
Finite State Machine, State Charts 1

SCXML
State Chart XML

Au delà du transducteur à état fini

Finite State Machine, State Charts 2

Stopwatch

Finite State Machine, State Charts 3

Stopwatch

Finite State Machine, State Charts 4

Notion of behavior of the FSM

Q is a set of State

q0  Q is the initial state

F is the set of final states

ΣI is the input alphabet

ΣO is the output alphabet

 δ ≝ Q x ΣI x ΣO x Q

Consider an automaton <Q , q0 , ΣI x ΣO , ’ δ > where

 (s, (i,o), s’) ∈ ’ δ iff (s, i, o, s’) ∈ .δ
The language accepted by this automaton is the language of the FSM at state q0

This language is sometimes called ‘behavior’

A finite state transducer is defined by <Q , q0 , F , ΣI , ΣO , δ >

Finite State Machine, State Charts 5

Stopwatch

Finite State Machine, State Charts 6

Stopwatch

Finite State Machine, State Charts 7

Stopwatch

Finite State Machine, State Charts 8

Stopwatch

/ doStart

/ doReset / doStop

/ doStop

/ doResume

/ doPause

/ doRefresh

Finite State Machine, State Charts 9

Stopwatch

Finite State Machine, State Charts 10

Stopwatch

currentState

external queue

Finite State Machine, State Charts 12

Stopwatch

leftButton

Inject an event

external queue

currentState

Finite State Machine, State Charts 13

currentState

Stopwatch

Consume the
event ...

external queue

leftButton

Finite State Machine, State Charts 14

currentState

Stopwatch

start

Consume the
event and
realize the
actions (here
inject an event)

external queue

Finite State Machine, State Charts 15

Stopwatch

start

Consume the
event and call
the method

external queue currentState

Finite State Machine, State Charts 16

Stopwatch

start
external queue currentState

Finite State Machine, State Charts 17

Stopwatch

external queue currentState

Finite State Machine, State Charts 18

Stopwatch

Mealy

op()

Finite State Machine, State Charts 19

Stopwatch

Moore

op()

Finite State Machine, State Charts 20

Stopwatch

external queue currentState

Finite State Machine, State Charts 21

Stopwatch

external queue currentState

Finite State Machine, State Charts 22

Stopwatch

external queue currentState

Timed Automata

Finite State Machine, State Charts 23

Stopwatch

external queue

Inject an event after
the specified delay if

not preempted

Finite State Machine, State Charts 24

Stopwatch

external queue

Inject an event after
the specified delay if

not preempted

every 100ms/
raise updateDisplay

Finite State Machine, State Charts 27

SCXML
State Chart XML

Finite State Machine, State Charts 28

Stopwatch

● A simple state is one which has no substructure.

Taken,modified, and completed from http://sce.uhcl.edu/helm/rationalunifiedprocess/process/modguide/md_stadm.htm

http://sce.uhcl.edu/helm/rationalunifiedprocess/process/modguide/md_stadm.htm

Finite State Machine, State Charts 29

Stopwatch

● A simple state is one which has no substructure.
● A state which has substates (nested states) is called a composite state (or compound state).
● Substates may be nested to any level. A nested state machine may have at most one initial state.
● Substates are used to simplify complex flat state machines by showing that some states are only

possible/accessible within a particular context (the enclosing state).
● A composite state factorizes the possible exits from all (most of) the states

Taken and modified from http://sce.uhcl.edu/helm/rationalunifiedprocess/process/modguide/md_stadm.htm

http://sce.uhcl.edu/helm/rationalunifiedprocess/process/modguide/md_stadm.htm

Finite State Machine, State Charts 30

Stopwatch

● A simple state is one which has no substructure.
● A state which has substates (nested states) is called a composite state (or compound state).
● Substates may be nested to any level. A nested state machine may have at most one initial state and one final state.
● Substates are used to simplify complex flat state machines by showing that some states are only possible

within a particular context (the enclosing state).
● A composite state factorizes the possible exits from all (most of) the states

Taken and modified from http://sce.uhcl.edu/helm/rationalunifiedprocess/process/modguide/md_stadm.htm

When leftButton occurs:
1.Leave stoppedClean
2.Enter timeIsRunning
3.Enter started
4.After 17ms (no rightButton)

1.Leave started
2.Enter started

http://sce.uhcl.edu/helm/rationalunifiedprocess/process/modguide/md_stadm.htm

Finite State Machine, State Charts 33

Stopwatch

● A simple state is one which has no substructure.
● A state which has substates (nested states) is called a composite state (or compound state).
● Substates may be nested to any level. A nested state machine may have at most one initial state and one final state.
● Substates are used to simplify complex flat state machines by showing that some states are only possible

within a particular context (the enclosing state).
● A composite state factorizes the possible exits from all (most of) the states

Taken and modified from http://sce.uhcl.edu/helm/rationalunifiedprocess/process/modguide/md_stadm.htm

Syntactically correct but the
behavior is not the expected
one

http://sce.uhcl.edu/helm/rationalunifiedprocess/process/modguide/md_stadm.htm

Finite State Machine, State Charts 34

Composite State

After initialization, ‘e’ is injected. What happens and why ?

Finite State Machine, State Charts 35

Composite State

After initialization, ‘e’ is injected. What happens and why ?

● Compound States: When looking for transitions, the state machine first looks in the most deeply nested active
state(s), i.e., in the atomic state(s) that have no substates. If no transitions match in the atomic state, the state
machine will look in its parent state, then in the parent's parent, etc. Thus transitions in ancestor states serve
as defaults that will be taken if no transition matches in a descendant state. If no transition matches in any
state, the event is discarded.

Finite State Machine, State Charts 36

Composite State

After initialization, ‘e’ is injected. What happens and why ?

● Compound States: When looking for transitions, the state machine first looks in the most deeply nested active
state(s), i.e., in the atomic state(s) that have no substates. If no transitions match in the atomic state, the state
machine will look in its parent state, then in the parent's parent, etc. Thus transitions in ancestor states serve
as defaults that will be taken if no transition matches in a descendant state. If no transition matches in any
state, the event is discarded.

enter State_1;
enter State_A;
Inject e
exit State_A;
enter State_B;

Finite State Machine, State Charts 37

Composite State

After initialization, ‘e’ is injected. What happens and why ?

● Compound States: When looking for transitions, the state machine first looks in the most deeply nested active
state(s), i.e., in the atomic state(s) that have no substates. If no transitions match in the atomic state, the state
machine will look in its parent state, then in the parent's parent, etc. Thus transitions in ancestor states serve
as defaults that will be taken if no transition matches in a descendant state. If no transition matches in any
state, the event is discarded.

enter State_1;
enter State_A;
Inject e;
exit State_A;
enter State_B;

Inject e;
exit State_B;
exit State_1;
enter State_2;

Finite State Machine, State Charts 38

Composite State

After initialization, ‘e’ is injected. What happens and why ?

● Compound States: When looking for transitions, the state machine first looks in the most deeply nested active
state(s), i.e., in the atomic state(s) that have no substates. If no transitions match in the atomic state, the state
machine will look in its parent state, then in the parent's parent, etc. Thus transitions in ancestor states serve
as defaults that will be taken if no transition matches in a descendant state. If no transition matches in any
state, the event is discarded.

enter State_1;
enter State_A;
Inject e;
exit State_A;
enter State_B;

Inject e;
exit State_B;
exit State_1;
enter State_2;
Inject e;
Inject e;

Finite State Machine, State Charts 39

Composite State

After initialization, ‘e’ is injected. What happens and why ?

● Compound States: When looking for transitions, the state machine first looks in the most deeply nested active
state(s), i.e., in the atomic state(s) that have no substates. If no transitions match in the atomic state, the state
machine will look in its parent state, then in the parent's parent, etc. Thus transitions in ancestor states serve
as defaults that will be taken if no transition matches in a descendant state. If no transition matches in any
state, the event is discarded.

enter State_1;
enter State_A;
Inject e
exit State_A;
enter State_B;

In Yakindu, this is a semantic variation
point, i.e., a part of the semantics that can
be adjusted by the user

@ChildFirstExecution SCXML semantics→
@ParentFirstExecution Simulink Stateflow semantics→

Finite State Machine, State Charts 40

Composite State

After initialization, ‘e’ is injected. What happens and why ?

● Compound States: When looking for transitions, the state machine first looks in the most deeply nested active
state(s), i.e., in the atomic state(s) that have no substates. If no transitions match in the atomic state, the state
machine will look in its parent state, then in the parent's parent, etc. Thus transitions in ancestor states serve
as defaults that will be taken if no transition matches in a descendant state. If no transition matches in any
state, the event is discarded.

enter State_1;
enter State_A;
Inject e
exit State_A;
enter State_B;

In Yakindu, this is a semantic variation
point, i.e., a part of the semantic that
can be adjusted by the user

@ChildFirstExecution SCXML semantics→
@ParentFirstExecution Simulink Stateflow semantics→

Finite State Machine, State Charts 41

Composite State

After initialization, ‘e’ is injected. What happens and why ?

● Compound States: When looking for transitions, the state machine first looks in the most deeply nested active
state(s), i.e., in the atomic state(s) that have no substates. If no transitions match in the atomic state, the state
machine will look in its parent state, then in the parent's parent, etc. Thus transitions in ancestor states serve
as defaults that will be taken if no transition matches in a descendant state. If no transition matches in any
state, the event is discarded.

enter State_1;
enter State_A;
Inject e
exit State_A;
Exit State_1;
enter State_2;

In Yakindu, this is a semantic variation
point, i.e., a part of the semantic that
can be adjusted by the user

@ChildFirstExecution SCXML semantics→
@ParentFirstExecution Simulink Stateflow semantics→

Finite State Machine, State Charts 43

History state

● <history> allows for pause and resume semantics in compound states. Before the state machine exits a

compound state, it records the state's active descendants. If the 'type' attribute of the <history> state is set

to "deep", the state machine saves the state's full active descendant configuration, down to the atomic

descendant(s). If 'type' is set to "shallow", the state machine remembers only which immediate child was

active. After that, if a transition takes a <history> child of the state as its target, the state machine re-enters

not only the parent compound state but also the state(s) in the saved configuration. Thus a transition with a

deep history state as its target returns to exactly where the state was when it was last exited, while a

transition with a shallow history state as a target re-enters the previously active child state, but will enter the

child's default initial state (if the child is itself compound.).

Deep or shallow...

Finite State Machine, State Charts 44

History state

● <history> allows for pause and resume semantics in compound states. Before the state machine exits a

compound state, it records the state's active descendants. If the 'type' attribute of the <history> state is set

to "deep", the state machine saves the state's full active descendant configuration, down to the atomic

descendant(s). If 'type' is set to "shallow", the state machine remembers only which immediate child was

active. After that, if a transition takes a <history> child of the state as its target, the state machine re-enters

not only the parent compound state but also the state(s) in the saved configuration. Thus a transition with a

deep history state as its target returns to exactly where the state was when it was last exited, while a

transition with a shallow history state as a target re-enters the previously active child state, but will enter the

child's default initial state (if the child is itself compound.).

Deep or shallow...

Finite State Machine, State Charts 45

History state

● <history> allows for pause and resume semantics in compound states. Before the state machine exits a

compound state, it records the state's active descendants. If the 'type' attribute of the <history> state is set

to "deep", the state machine saves the state's full active descendant configuration, down to the atomic

descendant(s). If 'type' is set to "shallow", the state machine remembers only which immediate child was

active. After that, if a transition takes a <history> child of the state as its target, the state machine re-enters

not only the parent compound state but also the state(s) in the saved configuration. Thus a transition with a

deep history state as its target returns to exactly where the state was when it was last exited, while a

transition with a shallow history state as a target re-enters the previously active child state, but will enter the

child's default initial state (if the child is itself compound.).

partial trace...

scxml.statemachine: “ ” : “enter normalBehavior”

Finite State Machine, State Charts 46

Type d’une transition

In the case of a transition located in a compound state, the 'type' attribute is significant. The behavior of a transition with 'type' of "external" (the

default) is defined in terms of the transition's source state (which is the state that contains the transition), the transition's target state(or states), and
the Least Common Compound Ancestor (LCCA) of the source and target states (which is the closest compound state that is an ancestor of all the

source and target states). When a transition is taken, the state machine will exit all active states that are proper descendants of the LCCA, starting

with the innermost one(s) and working up to the immediate descendant(s) of the LCCA. (A 'proper descendant' of a state is a child, or a child of a
child, or a child of a child of a child, etc.) Then the state machine enters the target state(s), plus any states that are between it and the LCCA, starting

with the outermost one (i.e., the immediate descendant of the LCCA) and working down to the target state(s). As states are exited, their <onexit>

handlers are executed. Then the executable content in the transition is executed, followed by the <onentry> handlers of the states that are entered. If
the target state(s) of the transition is not atomic, the state machine will enter their default initial states recursively until it reaches an atomic state(s).

The behavior of transitions with 'type' of "internal" is identical, except in the case of a transition whose source state is a compound state and whose

target(s) is a descendant of the source. In such a case, an internal transition will not exit and re-enter its source state, while an external one will, [...]

external

Finite State Machine, State Charts 47

Type d’une transition

In the case of a transition located in a compound state, the 'type' attribute is significant. The behavior of a transition with 'type' of "external" (the

default) is defined in terms of the transition's source state (which is the state that contains the transition), the transition's target state(or states), and

the Least Common Compound Ancestor (LCCA) of the source and target states (which is the closest compound state that is an ancestor of all the
source and target states). When a transition is taken, the state machine will exit all active states that are proper descendants of the LCCA, starting

with the innermost one(s) and working up to the immediate descendant(s) of the LCCA. (A 'proper descendant' of a state is a child, or a child of a
child, or a child of a child of a child, etc.) Then the state machine enters the target state(s), plus any states that are between it and the LCCA, starting

with the outermost one (i.e., the immediate descendant of the LCCA) and working down to the target state(s). As states are exited, their <onexit>

handlers are executed. Then the executable content in the transition is executed, followed by the <onentry> handlers of the states that are entered. If
the target state(s) of the transition is not atomic, the state machine will enter their default initial states recursively until it reaches an atomic state(s).

The behavior of transitions with 'type' of "internal" is identical, except in the case of a transition whose source state is a compound state and whose

target(s) is a descendant of the source. In such a case, an internal transition will not exit and re-enter its source state, while an external one will, [...]

external

Finite State Machine, State Charts 48

Type d’une transition

In the case of a transition located in a compound state, the 'type' attribute is significant. The behavior of a transition with 'type' of "external" (the
default) is defined in terms of the transition's source state (which is the state that contains the transition), the transition's target state(or states), and

the Least Common Compound Ancestor (LCCA) of the source and target states (which is the closest compound state that is an ancestor of all the

source and target states). When a transition is taken, the state machine will exit all active states that are proper descendants of the LCCA, starting
with the innermost one(s) and working up to the immediate descendant(s) of the LCCA. (A 'proper descendant' of a state is a child, or a child of a

child, or a child of a child of a child, etc.) Then the state machine enters the target state(s), plus any states that are between it and the LCCA, starting
with the outermost one (i.e., the immediate descendant of the LCCA) and working down to the target state(s). As states are exited, their <onexit>

handlers are executed. Then the executable content in the transition is executed, followed by the <onentry> handlers of the states that are entered. If

the target state(s) of the transition is not atomic, the state machine will enter their default initial states recursively until it reaches an atomic state(s).

The behavior of transitions with 'type' of "internal" is identical, except in the case of a transition whose source state is a compound state and whose
target(s) is a descendant of the source. In such a case, an internal transition will not exit and re-enter its source state, while an external one will, [...]

external

Finite State Machine, State Charts 49

Type d’une transition

In the case of a transition located in a compound state, the 'type' attribute is significant. The behavior of a transition with 'type' of "external" (the

default) is defined in terms of the transition's source state (which is the state that contains the transition), the transition's target state(or states), and
the Least Common Compound Ancestor (LCCA) of the source and target states (which is the closest compound state that is an ancestor of all the

source and target states). When a transition is taken, the state machine will exit all active states that are proper descendants of the LCCA, starting
with the innermost one(s) and working up to the immediate descendant(s) of the LCCA. (A 'proper descendant' of a state is a child, or a child of a

child, or a child of a child of a child, etc.) Then the state machine enters the target state(s), plus any states that are between it and the LCCA, starting

with the outermost one (i.e., the immediate descendant of the LCCA) and working down to the target state(s). As states are exited, their <onexit>
handlers are executed. Then the executable content in the transition is executed, followed by the <onentry> handlers of the states that are entered. If

the target state(s) of the transition is not atomic, the state machine will enter their default initial states recursively until it reaches an atomic state(s).

The behavior of transitions with 'type' of "internal" is identical, except in the case of a transition whose source state is a compound state and whose

target(s) is a descendant of the source. In such a case, an internal transition will not exit and re-enter its source state, while an external one will, [...]

internal

Finite State Machine, State Charts 50

Type d’une transition

In the case of a transition located in a compound state, the 'type' attribute is significant. The behavior of a transition with 'type' of "external" (the
default) is defined in terms of the transition's source state (which is the state that contains the transition), the transition's target state(or states), and

the Least Common Compound Ancestor (LCCA) of the source and target states (which is the closest compound state that is an ancestor of all the

source and target states). When a transition is taken, the state machine will exit all active states that are proper descendants of the LCCA, starting
with the innermost one(s) and working up to the immediate descendant(s) of the LCCA. (A 'proper descendant' of a state is a child, or a child of a

child, or a child of a child of a child, etc.) Then the state machine enters the target state(s), plus any states that are between it and the LCCA, starting
with the outermost one (i.e., the immediate descendant of the LCCA) and working down to the target state(s). As states are exited, their <onexit>

handlers are executed. Then the executable content in the transition is executed, followed by the <onentry> handlers of the states that are entered. If

the target state(s) of the transition is not atomic, the state machine will enter their default initial states recursively until it reaches an atomic state(s).

The behavior of transitions with 'type' of "internal" is identical, except in the case of a transition whose source state is a compound state and whose
target(s) is a descendant of the source. In such a case, an internal transition will not exit and re-enter its source state, while an external one will, [...]

internal

Finite State Machine, State Charts 51

Type d’une transition

In the case of a transition located in a compound state, the 'type' attribute is significant. The behavior of a transition with 'type' of "external" (the
default) is defined in terms of the transition's source state (which is the state that contains the transition), the transition's target state(or states), and

the Least Common Compound Ancestor (LCCA) of the source and target states (which is the closest compound state that is an ancestor of all the

source and target states). When a transition is taken, the state machine will exit all active states that are proper descendants of the LCCA, starting
with the innermost one(s) and working up to the immediate descendant(s) of the LCCA. (A 'proper descendant' of a state is a child, or a child of a

child, or a child of a child of a child, etc.) Then the state machine enters the target state(s), plus any states that are between it and the LCCA, starting
with the outermost one (i.e., the immediate descendant of the LCCA) and working down to the target state(s). As states are exited, their <onexit>

handlers are executed. Then the executable content in the transition is executed, followed by the <onentry> handlers of the states that are entered. If

the target state(s) of the transition is not atomic, the state machine will enter their default initial states recursively until it reaches an atomic state(s).

The behavior of transitions with 'type' of "internal" is identical, except in the case of a transition whose source state is a compound state and whose
target(s) is a descendant of the source. In such a case, an internal transition will not exit and re-enter its source state, while an external one will, [...]

internal

Such concept does not exist in Yakindu, even in
the SCXML domain :’(

Finite State Machine, State Charts 52

Running Example

/startClosingMotor /stopClosingMotor

/ stopOpeningMotor

/ startOpeningMotor

/ startOpeningMotor

Finite State Machine, State Charts 53

Running Example

wasn’t it supposed to help ?
all actions omitted

Finite State Machine, State Charts 54

Composite State

LampOn

LampOff

BlinkingOff

BlinkingOn

● A simple state is one which has no substructure.
● A state which has substates (nested states) is called a composite state (or compound state).
● Substates may be nested to any level. A nested state machine may have at most one initial state and one final state.
● Substates are used to simplify complex flat state machines by showing that some states are only possible

within a particular context (the enclosing state).
● A composite state factorizes the possible exits from all (most of) the states

