
Finite State Machine, State Charts

SCXML
State Chart XML

A superset of different dialects

Finite State Machine, State Charts

Finite State Machine, State Charts

Running Example

● We want to model the controller of an entry door by using a FSM.

Finite State Machine, State Charts

Running Example

● We want to model the controller of an entry door by using a FSM.

A finite state transducer is defined by <Q , q0 , F , ΣI , ΣO , δ >

Q is a set of State

Finite State Machine, State Charts

Running Example

● We want to model the controller of an entry door by using a FSM.

A finite state transducer is defined by <Q , q0 , F , ΣI , ΣO , δ >

Q is a set of State

Finite State Machine, State Charts

Running Example

● We want to model the controller of an entry door by using a FSM.

Q is a set of State

q0 Q is the initial state

A finite state transducer is defined by <Q , q0 , F , ΣI , ΣO , δ >

Finite State Machine, State Charts

Running Example

● We want to model the controller of an entry door by using a FSM.

Q is a set of State

q0 Q is the initial state

Taken from the official standard: https://www.w3.org/TR/scxml/

A finite state transducer is defined by <Q , q0 , F , ΣI , ΣO , δ >

● The only difference between the <initial> element and the 'initial' attribute is that the <initial> element contains a <transition>
element which may in turn contain executable content which will be executed before the default state is entered. If the 'initial'
attribute is specified instead, the specified state will be entered, but no executable content will be executed.

● (If neither the <initial> child or the 'initial' element is specified, the default initial state is the first child state in document order

https://www.w3.org/TR/scxml/

Finite State Machine, State Charts

Running Example

● We want to model the controller of an entry door by using a FSM.

Q is a set of State

q0 Q is the initial state

● The only difference between the <initial> element and the 'initial' attribute is that the <initial> element contains a <transition>
element which may in turn contain executable content which will be executed before the default state is entered. If the 'initial'
attribute is specified instead, the specified state will be entered, but no executable content will be executed.

● (If neither the <initial> child or the 'initial' element is specified, the default initial state is the first child state in document order

supported in the Yakindu StateChart editor (but not in many other tools)

A finite state transducer is defined by <Q , q0 , F , ΣI , ΣO , δ >

Finite State Machine, State Charts

Running Example

● We want to model the controller of an entry door by using a FSM.

Q is a set of State

q0 Q is the initial state

A finite state transducer is defined by <Q , q0 , F , ΣI , ΣO , δ >

Finite State Machine, State Charts

Running Example

● We want to model the controller of an entry door by using a FSM.

Q is a set of State

q0 Q is the initial state

F is the set of final states

A finite state transducer is defined by <Q , q0 , F , ΣI , ΣO , δ >

Finite State Machine, State Charts

● We want to model the controller of an entry door by using a FSM.

Running Example

Q is a set of State

q0 Q is the initial state

F is the set of final states

ΣI is the input alphabet

A finite state transducer is defined by <Q , q0 , F , ΣI , ΣO , δ >

Finite State Machine, State Charts

● We want to model the controller of an entry door by using a FSM.

Running Example

Q is a set of State

q0 Q is the initial state

F is the set of final states

ΣI is the input alphabet

A finite state transducer is defined by <Q , q0 , F , ΣI , ΣO , δ >

ΣI = {leftB, rightB, alarm}

Finite State Machine, State Charts

● We want to model the controller of an entry door by using a FSM.

Running Example

Q is a set of State

q0 Q is the initial state

F is the set of final states

ΣI is the input alphabet

ΣO is the input alphabet

A finite state transducer is defined by <Q , q0 , F , ΣI , ΣO , δ >

ΣI = {leftB, rightB, alarm}

Finite State Machine, State Charts

● We want to model the controller of an entry door by using a FSM.

Running Example

Q is a set of State

q0 Q is the initial state

F is the set of final states

ΣI is the input alphabet

ΣO is the input alphabet

A finite state transducer is defined by <Q , q0 , F , ΣI , ΣO , δ >

ΣI = {leftB, rightB, alarm} Σ
O
 = {doOpen, doClose}

Finite State Machine, State Charts

● We want to model the controller of an entry door by using a FSM.

Running Example

Q is a set of State

q0 Q is the initial state

F is the set of final states

ΣI is the input alphabet

ΣO is the input alphabet

 δ ≝ Q x ΣI x ΣO x Q

A finite state transducer is defined by <Q , q0 , F , ΣI , ΣO , δ >

ΣI = {leftB, rightB, alarm} Σ
O
 = {doOpen, doClose}

 = δ {<opened, leftB, doClose, closed>,

 <closed, rightB, doOpen, opened>,
 <opened, alarm, ?, final>,

 <closed, alarm, ?, final>}

Finite State Machine, State Charts

● We want to model the controller of an entry door by using a FSM.

Running Example

Q is a set of State

q0 Q is the initial state

F is the set of final states

ΣI is the input alphabet

ΣO is the input alphabet

 δ ≝ Q x ΣI x ΣO x Q

A finite state transducer is defined by <Q , q0 , F , ΣI , ΣO , δ >

ΣI = {leftB, rightB, alarm} Σ
O
 = {doOpen, doClose}

 = δ {<opened, leftB, doClose, closed>,

 <closed, rightB, doOpen, opened>,

 <opened, alarm, ?, final>,

 <closed, alarm, ?, final>}

Finite State Machine, State Charts

● We want to model the controller of an entry door by using a FSM.

Running Example

Q is a set of State

q0 Q is the initial state

F is the set of final states

ΣI is the input alphabet

ΣO is the input alphabet

 δ ≝ Q x ΣI x (ΣO ∪ {ε}) x Q

A finite state transducer is defined by <Q , q0 , F , ΣI , ΣO , δ >

ΣI = {leftB, rightB, alarm} Σ
O
 = {doOpen, doClose}

 = δ {<opened, leftB, doClose, closed>,

 <closed, rightB, doOpen, opened>,

 <opened, alarm, ε, final>,

 <closed, alarm, ε, final>}

Finite State Machine, State Charts

Running Example

A finite state transducer is defined by <Q , q0 , F , ΣI , ΣO , δ >

ΣI = {leftB, rightB, alarm} Σ
O
 = {doOpen, doClose}

Finite State Machine, State Charts

ΣI = {leftB, rightB, alarm} Σ
O
 = {doOpen, doClose}

Running Example

A finite state transducer is defined by <Q , q0 , F , ΣI , ΣO , δ >

Similarities with the automata studied in LFA:
● It is a mean to represents the, possibly infinite, set of “meaningful” words in

input of the system
● It is possible to compose automaton together (we’ll see it later)

Differences with the automata studied in LFA:
● We distinguish the input and the output alphabets
● It is seldom used to reason on languages but rather to structure and reason on

control code.

Finite State Machine, State Charts

Running Example

A finite state transducer is defined by <Q , q0 , F , ΣI , ΣO , δ >

→ note 1: pragmatically in executable FSMs, ΣI is often a set of events and ΣO is a set of Actions

(for instance the sending of an event, the call to a method, etc).

ΣI = {leftB, rightB, alarm} Σ
O
 = {doOpen, doClose}

Finite State Machine, State Charts

Running Example

A finite state transducer is defined by <Q , q0 , F , ΣI , ΣO , δ >

→ note 1: pragmatically in executable FSMs, ΣI is often a set of events and ΣO is a set of Actions (for

 instance the sending of an event, the call to a method, etc).

→ note 2: the same behavior can be encoded by a Moore machine, the difference being in the
transition function (δ) and a new output function (fo)

 δ ≝ Q x ΣI x Q fo : Q → ΣO

ΣI = {open, close, stop} Σ
O
 = {doOpen, doClose}

Finite State Machine, State Charts

Running Example

A finite state transducer is defined by <Q , q0 , F , ΣI , ΣO , δ >

→ note 1: pragmatically in executable FSM, ΣI is often a set of events and ΣO is a set of Action (for

example the sending of an event, the call to a method, etc).
● Events are one of the basic concepts in SCXML since they drive most transitions.

ΣI = {leftB, rightB, alarm} Σ
O
 = {doOpen, doClose}

Finite State Machine, State Charts

Running Example

A finite state transducer is defined by <Q , q0 , F , ΣI , ΣO , δ >

→ note 1: pragmatically in executable FSM, ΣI is often a set of events and ΣO is a set of Action (for

example the sending of an event, the call to a method, etc).
● Events are one of the basic concepts in SCXML since they drive most transitions.
● For example, a transition with an 'event' attribute of "error foo" will match event names "error",

"error.send", "error.send.failed", etc. (or "foo", "foo.bar" etc.) but would not match events named
"errors.my.custom", "errorhandler.mistake", "errorsend" or "foobar".

● [...] an event descriptor MAY also end with the wildcard '.*', which matches zero or more tokens at the
end of the processed event's name. Note that a transition with 'event' of "error", one with "error.", and
one with "error.*" are functionally equivalent since they are token prefixes of exactly the same set of
event names.

● An event designator consisting solely of "*" can be used as a wildcard matching any sequence of
tokens, and thus any event

ΣI = {leftB, rightB, alarm} Σ
O
 = {doOpen, doClose}

Finite State Machine, State Charts

Running Example

A finite state transducer is defined by <Q , q0 , F , ΣI , ΣO , δ >

→ it can be seen as a directed graph where Q is the set of vertices and δ the set of “labeled” edges.
We can “ask questions” to the graph:

● Classical ones: Is there any cycle ? Is there a path from state X to state Y ? What is the
shortest path from X to Y ? etc.

● Temporal logic: whenever close is requested, is the door eventually closed

ΣI = {leftB, rightB, alarm} Σ
O
 = {doOpen, doClose}

Finite State Machine, State Charts

Running Example

A finite state transducer is defined by <Q , q0 , F , ΣI , ΣO , δ >

→ it can be seen as a directed graph where Q is the set of vertices and δ the set of “labeled” edges.
We can “ask questions” to the graph:

● Classical ones: Is there any cycle ? Is there a path from state X to state Y ? What is the
shortest path from X to Y ? etc.

● Temporal logic: whenever close is requested, is the door eventually closed
→ note: if Boolean conditions are used to guard the transition, it is more difficult to “ask question” to the graph
since both the conditions and the underlying action language need to be analyzed first and usually depends on
arbitrary data from the environment.

ΣI = {leftB, rightB, alarm} Σ
O
 = {doOpen, doClose}

Finite State Machine, State Charts

Running Example

● We want to model the controller of an entry door by using a
FSM.

ΣI = {leftB, rightB, alarm} Σ
O
 = {doOpen, doClose}

Finite State Machine, State Charts

Running Example

● We want to model the controller of an entry door by using a
FSM.

Strong abstraction...

ΣI = {leftB, rightB, alarm} Σ
O
 = {doOpen, doClose}

Finite State Machine, State Charts

Running Example
/startClosingMotor /stopClosingMotor

/ startOpeningMotor

/ stopOpeningMotor

Finite State Machine, State Charts

Running Example
/startClosingMotor /stopClosingMotor

/ startOpeningMotor

/ stopOpeningMotor

We do not know where the events isClosed and isOpened are coming from (e.g., new sensors,
from “the environment”).

Finite State Machine, State Charts

Running Example
/startClosingMotor /stopClosingMotor

/ startOpeningMotor

/ stopOpeningMotor

We do not know where the events isClosed and isOpened are coming from (e.g., new sensors,
from “the environment”).

if we want them to occur after some time following the entry in the isClosing state, it is not a
traditional finite state transducer anymore but a timed automata

onEntry:
after 25s /
raise isClosed

Or a self loop !

Finite State Machine, State Charts

Running Example

/startClosingMotor /stopClosingMotor

/ stopOpeningMotor

/ startOpeningMotor

/ startOpeningMotor

Finite State Machine, State Charts

Running Example

/startClosingMotor /stopClosingMotor

/ stopOpeningMotor

/ startOpeningMotor

/ startOpeningMotor

Finite State Machine, State Charts

Running Example

all actions omitted

Finite State Machine, State Charts

Running Example

wasn’t it supposed to help ?
all actions omitted

Finite State Machine, State Charts

State Charts

David Harel
Statecharts: A visual formalism for complex systems

Science of computer programming 8 (3), 231-274
1987

https://scholar.google.fr/citations?view_op=view_citation&hl=fr&user=E20Gzu0AAAAJ&citation_for_view=E20Gzu0AAAAJ:u5HHmVD_uO8C

Finite State Machine, State Charts

State Charts

/stopBlinking

/stopBlinking

/startBlinking

/startBlinking

Many actions omitted

