=)
z
<
=
&
<
=
z.
]
-
=
70}
&
=
>
z
=
75}
&
o
z
o
=
z
<

AvrX

https://github.com/kororos/AvrX

Yousef Ebrahimi
Professor Ryan Robucci

Introduction

AvrX is a Real Time Multitasking Kernel written for the Atmel
AVR series of micro controllers.

The Kernel is written in assembly. Total kernel size varies from
~500 to 700 words depending upon which version is being
used.

a)
Z
<
—l
>_
x
<
P
=
>_
=
(9p)
i
m
=
=
)
)
i4
®)
Z
©)
T
Z
<

Since the kernel is provided as a library of routines, practical
applications take up less space because not all functions are
used.

AvrX (RTOS) maintains state information for the programmer.

Instead of a complicated state machine for each task, running
off an interrupt timer, the designer can write linear code (do
this, wait for something, then do that... etc). In general the
linear code is much easier to design, debug, understand and it
is almost always smaller.

Versions

There are two versions of AvrX available:

AvrX v2.3 for the IAR assembler. This is a tiny version that is
suitable for Assembly programming only. It makes very
efficient use of RAM and takes very few cycles to service
interrupts.

AvrX 2.6 for the IAR Systems and GCC C compiler. This version
of AvrX is written for a small memory model (16 bit pointers)
and a native C interface. The code size is larger than the 2.3
version (~700 words vs. 500) and all registers need to be
swapped with each context change, so it is somewhat slower
and uses more SRAM. As for speed, processing a system timer
tick took 211 cycles in AvrX 2.3 but takes 234 in AvrX 2.6

a)
Z
<
—l
>_
x
<
P
=
>_
=
(9p)
i
m
=
=
)
)
i4
®)
Z
©)
T
Z
<

OS Interrupt / System Tick

To do scheduling, a HARDWARE timer with an interrupt is
needed!

Can also use it to allow having software timers.

One of the available hardware timers can be used to cause an
interrupt as the base timer for the AvrX RTOS.

To choose the hardware timer, its tick rate and more we need
to modify “avrx_hardware_custom.h” header file

* | have changed the header file to use Timer2

* Its tick rate will be 1 millisecond

* Add following code to have the timer setup
AVRX_SIGINT(AVRX_HARDWARE_TIMER_SIGNAL){

IntProlog(); // Switch to kernel stack/context
AvrXTimerHandler(); // Call Time queue manager
Epilog(); // Return to tasks

a)
Z
<
—l
>_
x
<
P
=
>_
=
(9p)
i
m
=
=
)
)
i4
®)
Z
©)
T
Z
<

Structure of Interrupt Handler

* AvrX completely handles the saving and restoring of the
interrupted context

AVRX_SIGINT(INTERRUPT_NAME){
IntProlog();
///handling code

Epilog();

a)
Z
<
—l
>_
x
<
P
=
>_
=
(9p)
i
m
=
=
)
)
i4
®)
Z
©)
T
Z
<

* Get the INTERRUPT_NAME from avrx\avrx-signal.h file

System Tick setup

In main you need to run following macro
AVRX_HARDWARE_SETUP_COMMANDS ;

Macro has been defined at “avrx_hardware_custom.h”

a)
Z
<
—l
>_
x
<
P
=
>_
=
(9p)
i
m
=
=
)
)
i4
®)
Z
©)
T
Z
<

It simply sets the registers for Timer2 to generate the
interrupt every 1ms --- ISR in previous slide

IntProlog(): Pushes entire register context onto the stack,
returning a frame pointer to the saved context.

* Usage: Internal use of AvrX and ISRs.

Epilog(): Restore previous context (kernel or user).

* Usage: Internal use of AvrX and ISRs.

AvrXTimerHandler(): internal function from AvrX to handle
the scheduling of tasks/setting timers and ...

Toggling LED using Timer1l

#include <avr/io.h>

#include "avrx.h"

#include "avrx_hardware custom.h"
AVRX_SIGINT(AVRX_HARDWARE_TIMER_SIGNAL){ -- system tick

a)
Z
<
—l
>_
x
<
P
=
>_
=
(9p)
i
m
=
=
)
)
i4
®)
Z
©)
T
Z
<

IntProlog(); // Switch to kernel stack/context
AvrXTimerHandler(); // Call Time queue manager
Epilog(); // Return to tasks

}

void setupTimerl() {
TCCR1B = 0bleo; //select prescaler
TCCR1B |= (1<<WGM12); TCCR1A = @; //set to CTC mode
//Setting the compare match value
OCR1A = 15625 ; // OCR1AH = 15625 >> 8; OCR1AL = 15265;
TIMSK1 = 2; //only set interrupt for compare match on A

Toggling LED - Cont'd
AVRX_SIGINT(SIG_OUTPUT_COMPARE1A){ //ISR
IntProlog();
PORTB ~=(0x02);
Epilog();
}

int main(void){
AvrXSetKernelStack(9); //next slide
AVRX_HARDWARE_SETUP_COMMANDS; //setups system Timer
setupTimerl();
DDRB = Oxff; // set PORTB as output
Epilog();//starts scheduling of tasks
while(1) ;}

a)
Z
<
—l
>_
x
<
P
=
>_
=
(9p)
i
m
=
=
)
)
i4
®)
Z
©)
T
Z
<

Build

Ceonfiguration: |Active (Debug) - | Platform: | Active (AWE])

Build Events

Toaolchain

= ."_’TEFL"E‘JL ~|'3 Compiler | AVR/GNU C Linker = Libraries
) Memory '_ Genera
Don t 'FOI"get tO & Preprocessor Libraries {-WI,-1)
Device EH Symbaols

j— n C 1 u d e CH Directories AT

. Debugging _'—:Al?ﬂp:imizgtian
libavrx.a when = Debugsing
armings

building the) Jj
. & General
project braric

Library search path (-Wi,L)

o Optimization
T Micrallanam e

Base of AvrX projects

#include <avr/io.h>

#include "avrx.h"

#include "avrx_hardware custom.h"
AVRX_SIGINT(AVRX_HARDWARE_TIMER SIGNAL){ // system tick

IntProlog(); // Switch to kernel stack/context
AvrXTimerHandler();// Call Time queue manager
Epilog(); // Return to tasks

a)
Z
<
—l
>_
x
<
P
=
>_
=
(9p)
i
m
=
=
)
)
i4
®)
Z
©)
T
Z
<

}

int main(void){
AvrXSetKernelStack(9);
AVRX HARDWARE_ SETUP_COMMANDS;
//TODO: :
Epilog();
while(1);

AvrXSetKernelStack: Sets AvrX Stack to "newstack" or, if NULL
then to the current stack.

AvrX Task

To define a task (process) — [this like applications that OS will
schedule and run]

AVRX_ GCC_TASKDEF(start, c_stack, priority)

a)
Z
<
—l
>_
x
<
P
=
>_
=
(9p)
i
m
=
=
)
)
i4
®)
Z
©)
T
Z
<

e start: name of the task

* ¢_stack: the additional stack required above the 35 bytes used for
the standard context

* priority: priority of the task (lower value means more important)

16 levels* AVRX_GCC_TASKDEF (firstTask,0,1) {
Example: int 1= 0;
P while(1){
++1;

if (i % 1000 == 0){
LED = LED ~ 0x04;
}
}
}

*http://www.barello.net/avrx/overview.htm

AvrX Task - Cont'd

AvrXRunTask: To initialize and run the task.

int main(void){
AvrXSetKernelStack(9);
AVRX HARDWARE SETUP_COMMANDS;
DDRB = oxff; // set PORTB as output

a)
Z
<
—l
>_
x
<
P
=
>_
=
(9p)
i
m
=
=
)
)
i4
®)
Z
©)
T
Z
<

AvrXRunTask(TCB(firstTask));

Epilog();
while(1);

TCB : Returns the pointer to the task control block allocated
for the passed in task (firstTask).

Adding 2" Task

Creating 2" task -- First task is same as before
AVRX_GCC_TASKDEF (Task2,0,1){

int 1 = @; AVRX_GCC_TASKDEF (firstTask,0,1)
while(1){ {}
++1;

if (i % 1000 == 0){

AUISUE S G Adding following line to main function

}

}
} AvrXRunTask(TCB(firstTask));

AvrXRunTask(TCB(Task2));

In scheduling the task, Higher priority task will take over the
CPU and will not release it since we have forever loop!!!

Same priority task must cooperate — they must yield the CPU
to other processes.

a)
Z
<
—l
>_
x
<
P
=
>_
=
(9p)
i
m
=
=
)
)
i4
®)
Z
©)
T
Z
<

Software Timers

Having a system tick allows AvrX to support software timers
* Not as accurate as hardware timers though. — OS manages them.

TimerControlBlock
* A structure to handle timer
* |t has 16 bit counter — our timers are 16-bit wide
* Following line defines 2 timers as global variables,

a)
Z
<
—l
>_
x
<
P
=
>_
=
(9p)
i
m
=
=
)
)
i4
®)
Z
©)
T
Z
<

TimerControlBlock timerl,timer2;
or use macro
AVRX_TIMER(timer1);

AvrXStartTimer(TimerControlBlock™* timeControlBlockPtr, unsigned
count);

* non-blocking API
* timeControlBlockPtr : pointer to the timer to start.
« 2"d parameter is timeout tick count.

Timer

AvrXWaitTimer(&TimerControlBlock);

* Waits on a timer to expire. This suspends the task and takes it out
of ready queue. (allows same/lower priority tasks get the CPU)

Fixing Task 1 and 2

AVRX_GCC_TASKDEF (firstTask,4,1){ AVRX_GCC_TASKDEF (Task2,4,1){
while(1){ while(1){
AvrXStartTimer(&timerl, 1000); AvrXDelay(&timer2, 2000);
AvrXWaitTimer (&timerl); PORTB "= 0Ox08;
PORTB "= 0x01; }
} }
}

AvrXDelay(& TimerControlBlock, unsigned);
* Calls AvrXStartTimer and then AvrXWaitTimer

Stack size has increase to 4; Allow at least 2 bytes for level of
internal function calls!!

a)
Z
<
—l
>_
x
<
P
=
>_
=
(9p)
i
m
=
=
)
)
i4
®)
Z
©)
T
Z
<

Mutex

AvrX supports Mutex Semaphores.
* They can be unlocked by a process different than the one that

a
Z
<
=
2
<
=
z
]
>
=
[
7]
2
=
S
|)
Z
)
72]
2
S
z
S
=
z
<

locked them.
* Define a Mutex Mutex timeOut;
Or use macro
AVRX_MUTEX(timeOut);
» \Wait for it: AVRX311 WAIT P(timeOut);

Signal it: AVRX311_ SIGNAL_V(timeOut);

(]
Z
<
&
<
Example g
Z
z
=
&
AVRX_GCC_TASKDEF(firstTask, 2 ,1){ =
while(1){ AVRX_GCC_TASKDEF(Task2, 4 ,1){ 5
AVRX311_WAIT_P(timeOut); while(1){ %
PORTB "= 0x01; AvrXDelay(&timer1,1000); g
) AVRX311_SIGNAL_V(timeOut); Z
} AVRX311_SIGNAL_V(timeOut): <
AVRX_GCC_TASKDEF(Task3, 2, 1) PORTB A= 0x08:
{ while(1){ }
AVRX311_WAIT_P(timeOut);)

PORTB "= 0x10;

}
}

Remove one of the “AVRX311_SIGNAL_V ” and observe the
behavior.

Mutex Semaphore is not binary in AvrX

Creating Tasks

Define a task with code: AVRX_TASKDEF(start, stacksz, priority)
Declare task data structure

and the top level C

declaration (AVRX_TASK +

C function declaration)

a)
Z
<
-
>_
%
<
P
=
>_
=
(9p)
%
i
2
=
5
(9p)
o
®)
Z
©)
T
=
<

Declare a task: Declare task AVRX_TASK(start, stacksz, priority)
data structures and
forward reference to task

Declare external task: AVRX_EXTERNTASK(start)
Declare external task data
structures

Basic Task Control
Assume taskXYZ declared with

AVRX_GCC_TASKDEF (taskXYzZ, ..

a)
Z
<
-
>_
%
<
P
=
>_
=
(9p)
%
i
2
=
5
(9p)
o
®)
Z
©)
T
=
<

Run/Start a task AvrXRunTask(TCB(taskXYZ));
Terminate a Task AvrXTerminate(PID(taskXYZ));
Suspend a task AvrXSuspend(PID(taskXYZ));
Resume a task AvrXResume(PID(taskXYZ));

Cause task itself to give up AvrXYield();
CPU to next ready task or any wait like
AVRXDelay(&timerXYZ, 1);
Use AVRXDelay if any problems found with AvrXYield

Cause task itself terminate AvrXTaskExit(void);

Interrupt Handler

AvrX has its own API for creating interrupt handlers

a)
Z
<
—l
>_
x
<
P
=
>_
=
(9p)
i
m
=
=
)
)
i4
®)
Z
©)
T
Z
<

Declare the top level C AVRX_SIGINT(vector);
declaration for an interrupt
handler

CMPE 311
Yousef Ebrahimi

CSEE

Task Referencin
Assume taskXYZ declared with

AVRX_GCC_TASKDEF (taskXYzZ, ..

Get pointer to task’s PID PID(taskXYZ);

a)
Z
<
—l
>_
x
<
P
=
>_
=
(9p)
i
m
=
=
)
)
i4
®)
Z
©)
T
Z
<

Get pointer to task’s TCB TCB(taskXYZ);

Get pointer to task’s own AvrXSelf();
PID

