
10 [and:[K_operon:alg=1, K_mucB:prod=0, K_operon:alg:free=2]],
11 [and:[K_mucB:prod=1, K_operon:alg=1]],
12 [and:[K_operon:alg=2, K_mucB:prod=0, K_operon:alg:free=1]],
13 [and:[K_operon:alg=2, K_mucB:prod=0, K_operon:alg:free=2]],
14 [and:[K_mucB:prod=1, K_operon:alg=2]]]}
15 ]

Figure 8: Constraints associated with state 10 and 21 computed for Pseudomonas ærugi-
nosa and formula φ of Subsection 2.3 (given in the concrete syntax of the tool, character
"|" stands for ∨). For each state, the first part is the formula, the second part (under
brackets) is the constraint in disjunctive normal form.

5.3. First Experiments
5.3.1. Stable States

We first tested if our CKS model checking algorithm allows the verifi-
cation of presence of two stable states on a simple network with a cyclic
topology. For this topology, we have a theoritical understanding of the be-
havior (two stable states, see for example [37]). However, our aim is to check
if this new algorithm gives the expected results, and to compare its per-
formance with our previous approach by enumeration, when increasing the
number of variables. We consider simple networks containing only a circuit
of n Boolean variables: variable v1 activates v2 through multiplex m1, v2
activates v3 through multiplex m2, ... and vn activates v1 through multiplex
mn (∀i ∈ [1..n], φmi

≡ vi ⩾ 1). In such a case, if for each i ∈ [1, n], Kvi,{} = 0
and Kvi,{mi−1} = 1 (with m0 = mn), the circuit is said functional and the
system presents two stable states which are (0, 0, ..., 0) and (1, 1, ..., 1). Of
course, each variable is under the control of only one another variable, that
leads to 2 parameters for each variable, and then (22)n parameter settings.
The property to be verified is then:

s0 → AG[s0] ∧ s1 → AG[s1]
where s0 (resp. s1) is the formula characterising the state where each variable
is set to 0 (resp. 1). The formula is transcribed into:

φstable ≡ (¬s0 | (¬E[⊤U(¬s0)])) ∧ (¬s1 | (¬E[⊤U(¬s1)]))
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Table 1 shows the results we obtained on this simple example which has
a very low in-degrees and is very symetric.9

As expected, the enumeration approach is very sensitive to the growth of
the parameter setting number (by its very nature). The CKS model checking
should be sensitive to the state number growth, but it is not. This is due to
the specific form of the formula φstable which involves the two states s0 and
s1, and more importantly their negation inside EU . The different steps of
the algorithm are:

• s0 and s1 are respectivelly labelled by (s0,⊤) and (s1,⊤), and each state
different from s0 (resp. s1) is labelled by (¬s0,⊤) (resp. (¬s1,⊤)).

• Each state different from s0 (resp. s1) is labelled by (E[⊤U(¬s0)],⊤)
(resp. (E[⊤U(¬s1)],⊤)). These labels will never change because of
Lemma 5.1.
s0 and s1 are labelled respectivelly by (E[⊤U(¬s0)], c0) and (E[⊤U(¬s1)], c1)
where c0 and c1 is the disjunction of all the constraints on arcs issue
from s0 and from s1. These two labels won’t change because the label
of the successors of s0 and s1 do not change.

• The labelling with ¬E[⊤U(¬s0)] and with ¬E[⊤U(¬s1)] is straightfor-
ward: s0 is labelled by (¬E[⊤U(¬s0)],¬c0) and similarly for s1.

• Then each state different from s0 (resp. s1) is labelled by (¬s0 | (¬E[⊤U(¬s0)])),⊤)
(resp. (¬s1 | (¬E[⊤U(¬s1)])),⊤).

• Finally, all states different from s0 and s1 are labelled by (φstable,⊤)
and s0 is labelled by (φstable,¬c0) (and similarly for s1).

At the end of the model checking, all states except s0 and s1 are labeled with
⊤ and the solution set of ¬c0∧¬c1 is easilly computed with the MDD library.

5.3.2. Repressilators
A repressilator is a genetic regulatory network consisting of at least one

feedback loop with at least three genes, each expressing a protein that re-
presses the next gene in the loop. Such construction has been used for un-
derstanding natural biological rythms and also in synthetic biology [38, 39].

9Experiments were done on a six cores CPU at 3.00GHz, with 32 Gio of memory.
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Table 1: Execution time for constrained model checking of a positive loop allowing multi-
stationarity. The time with the symbol * has been estimated considering that the number
of parameter settings treated in a second is constant.

n=5 n=7 n=10 n=20
# states 32 128 1024 1,048,576
# parameter settings 1024 16,384 1,048,576 1,099,511,627,776
Enumeration approach 6s 061 ms 1min 48s 2h 42min 581 years∗

CKS Model checking 48 ms 72 ms 248 ms 4min 4s

Table 2: Experimental results for n-dimensional repressilator (n = 3 to 8).
n=3 n=4 n=5 n=6 n=7 n=8

# states 12 24 48 96 192 384
# parameter settings 576 2,304 9,216 36,864 147,456 589,824
Enumeration approach 3s 904ms 16s 139ms 1m 6s 4m 47s 20m 20s Time out > 1h
Average time for 1 setting 69ms 70ms 72ms 78ms 83ms 86ms
CKS Model checking 62ms 481ms 5s 134ms 59s 295ms 56min 13s Time out > 1h
Time for Yices 48ms 464ms 2s 567ms 16s 538ms 34min 10s Time out > 1h

We consider here a n-dimensional repressilator. Recently, the conditions for
periodic oscillations in 4-dimentional repressilators have been studied in [40].
In this work, the authors consider all 4-dimensional repressilators under the
following conditions: each variable has at least one successor, the influence
between variables are inhibitions and only the variables having 2 sucessors
can have a domain with 3 levels (0,1 and 2), the other variables are boolean.

We have evaluated our CKS model checking on the repressilator pro-
posed in [40] that has a periodic attractor that passes through the state
1000 (see Fig. 3-Left and 4 in [40]). Using this repressilator, we have built
a family of repressilators of increasing size by adding variables to the cycle
that contains only the threshold "1", see Fig. 9 for the initial 4-dimensional
repressilator and its extension to n variables. When considering the repressi-
lator with n variables, the oscilation passes through the state sosc = 1000...0
such that variable G0 is expressed at level 1 and all other variables are
not expressed (level 0). This oscillation is expressed by the CTL formula
sosc → EX(EF (sosc)) where sosc is also, by abuse of notation, the character-
istic formula of state sosc. This formula is automatically transcribed as

φosc ≡ ¬sosc | (EX(E[⊤Usosc)]) .
Table 2 shows that the CKS model checking behaves well until n = 6.

Between n = 6 and n = 7, there is a large gap in the execution times. This
is mainly due to the number of steps of the EU algorithm. In fact, the
formula to check if the constraints of the states labeled with E[⊤Usosc] have
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Figure 9: (Left) Influence graph of the 4-dimentional repressilator from [40]. (Right)
influence graph of the n-dimensional repressilator. Red dashed arrow represents the part
of the loop which grows.

changed grows, and therefore the execution times for Y ices also grow. Note
also that φosc and φstable (see example 5.3.1) both refer to specific states.
But in φosc the EU operator is applied to sosc, while in φstable it is applied to
¬s0. Thus in the first step of the EU algorithm, the only state labeled with
(E[⊤Usosc)],⊤) is sosc. Then, the while loop of the EU procedure labels all
the states from near to far. Thus many steps are required to model-check
the formula, while for φstable, only two steps in the while loop are necessary.

Table 2 also shows that the execution time of TotemBioNet is essentially
sensitive to the number of parameter settings (the average time for 1 setting,
line 4 in Table 2, remains in the same range).

Let us now consider two more realistic biological examples.

5.3.3. Pseudomonas æruginosa in the presence of Calcium
The small biological system Pseudomonas æruginosa used as an example

throughout this article, becomes more significant when considering the pres-
ence or absence of calcium. In fact, calcium plays an important role in the
condition of the lungs of patients with cystic fibrosis. In [11], we introduced
the concept of environment variables to find all settings that are compatible
with the dynamic properties in different environments.

Fig. 10 illustrates the influence graph of Pseudomonas æruginosa in
the presence of calcium, with the new parameters associated with variable
Operon which has now 3 predecessors.
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Figure 10: Influence graph of the Pseudomonas æriginosa in the presence of Calcium.
Calcium is an environment variable (in green). Operon depends on 4 more parameters (in
green).

The temporal properties that the model must satisfy can be translated
into CTL as:

p1 ≡ (Calcium = 0)→
(

(Operon = 0→ AG[¬(Operon = 2)])∧
(Operon = 2→ AG[¬(Operon = 0)])

)
p2 ≡ (Calcium = 1)→ AF [AG[operon = 2]];

Formula p1 represents the stable states property presented in Subsection
2.3. Formula p2 expresses that in the presence of a very high concentration
of calcium-ion in the cell environment, non-mucoid bacteria become mucoid
and mucoid bacteria remain mucoid.

The constrained Kripke structure associated with this system has 3 vari-
ables (Operon, Calcium and MucB) and 12 states. There are 8 parameters
whose domain is [0..2] and 2 parameters whose domain is [0..1]. Then we
have to consider 38 × 22 = 26, 244 parameter settings. The enumerative ap-
proach leads to a completion of the computation in 13min 4s (728 parameter
settings selected) whereas the constrained model checking is completed in
only 22s 36ms.

We then evaluated our prototype on a more complex biological system:
the cell cycle of mammals.
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5.3.4. Check Points in Cell Cycle
The cell cycle denotes the biological system controlling a series of events

leading to both correct DNA duplication of a cell (synthesis or S phase)
and its division into two genetically identical daugther cells (mitosis or M
phase). Gap phases G1 and G2 lie respectively before S and M . Progression
through the cell cycle is driven by Cyclins/Cyclin-dependent kinases com-
plexes (Cyc/Cdks) and their inhibitors known as ennemies. A 5-variables
cell cycle model has been designed in [1]:

• sk is the abstraction of both complexes CycE/Cdk2 and CycH/Cdk7,
known as starting kinases.

• a and b respectively represent CycA/Cdk1 and CycB/Cdk1.

• en is the abstraction of the main Cyc/Cdks ennemies: the anaphase-
promoting complex APC/Cdh1, cyclin-kinase inhibitors p21 and p27,
and Wee1 protein.

• The variable ep is the anaphase-promoting complex APC/Cdc20, which
is a Cyc/Cdks ennemy involved in mitosis exit and so-called exit pro-
tein.

Fig. 11 shows the influence graph of this 5-variables model. The detail of
regulations between variables are described in [1].

The proper functioning of a cell cycle depends on a number of check-
points [41]. A checkpoint is a stage at which the cell examines internal and
external cues and "decides" whether or not to move forward with division.
The main checkpoints are the G1 checkpoint at the G1/S transition and G2
checkpoint, at the G2/M transition. It has been characterized in [41] that
a checkpoint between two phases P1 and P2, should ensure that none of the
possible first transitions of P2 can be performed before one of the transitions
of P1 (so, P2 can only start when all the transitions of P1 have occurred).
Thus in order to formalize some necessary conditions of G1/S transition and
G2/M transition, we need both (i) a description of S and M phases in terms
of possible paths (CTL formulae) and (ii) characteristic states of phases G1
and G2 on which the checkpoint condition can be evaluated.

For a phase to run smoothly, the different variables must evolve sequen-
tially. Nevertheless the right order of events corresponding to the evolutions
of the different variables is sometime fuzzy for biologists. For example, dur-
ing M phase, one observed a decrease of variable a and an increase of ep and
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Figure 11: A 5-variables influence graph of the mammalian cell cycle, from [1].

en. Considering all possible orders of these incrementations/decrementations
which are biologically plausible, the M phase can be characterised by a CTL
formula using nested EX:

ΦM ≡


(EX[ (en=1) ∧ EX[ (a = 0) ∧ EX[ (ep = 1) ]]])

∨ (EX[ (en=1) ∧ EX[ (ep = 1) ∧ EX[ (a = 0) ]]])
∨ (EX[ (a=0) ∧ EX[ (en = 1) ∧ EX[ (ep = 1) ]]])
∨ (EX[ (ep=1) ∧ EX[ (en = 1) ∧ EX[ (a = 0) ]]])



Note that there is some knowledge on the order of evolution of the variables.
For example, if one first observes a decreasing of a (a = 0), then one has first
an increasing of en (en = 1) before an increasing of ep (ep = 1).
Following the same idea, the phase S can be translated into the CTL next
formula:

ΦS ≡



(EX[ (a = 1) ∧ EX[ (sk = 1) ∧ EX[ (en = 0) ∧ EX[(sk = 2)]]]])
∨ (EX[ (sk = 1) ∧ EX[ (a = 1) ∧ EX[ (en = 0) ∧ EX[(sk = 2)]]]])
∨ (EX[ (sk = 1) ∧ EX[ (en = 0) ∧ EX[ (a = 1) ∧ EX[(sk = 2)]]]])
∨ (EX[ (a = 1) ∧ EX[ (en = 0) ∧ EX[ (sk = 1) ∧ EX[(sk = 2)]]]])
∨ (EX[ (sk = 1) ∧ EX[ (a = 1) ∧ EX[ (sk = 2) ∧ EX[(en = 0)]]]])
∨ (EX[ (sk = 1) ∧ EX[ (sk = 2) ∧ EX[ (a = 1) ∧ EX[(en = 0)]]]])
∨ (EX[ (a = 1) ∧ EX[ (sk = 1) ∧ EX[ (sk = 2) ∧ EX[(en = 0)]]]])
∨ (EX[ (en = 0) ∧ EX[ (a = 1) ∧ EX[ (sk = 1) ∧ EX[(sk = 2)]]]])
∨ (EX[ (en = 0) ∧ EX[ (sk = 1) ∧ EX[ (a = 1) ∧ EX[(sk = 2)]]]])



Moreover, it has been shown in [41] that there are two states, χG1 at the
begining of G1 and χG2 at the begining of G2, through which the system
must pass. These states are considered as characteristic of the phases and
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they can be expressed by logical formulae:

χG1 ≡ (sk = 0 ∧ ep = 0 ∧ a = 0 ∧ b = 0 ∧ en = 1)

χG2 ≡ (sk = 0 ∧ ep = 0 ∧ a = 1 ∧ b = 1 ∧ en = 0)

Thus, a necessary condition for ensuring the checkpoint property for the
transition G2/M is that it must not be possible to perform the M phase from
the characteristic state χG2 of G2 (by short-circuiting the events in phase
G2):

G2/M ≡ ( χG2 → ¬ΦM )

In a similar manner, a necessary condition for ensuring the checkpoint prop-
erty for the transition G1/S is that it must not be possible to perform the S
phase from the characteristic state χG1 of G1 (by short-circuiting the events
in phase G1):

G1/S ≡ ( χG1 → ¬ΦS )

These two checkpoints properties are very important for the functioning
of cell cycle but the cell cycle can also be defined by its cyclic property. When
considering this cycle property, we only take into account the capability of
the system to return to the first state after having gone through all the phases
of the cycle. This cyclic property is translated into CTL using EF and EX
connectives:

Φcyclic ≡


sk = 0

∧ ep = 0
∧ a = 0
∧ b = 0
∧ en = 1

 → EX

EF


sk = 0
∧ ep = 0
∧ a = 0
∧ b = 0
∧ en = 1




The execution time of the enumerative approach depends mainly on the
number of parameter settings. Although some parameter values of this model
have been defined using biological knowledge, there are still 2 unknown pa-
rameters whose domain is [0..2], and 16 unknown parameters whose domain
is [0..1] to consider. Thus there is 32 × 216 = 589, 824 parameter settings to
consider.

Of course, the number of parameter settings is the same for both prop-
erties (checkpoints and cyclic). As a consequence, the computation time is
approximatively the same when using the enumerative approach: It takes 1h
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and 40 minutes. Note that the parameter settings selected are not the same
for both properties: 206,592 have been selected for the checkpoints property
whereas 373,751 have been selected for the cyclic one. When working with
the constrained model checking, the exectution time mainly depends on the
temporal connectives present in the CTL formula to check. Thus the exe-
cution time for both properties (checkpoints and cyclic) are not expected to
be the same: The parameter identification problem for the checkpoints prop-
erty takes 250ms and the one for the cyclic property takes 2 minutes and 20
seconds. Indeed, the translation of EF connective involves EU connectives
and the labelling algorithm for EU is more complex than the one for EX.

This case study involves EU connective as for the repressilator example
(see Section 5.3.2). Here the constrained model checking is more effective
than the enumeration approach. In fact, the ratio between the number of
parameter settings and the number of states is large: there are 589, 824
parameter settings and only 48 states. Thus, the execution time of CKS
model checking is not dramatically affected because there are a small number
of states, while the execution time of the enumeration approach is strongly
affected because the number of parameter settings is large.

6. Conclusion

In this article, we have designed a model checking algorithm that considers
a target formula for which we want to know exhaustively all models that
satisfy this formula. To achieve this, we have developed a labelling algorithm
whose answer is not simply yes or no: for each state s, it constructs the
conditions on parameters under which the target formula φ is satisfied. Such
conditions characterise the members of the family of parameter settings that
make φ true in s.

For this purpose, the notion of a constrained Kripke structure was in-
troduced and we have shown that it helps to identify the parameters of a
discrete model of biological systems. When the set of parameter settings
is too enormous, the enumeration approach which builds successivelly each
model and launches a model checking procedure takes to much time, even if
a symbolic model checker as NuSMV is used. The intuitive reason is that the
combinatorics due to parameter settings is much more numerous than the
state space which is symbolically represented in symbolic model checkers.
For parameter identification, we have a choice between a symbolic represen-
tation of states or a symbolic representation of parameterisations. We think
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that, without other knowledge, the best choice is to symbolically represent
the set whose combinatorics is the greatest. Of course under other assump-
tions (symetry for example), the situation would be to evaluate. Thus, when
the brute force method cannot be used because of the enormous number of
possible parameter settings, the constrained Kripke structure representation
combined with the model checking presented in this article can help to find
the parameter settings that lead to dynamics that are compatible with the
dynamical behaviors expressed in temporal logic. This has been made pos-
sible by two important properties of our modelling framework: all models
in our family share the same states, and their transitions can be derived by
constraints on the values of the system parameters. In this way, the atomic
formulae are the same regardless of the value of the parameters.

This labelling algorithm has been implemented in our TotemBioNet plat-
form, which is designed to help modelers of regulatory biological networks
to find all parameter settings that are compatible with known behavior. We
compared its performances with those of TotemBioNet that works by enu-
merating all the Kripke structures associated with all possible parameter
settings. In some cases, model checking the constrained Kripke structure is
more efficient than enumerating and running a classical model checker for
each Kripke structure, because enumeration takes too much time.

Unfortunately, the efficiency of the algorithm depends drastically on the
target temporal formula, and in some cases the proposed algorithm takes
more time to finish than the enumerative approach, or even takes so much
time that the authors stopped the run before obtaining the results, see Ap-
pendix B and Appendix C. To be more precise, the processing of the EU
connective converges in a reasonable time, whereas the convergence of the
EG connective processing is slower. Both algorithms (for EU and for EG)
seem similar, but differ in the initialisation.

In the EU case, during initialisation, only states which satisfy ψ are la-
belled with E[φUψ]. In the EG case, the algorithm first supposes that all
states satisfying φ also satisfy EG[φ] and then makes these conditions more
and more restrictive (see Theorem 3). Thus, when EG is true at least for one
parameter setting, all states are labelled with EG[φ] during the initialisation
step, and they all need to be considered.

Improvement of the prototype is envisioned: launching an external tool
for the stop criterion of the loop in the processing of EU and EG connectives
is time-consuming. It could be replaced by the semantic test with represen-
tation of set of parameter settings by MDD. This opens also the perspective
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of replacement of all the constraints by MDD representing sets of parameter
settings. Nevertheless, the tool can already be very useful as an initial fil-
ter for enumerating parameterisations. If we have a CTL formula on which
our new model checking algorithm does not converge quickly enough, it is
possible to write other formulae that are logical consequences of the initial
formula. If these formulae are sufficiently simple, we can assume that the
model checking algorithm will converge on the constrained Kripke structure,
and this will already allow us to eliminate a large proportion of the parameter
settings to be rejected.

Appendix A. Equivalence between CTL operators

Among the 8 temporal connectives, we choose EX, EU and EG. The other
ones are translated in the following way (see [35] for proof of equivalence):

• AX[ϕ] ≡ ¬EX[¬ϕ]

• AF [ϕ] ≡ ¬EG[¬ϕ]

• AG[ϕ] ≡ ¬EF [¬ϕ] ≡ ¬E[⊤ U ¬ϕ]

• EF [ϕ] ≡ E[⊤ U ϕ]

• A[ϕ U ψ] ≡ ¬(E[¬ψ U (¬ϕ ∧ ¬ψ)] ∨ EG[¬ψ])

Appendix B. Negative loops

We have tried to test cyclic behaviors on artificial simple negative loops:
as for positive loops, we consider simple networks containing only a circuit
of n Boolean variables: variable v1 activates v2 through multiplex m1, v2
activates v3 through multiplex m2, ... but vn inhibits v1 through multiplex
mn (∀i ∈ [1..n−1], φmi

≡ vi ⩾ 1 and φmn ≡ ¬(vn ⩾ 1)). In such a case, if for
each i ∈ 1..n, Kvi = 0 and Kvi,mi−1

= 1 (with m0 = mn), the circuit is said
functional, and the system presents an oscillatory behavior. As previously,
each variable is under the control of only one another variable, that leads
to 2 parameters for each variables, and then (22)n parameter settings. The
property to be verified is then:

s0 → AX[AF [s0]] ≡ ¬s0 ∨ ¬EX[EG[¬s0]]
where s0 = (0, 0, 0, . . . , 0).
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For a negative loop of size n = 5, the model is controlled by 10 param-
eters, leading to 1024 possible parameter settings. The constrained Kripke
structure has 32 states. The enumeration policy coupled with usual model
checking completes the job in 6s 242ms whereas the constrained model check-
ing needs 7s 338ms. Here, our approach does not improve the search of the
exhaustive set of solutions. Moreover when looking at the times spent to
treat each of the connectives, we observed that the processing of the EG
connective is the most time consuming.

Appendix C. Metabolism in aerobic Environment

A highly abstract formal model of eukaryote metabolism regulation has
been described in [30, 26]. The model showed that the main high-level in-
teractions between metabolic pathways are sufficient to produce the War-
burg/Crabtree metabolic shift and the respiration/fermentation balance. Cer-
tain molecular elements are crucial (02, NADHPH/NAD+, NADH/NAD+,
. . . ) but an abstract description of the major pathways (glycolysis, Krebs,
fermentation, . . . ) is, in fact, the proper level of description, simply because
we study interactions between pathways rather than internal functioning of
the pathways themselves. The qualitative model of metabolic regulation in-
cludes both exchange metabolites and abstract representations of the major
metabolic pathways. This case study focuses on an environment where the
availability of nutrients for cells is sufficient to produce energy via the oxida-
tive respiration, and does not use fermentation process (FERM variable).
In other terms, whatever the initial value of the variable FERM , there ex-
ists at least one path leading to FERM = 0 and from there, FERM stays
forever equal to 0. This knowledge is translated as follows in CTL:

NoFerm ≡ EF [ EG [ FERM = 0 ] ]

The model contains 10 variables and almost all parameters are hand-
identified thus it remains only 360 parameter settings to test. As the number
of parameter settings is small, the enumerative approach takes a short time to
compute the 297 valid parameter settings. Conversely, the constraint based
model checking does not compute in a reasonable amount of time. This is
due to the large number of states but firstly to the EF and EG connectives.
They involve EU connectives and the labelling algorithm for EU implies a
while loop until the semantics of constraints associated with the EU formula
does not change any more (see Subsection 4.3.5).
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