SCXML COTEDNZUR S £
State Chart XML

A superset of different dialects

|MR@S

UNIVERSITE 2% 7
COTEDAZUR " pzzia —

State Chart XML (SCXML): State Machine Notation for Control Abstraction

W3C Recommendation 1 September 2015

This version:
http://www.w3.0rg/TR/2015/REC-scxmI-20150901/
Latest version:
http://www.w3.org/TR/scxml/
Previous version:
http://www.w3.0rg/TR/2015/PR-scxml-20150430/
Editors:
Jim Barnett, Genesys (Editor-in-Chief)
Rahul Akolkar, IBM
RJ Auburn, Voxeo
Michael Bodell, (until 2012, when at Microsoft)
Daniel C. Burnett, Voxeo
Jerry Carter, (until 2008, when at Nuance)
Scott McGlashan, (until 2011, when at HP)
Torbjorn Lager, Invited Expert
Mark Helbing, (until 2006, when at Nuance)
Rafah Hosn, (until 2008, when at IBM)
T.V. Raman, (until 2005, when at IBM)
Klaus Reifenrath, (until 2006, when at Nuance)
No'am Rosenthal, (until 2009, when at Nokia)
Johan Roxendal, Invited Expert

c
O
k=
«
©
c
[
S
=
o)
o
@
o
O
3

. KAIR@ S Finite State Machine, State Charts

UNIVERSITE :ege-
COTED'AZUR %22

Running Example

* We want to model the controller of an entry door by using a FSM.

|MR@S

UNIVERSITE :ee%.
COTED’AZUR e

Running Example

* We want to model the controller of an entry door by using a FSM.

entryDoor

Qs a set of State

A finite state transducer Is defined by <qQ S
N MR@S

UNIVERSITE :#a: 7
COTED'AZUR %22

Running Example

* We want to model the controller of an entry door by using a FSM.

entryDoor

! open close
Qs a set of State I]

A finite state transducer Is defined by <qQ S
N MR@S

UNIVERSITE :#a: 7
COTED'AZUR %22

Running Example

* We want to model the controller of an entry door by using a FSM.

entryDoor

Qs a set of State
q, € Qs the initial state

A finite state transducer Is defined by <q , g,. S
N MR@S

UNIVERSITE 2% 7
COTEDAZUR " pzzia —

Running Example

* We want to model the controller of an entry door by using a FSM.

[] opened) (closed entryDoor

Qs a set of State
q, € Qs the initial state

A
open close

* The only difference between the <initial> element and the 'initial' attribute is that the <initial> element contains a <transition>
element which may in turn contain executable content which will be executed before the default state is entered. If the 'initial’
attribute is specified instead, the specified state will be entered, but no executable content will be executed.

. (If neither the <initial> child or the 'initial' element is specified, the default initial state is the first child state in document order

Taken from the official standard: https://www.w3.org/TR/scxml/

A finite state transducer is defined by <Q , g, S
. KAIR@S Finite State Machine, State Charts

https://www.w3.org/TR/scxml/

UNIVERSITE :2g%: 7~
COTED’AZUR e 2L —

Running Example

* We want to model the controller of an entry door by using a FSM.

.oEened) (closed entryDoor

Qs a set of State
q, € Qs the initial state

A
open close

supported in the Yakindu StateChart editor (but not in many other tools)

The only difference between the <initial> element and the 'initial' attribute is that the <initial> element contains a <transition>
element which may in turn contain executable content which will be executed before the default state is entered. If the "initial'
attribute is specified instead, the specified state will be entered, but no executable content will be executed.

. (If neither the <initial> child or the 'initial' element is specified, the default initial state is the first child state in document order

A finite state transducer is defined by <Q , g, S
. K{AXIR@S Finite State Machine, State Charts

UNIVERSITE :#a: 7
COTED'AZUR %22

Running Example

* We want to model the controller of an entry door by using a FSM.

entryDoor

Qs a set of State
q, € Qs the initial state

A finite state transducer is defined by <Q , g, S
N MR@S

UNIVERSITE :ege-
COTED'AZUR %22

Running Example

* We want to model the controller of an entry door by using a FSM.

entryDoor

I
open close

Qs a set of State
q, € Qs the initial state

Fis the set of final states

A finite state transducer is defined by <qQ , g, ¥, S
N MR@S

UNIVERSITE :ege-
COTED’AZUR e

Running Example

* We want to model the controller of an entry door by using a FSM.

entryDoor

close

Qs a set of State
q, € Qs the initial state

Fis the set of final states &8

2. is the input alphabet v ©

A finite state transducer is defined by <Q , ¢, 7, X , >
N MR@S

UNIVERSITE 2% 7
COTEDAZUR " pzzia —

Running Example

* We want to model the controller of an entry door by using a FSM.

entryDoor

2. = {leftB, rightB, alarm}

close

Qs a set of State
q, € Qs the initial state

Fis the set of final states

2. is the input alphabet v ©

A finite state transducer is defined by <Q , ¢, 7, X , >
N MR@S

UNIVERSITE 2% 7
COTEDAZUR " pzzia —

Running Example

* We want to model the controller of an entry door by using a FSM.

entryDoor

2. = {leftB, rightB, alarm}

Qs a set of State
q, € Qs the initial state

Fis the set of final states

2. is the input alphabet N ®

Eois the input alphabet

Afinite state transduceris defined by <Q , ¢, 7,2 , X >
N MR@S

UNIVERSITE 2% 7
COTEDAZUR " pzzia —

Running Example

* We want to model the controller of an entry door by using a FSM.

entryDoor

2. = {leftB, rightB, alarm} 2., = {doOpen, doClose}

Qs a set of State
q, € Qs the initial state

Fis the set of final states

2. is the input alphabet N ®

Eois the input alphabet

Afinite state transduceris defined by <Q , ¢, 7,2 , X >
N MR@S

UNIVERSITE 2% 7
COTEDAZUR " pzzia —

Running Example

* We want to model the controller of an entry door by using a FSM.

entryDoor

leftB
/ raise doOpen

2. = {leftB, rightB, alarm} | l 2. ={doOpen, doClose}

close

Qs a set of State

q, € Qs the initial state

rightB
/ raise doClose

Fis the set of final states -

2o N2
»(*)s

2. is the input alphabet g 803

Zois the input alphabet
8 = {<opened, leftB, doClose, closed>,

def
8 - Q X ZI X 20 X Q <closed, rightB, doOpen, opened>,

<opened, alarm, ?, final>,

<closed, alarm, ?, ﬁnal>}

A finite state transducer is defined by <Q , ¢, 7,2, 2,0 >
N MR@S

UNIVERSITE 2% 7
COTEDAZUR " pzzia —

Running Example

* We want to model the controller of an entry door by using a FSM.

entryDoor

leftB
/ raise doOpen

2. = {leftB, rightB, alarm} | l 2., = {doOpen, doClose}

close ‘

Qs a set of State

q, € Qs the initial state

rightB
/ raise doClose

Fis the set of final states -

B

2. is the input alphabet N O«

Zois the input alphabet
8 = {<opened, leftB, doClose, closed>,

def
8 - Q X ZI X 20 X Q <closed, rightB, doOpen, opened>,

<opened, alarm, ?, final>,

<closed, alarm, ?, ﬁnal>}

A finite state transducer is defined by <Q , ¢, 7,2, 2,0 >
N MR@S

UNIVERSITE 2% 7
COTEDAZUR " pzzia —

Running Example

* We want to model the controller of an entry door by using a FSM.

entryDoor

leftB
/ raise doOpen

2. = {leftB, rightB, alarm} | l 2., = {doOpen, doClose}

close ‘

Qs a set of State

q, € Qs the initial state

rightB
/ raise doClose

Fis the set of final states -

B

2. is the input alphabet N O«

Zois the input alphabet
8 = {<opened, leftB, doClose, closed>,

def
8 = Q X 2[X (ZO U {E}) X Q <closed, rightB, doOpen, opened>,

<opened, alarm, €, final>,

<closed, alarm, €, ﬁnal>}

A finite state transducer is defined by <Q , ¢, 7,2, 2,0 >
N MR@S

UNIVERSITE :ee%.
COTED’AZUR e

Running Example

entryDoor

2. = {leftB, rightB, alarm}

A finite state transducer is defined by <Q , ¢, 7,2, 2,0 >
N MR@S

UNIVERSITE :ege-
COTED’AZUR e

Running Example

entryDoor

leftB

2. = {leftB, rightB, alarm} fratee doOpen 2. ={doOpen, doClose}

rightB
/ raise doClose
alarm alarm

Similarities with the automata studied in LFA:

* It is a mean to represents the, possibly infinite, set of “meaningful” words in
input of the system

* It is possible to compose automaton together (we’ll see it later)
Differences with the automata studied in LFA:
* We distinguish the input and the output alphabets

 Itis seldom used to reason on languages but rather to structure and reason on
control code.
o>

A finite state transducer is defined by <Q,, ¢,, 7,2 , X
. KAIR@ S Finite State Machine, State Charts

ok

Running |

2. = {leftB, rightB, al

i

Shooting

~

-

é Focusing \] [’r Storing \]

.% EvShutterFull () / deferJ L

.

/N
EvinFocus / DisplayFocused()
W
[/ Focused)
L EvShutterFull [IsMemoryAvailable()]
J/
/N

EvshutterFull [HsMemoryAvailable(]

S

A finite state transducer is defined by <Q , ¢, 7,2 2,6 >

— note 1: pragmatically in executable FSMs, X is often a set of events and X is a set of Actions
(for instance the sending of an event, the call to a method, etc).

. KAIR@ S Finite State Machine, State Charts

o

Running Example

UNIVERSITE :ege-
COTED’AZUR e

Crzia—

entryDoor
2. = {open, close, stop}
I leftB
1 l
[
open close)
. - entry entry
/raise doClose /raise doOpen
2 & 1
rightB
alarm alarm
20>

A finite state transducer is defined by <Q , ¢, 7,2 2,6 >

- note 1: pragmatically in executable FSMs, X is often a set of events and X is a set of Actions (for
instance the sending of an event, the call to a method, etc).

— note 2: the same behavior can be encoded by a Moore machine, the difference being in the
transition function (6) and a new output function (¥)

§EQxExQ f£:Q-ZX

. KAIR@ S Finite State Machine, State Charts

UNIVERSITE :2a%:
COTED’AZUR e

Running Example

entryDoor
Ieft_B
Z[: {leftB, r|ghtB’ a|arm} / raise doOpen
| i
! N
ODED close
o
! m
rightB
/ raise doClose
alarm alarm
— O«

Afinite state transducer is defined by <Q , ¢, 7,2 ,X , 6 >

- note 1: pragmatically in executable FSM, X is often a set of events and X is a set of Action (for
example the sending of an event, the call to a method, etc).

 Events are one of the basic concepts in SCXML since they drive most transitions.

UNIVERSITE :2g%: 7~
COTED’AZUR e 2L —

Running Example

entryDoor

leftB

2. = {leftB, rightB, alarm} et 3. = {doOpen, doClose}

)
open close

rightB
/ raise doClose
alarm alarm

Afinite state transducer is defined by <Q , ¢, 7,2 ,X , 6 >

- note 1: pragmatically in executable FSM, X is often a set of events and X is a set of Action (for
example the sending of an event, the call to a method, etc).

 Events are one of the basic concepts in SCXML since they drive most transitions.

« For example, a transition with an 'event' attribute of "error foo" will match event names "error",
"error.send", "error.send.failed", etc. (or "foo", "foo.bar" etc.) but would not match events named
"errors.my.custom”, "errorhandler.mistake", "errorsend" or "foobar".

e [...] an event descriptor MAY also end with the wildcard ".*', which matches zero or more tokens at the
end of the processed event's name. Note that a transition with ‘event' of "error”, one with "error.", and
one with "error.*" are functionally equivalent since they are token prefixes of exactly the same set of
event names.

L- An event designator consisting solely of "™*" can be used as a wildcard matching any sequence of

tokens, and thus any event

UNIVERSITE :#a: 7
COTED'AZUR %22

Running Example

entryDoor

leftB

Z]: {leftB, rightB, alarm} / raise dodpen zo = {doOpen, doClose}

|
open close

rightB
/ raise doClose
alarm alarm

A finite state transducer is defined by <Q , ¢, ¥,2,,% ,6 >

— It can be seen as a directed graph where Q is the set of vertices and 6 the set of “labeled” edges.
We can “ask questions” to the graph:

* Classical ones: Is there any cycle ? Is there a path from state X to state Y ? What is the
shortest path from X to Y ? etc.

« Temporal logic: whenever close is requested, is the door eventually cIosed

. KAIR@ S Finite State Machine, State Charts

UNIVERSITE :#a: 7
COTED’AZUR %<2~

Running Example

entryDoor

leftB

2. = {leftB, rightB, alarm} et 3. = {doOpen, doClose}

)
open close

rightB
/ raise doClose
alarm alarm

A finite state transducer is defined by <Q , ¢, ¥,2,,% ,6 >

— It can be seen as a directed graph where Q is the set of vertices and 6 the set of “labeled” edges.
We can “ask questions” to the graph:

* Classical ones: Is there any cycle ? Is there a path from state X to state Y ? What is the
shortest path from X to Y ? etc.

« Temporal logic: whenever close is requested, is the door eventually cIosed

- hote: if Boolean conditions are used to guard the transition, it is more difficult to “ask question” to the graph
since both the conditions and the underlying action language need to be analyzed first and usually depends on
arbitrary data from the environment.

. KAIR@ S Finite State Machine, State Charts

UNIVERSITE :ege-
COTED'AZUR %22

Running Example

* We want to model the controller of an entry door by using a
FSM.

entryDoor

2. = {leftB, rightB, alarm}

|MR@S

UNIVERSITE :ege-
COTED'AZUR %22

Running Example

* We want to model the controller of an entry door by using a
FSM.

entryDoor

2. = {leftB, rightB, alarm}

Strong abstraction...

|MR@S

Running Example

close /startClosingMotor

isClosing

(.—op‘ened |

stop

\ 4

UNIVERSITE :ege-
COTED'AZUR %22

isClosed/stopClosingMotor

(closed W

isOpened
/ stopOpeningMotor

open
/ start@peningMotor

isOpening

. KAIR@ S Finite State Machine, State Charts

@) <

stop

Crzia—

UNIVERSITE 2% 7
COTEDAZUR " pzzia —

Running Example
close /startClosingMotor)ii/‘@topClosingMotor

(.—op‘enm (closed W

opOpeningMotor
open

/ start@peningMotor

isOpening

stop
stop

@+
We do not know where the events isClosed and isOpened are coming from (e.g., hew sensors,
from “the environment”).

. KAIR@ S Finite State Machine, State Charts

UNIVERSITE :ege-
COTED’AZUR e

Running Example onBntry:

.................... : after 25s / ;
isClosing | ™ i '
close /startClosingMotor “'félélosed/stopCIOSingMotor raise 1sClosed
i:::::::::::::::::::::::::::::.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.'.;. ;
: Or a self loop ! :
A 4
@opened | (closed W

isOpened
/ stopOpeningMotor

open
/ start@peningMotor

isOpening

stop
stop

@<
We do not know where the events isClosed and isOpened are coming from (e.g., hew sensors,

from “the environment”).

if we want them to occur after some time following the entry in the isClosing state, it is not a
traditional finite state transducer anymore but a timed automata

. mIR@ S Finite State Machine, State Charts

UNIVERSITE 2% 7
COTEDAZUR " pzzia —

Running Example

isClosing

close /startClosingMotor isClosed/stopClosingMotor

obstacleDgtected

/ startOpepingMotor A4
(.opened W (closed W
isOpened
/ stopOpeningMotor
open

| start@peningMotor

isOpening

stop
stop

@) <

. KAIR@ S Finite State Machine, State Charts

UNIVERSITE 2% 7
COTEDAZUR " pzzia —

Running Example

isClosing

close /startClosingMotor isClosed/stopClosingMotor

obstacleDgtected

/ startOpepingMotor A4
(.opened W (closed W
isOpened
/ stopOpeningMotor
open

| start@peningMotor

isOpening

stop
stop

@) <

. KAIR@ S Finite State Machine, State Charts

UNIVERSITE 2% 7
COTEDAZUR " pzzia —

Running Example

P
fisCIosing_IampOn\ timeOutLamp isCIosing_LampOfﬂ

timeOutLamp

isClosed

closed

obstacle

open

stop

SLop i isOpening_LahpOn w

hd A
(isOpening_LampOfﬂ

all actions omitted

. KAIR@ S Finite State Machine, State Charts

UNIVERSITE :rgt:
COTED'AZUR “::-

Running Example

P
(isCIosing_IampOn\ timeOutLamp isCIosing_LampOfﬂ

timeOutLamp

isClosed

closed

obstacle »

open

stop

stop

(isOpening:LampOfﬂ i isOpening_LajnpOn w

t‘eOutLamp

o)

all actions omitted

wasn'’t it supposed to help ?

. KAIR@ S Finite State Machine, State Charts

UNIVERSITE :#a: 7
COTED'AZUR %22

State Charts

statecharts = state-diagrams + depth

+ orthogonality + broadcast-communication.

David Harel
Statecharts: A visual formalism for complex systems
Science of computer programming 8 (3), 231-274
1987

|MR@S

https://scholar.google.fr/citations?view_op=view_citation&hl=fr&user=E20Gzu0AAAAJ&citation_for_view=E20Gzu0AAAAJ:u5HHmVD_uO8C

UNIVERSITE :2g%: 7~
COTED’AZUR %22~ 2L —

State Charts

statecharts = state-diagrams + depth

+ orthogonality + broadcast-communication.

O \normaIOperation
O parallelState o
DboorcControl | LampControl
[JsClosing sciosed /StopBlinking

Y

|

* |/startBlinking ‘
LampBlinking

obstacleDeteqted startBlinking

(@ LampBlinkoff |

stopBlinke

LampBIlinkOn

/startBlinking

(:)e stop |

Many actions omitted

. KAIR@ S Finite State Machine, State Charts

