
U
M

B
C

A
N

 H
O

N
O

R
S

 U
N

IV
E

R
S

IT
Y

 I
N

 M
A

R
Y

L
A

N
D

AvrX

Yousef Ebrahimi
Professor Ryan Robucci

https://github.com/kororos/AvrX



U
M

B
C

 
A

N
 H

O
N

O
R

S
 U

N
IV

E
R

S
IT

Y
 I

N
 M

A
R

Y
L

A
N

D
 

Introduction 

• AvrX is a Real Time Multitasking Kernel written for the Atmel 
AVR series of micro controllers. 

• The Kernel is written in assembly.  Total kernel size varies from 
~500 to 700 words depending upon which version is being 
used.  

• Since the kernel is provided as a library of routines, practical 
applications take up less space because not all functions are 
used. 

• AvrX (RTOS) maintains state information for the programmer.  

• Instead of a complicated state machine for each task, running 
off an interrupt timer, the designer can write linear code (do 
this, wait for something, then do that... etc).  In general the 
linear code is much easier to design, debug, understand and it 
is almost always smaller. 



U
M

B
C

 
A

N
 H

O
N

O
R

S
 U

N
IV

E
R

S
IT

Y
 I

N
 M

A
R

Y
L

A
N

D
 

Versions 

• There are two versions of AvrX available: 

• AvrX v2.3 for the IAR assembler.  This is a tiny version that is 
suitable for Assembly programming only.  It makes very 
efficient use of RAM and takes very few cycles to service 
interrupts. 

• AvrX 2.6 for the IAR Systems and GCC C compiler.  This version 
of AvrX is written for a small memory model (16 bit pointers) 
and a native C interface.  The code size is larger than the 2.3 
version (~700 words vs. 500) and all registers need to be 
swapped with each context change, so it is somewhat slower 
and uses more SRAM. As for speed,  processing a system timer 
tick took 211 cycles in AvrX 2.3 but takes 234 in AvrX 2.6 



U
M

B
C

 
A

N
 H

O
N

O
R

S
 U

N
IV

E
R

S
IT

Y
 I

N
 M

A
R

Y
L

A
N

D
 

OS Interrupt / System Tick 

• To do scheduling, a HARDWARE timer with an interrupt is 
needed!  

• Can also use it to allow having software timers.  

• One of the available hardware timers can be used to cause an 
interrupt as the base timer for the AvrX RTOS. 

• To choose the hardware timer, its tick rate and more we need 
to modify “avrx_hardware_custom.h” header file  

• I have changed the header file to use Timer2 

• Its tick rate will be 1 millisecond  

• Add following code to have the timer setup 

AVRX_SIGINT(AVRX_HARDWARE_TIMER_SIGNAL){ 
    IntProlog();         // Switch to kernel stack/context 
    AvrXTimerHandler();  // Call Time queue manager 
    Epilog();            // Return to tasks 
} 



U
M

B
C

 
A

N
 H

O
N

O
R

S
 U

N
IV

E
R

S
IT

Y
 I

N
 M

A
R

Y
L

A
N

D
 

Structure of Interrupt Handler 

• AvrX completely handles the saving and restoring of the 
interrupted context 

 

 

 

 

 

• Get the INTERRUPT_NAME from avrx\avrx-signal.h file 

AVRX_SIGINT(INTERRUPT_NAME){ 
    IntProlog(); 
    ///handling code 
    Epilog(); 
} 



U
M

B
C

 
A

N
 H

O
N

O
R

S
 U

N
IV

E
R

S
IT

Y
 I

N
 M

A
R

Y
L

A
N

D
 

System Tick setup 

• In main you need to run following macro 

 

• Macro has been defined at “avrx_hardware_custom.h” 

• It simply sets the registers for Timer2 to generate the 
interrupt every 1ms --- ISR in previous slide 

• IntProlog(): Pushes entire register context onto the stack, 
returning a frame pointer to the saved context.  
• Usage: Internal use of AvrX and ISRs. 

• Epilog(): Restore previous context (kernel or user). 

• Usage: Internal use of AvrX and ISRs. 

• AvrXTimerHandler(): internal function from AvrX to handle 
the scheduling of tasks/setting timers and … 

AVRX_HARDWARE_SETUP_COMMANDS;  



U
M

B
C

 
A

N
 H

O
N

O
R

S
 U

N
IV

E
R

S
IT

Y
 I

N
 M

A
R

Y
L

A
N

D
 

Toggling LED using Timer1 

 

 

 

 

 

 

 

 

 

 

 

 

#include <avr/io.h> 
#include "avrx.h" 
#include "avrx_hardware_custom.h" 
AVRX_SIGINT(AVRX_HARDWARE_TIMER_SIGNAL){  -- system tick 
    IntProlog();                           // Switch to kernel stack/context 
    AvrXTimerHandler();         // Call Time queue manager     
    Epilog();                              // Return to tasks 
} 
 
void setupTimer1() { 
  TCCR1B  = 0b100;  //select prescaler 
  TCCR1B |= (1<<WGM12); TCCR1A = 0; //set to CTC mode 
  //Setting the compare match value 
  OCR1A = 15625 ;  // OCR1AH = 15625 >> 8; OCR1AL = 15265; 
  TIMSK1 = 2; //only set interrupt for compare match on A 
} 



U
M

B
C

 
A

N
 H

O
N

O
R

S
 U

N
IV

E
R

S
IT

Y
 I

N
 M

A
R

Y
L

A
N

D
 

Toggling LED – Cont’d 
AVRX_SIGINT(SIG_OUTPUT_COMPARE1A){  //ISR 
    IntProlog(); 
    PORTB ^=(0x02); 
    Epilog();   
} 
 
int main(void){ 
   AvrXSetKernelStack(0);   //next slide 
   AVRX_HARDWARE_SETUP_COMMANDS;  //setups system Timer 
   setupTimer1();  
   DDRB = 0xff; // set PORTB as output 
   Epilog();//starts scheduling of tasks 
   while(1) ;} 

Don’t forget to 
include 
libavrx.a when 
building the 
project 



U
M

B
C

 
A

N
 H

O
N

O
R

S
 U

N
IV

E
R

S
IT

Y
 I

N
 M

A
R

Y
L

A
N

D
 

Base of AvrX projects 

 

 

 

 

 

 

 

 

 

 

 

• AvrXSetKernelStack: Sets AvrX Stack to "newstack" or, if NULL 
then to the current stack. 

 

#include <avr/io.h> 
#include "avrx.h" 
#include "avrx_hardware_custom.h" 
AVRX_SIGINT(AVRX_HARDWARE_TIMER_SIGNAL){ // system tick 
   IntProlog();        // Switch to kernel stack/context 
   AvrXTimerHandler();// Call Time queue manager     
   Epilog();          // Return to tasks 
} 
 
int main(void){ 
   AvrXSetKernelStack(0); 
   AVRX_HARDWARE_SETUP_COMMANDS; 
   //TODO:: 
   Epilog(); 
   while(1); 
} 



U
M

B
C

 
A

N
 H

O
N

O
R

S
 U

N
IV

E
R

S
IT

Y
 I

N
 M

A
R

Y
L

A
N

D
 

AvrX Task 

• To define a task (process) – [this like applications that OS will 
schedule and run] 

 

• start: name of the task 

• c_stack: the additional stack required above the 35 bytes used for 
the standard context 

• priority: priority of the task  (lower value means more important) 

• 16 levels* 

• Example: 

AVRX_GCC_TASKDEF(start, c_stack, priority) 

AVRX_GCC_TASKDEF(firstTask,0,1) { 
  int i = 0; 
  while(1){ 
    ++i; 
    if (i % 1000 == 0){ 
      LED = LED ^ 0x04; 
    } 
  }  
} 

*http://www.barello.net/avrx/overview.htm 



U
M

B
C

 
A

N
 H

O
N

O
R

S
 U

N
IV

E
R

S
IT

Y
 I

N
 M

A
R

Y
L

A
N

D
 

AvrX Task – Cont’d 

• AvrXRunTask: To initialize and run the task. 

 

 

 

 

 

 

 

 

• TCB : Returns the pointer to the task control block allocated 
for the passed in task (firstTask). 

 

 

 

 

 

 

 

int main(void){ 
  AvrXSetKernelStack(0); 
  AVRX_HARDWARE_SETUP_COMMANDS; 
  DDRB = 0xff; // set PORTB as output 
 
  AvrXRunTask(TCB(firstTask)); 
 
  Epilog(); 
  while(1); 
} 



U
M

B
C

 
A

N
 H

O
N

O
R

S
 U

N
IV

E
R

S
IT

Y
 I

N
 M

A
R

Y
L

A
N

D
 

Adding 2nd Task 

• Creating 2nd task  -- First task is same as before 

 

 

 

 

 

 

 

• In scheduling the task, Higher priority task will take over the 
CPU and will not release it since we have forever loop!!! 

• Same priority task must cooperate – they must yield the CPU 
to other processes. 

 

AVRX_GCC_TASKDEF(Task2,0,1){ 
  int i = 0; 
  while(1){ 
    ++i; 
    if (i % 1000 == 0){ 
      PORTB ^= 0x08; 
    } 
  }  
} AvrXRunTask(TCB(firstTask)); 

AvrXRunTask(TCB(Task2)); 

 
AVRX_GCC_TASKDEF(firstTask,0,1) 
{} 

Adding following line to main function 



U
M

B
C

 
A

N
 H

O
N

O
R

S
 U

N
IV

E
R

S
IT

Y
 I

N
 M

A
R

Y
L

A
N

D
 

Software Timers 

• Having a system tick allows AvrX to support software timers 

• Not as accurate as hardware timers though. – OS manages them. 

 

• TimerControlBlock 

• A structure to handle timer 

• It has 16 bit counter – our timers are 16-bit wide 

• Following line defines 2 timers as global variables, 
 

 

 

• AvrXStartTimer(TimerControlBlock* timeControlBlockPtr, unsigned 
count); 

• non-blocking API 

• timeControlBlockPtr : pointer to the timer to start. 

• 2nd parameter is timeout tick count. 

TimerControlBlock timer1,timer2; 
or use macro 
AVRX_TIMER(timer1); 



U
M

B
C

 
A

N
 H

O
N

O
R

S
 U

N
IV

E
R

S
IT

Y
 I

N
 M

A
R

Y
L

A
N

D
 

Timer 

• AvrXWaitTimer(&TimerControlBlock); 
• Waits on a timer to expire. This suspends the task and takes it out 

of ready queue. (allows same/lower priority tasks get the CPU) 

Fixing Task 1 and 2 
 

 

 

 

 

• AvrXDelay(& TimerControlBlock, unsigned); 
• Calls AvrXStartTimer and then AvrXWaitTimer 

• Stack size has increase to 4;  Allow at least 2 bytes for level of 
internal function calls!! 

AVRX_GCC_TASKDEF(firstTask,4,1){ 
  while(1){ 
    AvrXStartTimer(&timer1, 1000); 
    AvrXWaitTimer(&timer1); 
    PORTB ^= 0x01;  
  } 
} 

AVRX_GCC_TASKDEF(Task2,4,1){ 
  while(1){ 
    AvrXDelay(&timer2, 2000); 
    PORTB ^= 0x08; 
  }  
} 



U
M

B
C

A
N

 H
O

N
O

R
S

 U
N

IV
E

R
S

IT
Y

 I
N

 M
A

R
Y

L
A

N
D

Mutex
• AvrX supportsgMutex Semaphores.

• Theygcangbegunlockedgbygagprocessgdifferentgthangthegonegthatg
lockedgthem.

• DefinegagMutex

• Waitgforgit:

• Signalgit:

Mutex timeOut;
OrNuseNmacro
AVRX_MUTEX;timeOut);

NNNAVRX311_WAIT_P(timeOut);

AVRX311_SIGNAL_V(timeOut);



U
M

B
C

A
N

tH
O

N
O

R
St

U
N

IV
E

R
SI

T
Y

tI
N

tM
A

R
Y

L
A

N
D

Example

• Remove one of the “ ” and observe the 
behavior.

• Mutex Semaphore is not binary in AvrX

AVRX0^^_SIGNAL_V

AVRX_GCC_TASKDEFhfirstTaskPa=aP^l{ 
aaaawhileh^l{
aaaaaaaaAVRX0^^_WAIT_PhtimeOutl; aaaa
        PORTB ^= 0x01;aaaa            
aaaaa}
}
AVRX_GCC_TASKDEFhTask0Pa=aPa^l
{ aaaawhileh^l{
aaaaaaaaAVRX0^^_WAIT_PhtimeOutl; aaaaaaaa
        PORTB ^= 0x10;
aaaa}
}

AVRX_GCC_TASKDEFhTask=PaxaP^l{ 
aaaawhileh^l{
aaaaaaaAvrXDelayh{timer^P^;;;l; aaa
       AVRX311_SIGNAL_V(timeOut);  
       AVRX311_SIGNAL_V(timeOut);  
       PORTB ^= 0x08;            
aaaa}
}



U
M

B
C

 
A

N
 H

O
N

O
R

S
 U

N
IV

E
R

S
IT

Y
 I

N
 M

A
R

Y
L

A
N

D
 

Creating Tasks 

Objective action Code 

Define a task with code: 
Declare task data structure 
and the top level C 
declaration (AVRX_TASK + 
C function declaration)  

AVRX_TASKDEF(start, stacksz, priority) 

Declare a task: Declare task 
data structures and 
forward reference to task  

AVRX_TASK(start, stacksz, priority) 

Declare external task: 
Declare external task data 
structures 

AVRX_EXTERNTASK(start) 



U
M

B
C

 
A

N
 H

O
N

O
R

S
 U

N
IV

E
R

S
IT

Y
 I

N
 M

A
R

Y
L

A
N

D
 

Basic Task Control 
• Assume taskXYZ declared with
AVRX_GCC_TASKDEF(taskXYZ,…

 Objective action Code 

Run/Start a task AvrXRunTask(TCB(taskXYZ)); 

Terminate a Task AvrXTerminate(PID(taskXYZ)); 

Suspend a task AvrXSuspend(PID(taskXYZ)); 

Resume a task AvrXResume(PID(taskXYZ)); 

Cause task itself to give up 
CPU to next ready task 

AvrXYield();  
or any wait like 
AVRXDelay(&timerXYZ, 1); 
Use AVRXDelay if any problems found with AvrXYield 

Cause task itself terminate AvrXTaskExit(void); 



U
M

B
C

 
A

N
 H

O
N

O
R

S
 U

N
IV

E
R

S
IT

Y
 I

N
 M

A
R

Y
L

A
N

D
 

Interrupt Handler 

• AvrX has its own API for creating interrupt handlers 

C
SE

E 
   

   
C

M
P

E 
3

1
1

   
   

   
   

Yo
u

se
f 

Eb
ra

h
im

i 

19 

Objective action Code 

Declare the top level C 
declaration for an interrupt 
handler 

AVRX_SIGINT(vector); 



U
M

B
C

 
A

N
 H

O
N

O
R

S
 U

N
IV

E
R

S
IT

Y
 I

N
 M

A
R

Y
L

A
N

D
 

Task Referencing 
• Assume taskXYZ declared with 
AVRX_GCC_TASKDEF(taskXYZ,… 

 Objective action Code 

Get pointer to task’s PID PID(taskXYZ); 
 

Get pointer to task’s TCB TCB(taskXYZ); 
 

Get pointer to task’s own 
PID 

AvrXSelf(); 
 




