SCXML COTEDNZUR S £
State Chart XML

Au dela du transducteur a état fini

IVI“@*’\AIR@S

UNIVERSITE :2g%: 7~
COTED’AZUR e 2L —

Stopwatch e i

in event rightButton
out event start
out event stop
out event reset

o ° t t
00:00:000 Sy .
oo

doReset() : void
doResume() : void
doPause() : void
doStop() : void
doStart() : void

l KAIR@ S Finite State Machine, State Charts

UNIVERSITE :rgt:
COTE D'AZUR “:::-

‘ Université
Nice sormn

Stopwatch e

in event rightButton
out event start

out event stop

out event reset

out event pause

00:00:000 out event resume

doReset() : void
doResume() : void
doPause() : void
doStop() : void
doStart() : void

start pause

stoppedDirty

it el]I‘eftButton / raise reset

leftButton / raise start leftButtop / raise stop

‘ leftButton / raise stop

1
Y | 2
started paused
2 g
rightButton /raise pause
1

rightButton /raise resume |

. KAIR@ S Finite State Machine, State Charts

UNIVERSITE -
COTE TrizUR 8 &zua,-

Notion of behavior of the FSM

E doReset() : void
@ doResume() : void
00:00:000 mE doPause(): void
Start === @ doStop() : void
S m doStart() : void
Blaneerllean leftButton / raise reset Blanzer iy
-
b h [§
Qs a set of State I

leftButton / raise start leftButtop / raise stop

leftButton / raise stop

q, € Qs the initial state

1
‘Fis the set of final states v '\ 2
started paused
. . r2 >
ZI is the input alphabet . rightButton /raise pause
- |
. 1
20 is the OUtpUt alphabet T rightButton /raise resume

§ = QxZ xZ XQ

A finite state transducer is defined by <Q , ¢, 7,2 ,Z_,6 >
Consider an automaton <Q , ¢,, 2, x 2 _, 8’ > where
(s, (1,0),8) e & iff (s,i,0,8) €.
The language accepted by this automaton is the language of the FSM at state g,
This language is sometimes called ‘behavior’

. K‘&/{A‘IIR@ S Finite State Machine, State Charts

UNIVERSITE :rgt:
COTE D'AZUR “:::-

‘ Université
Nice sormn

Stopwatch e i

in event rightButton
out event start

out event stop

out event reset

out event pause

00:00:000 out event resume

doReset() : void
doResume() : void
doPause() : void
doStop() : void
doStart() : void

start pause

stoppedClean]I_ stoppedDirty

eftButton / raise reset

)

—

leftButton / raise start leftButtop / raise stop

‘ leftButton / raise stop

1
Y I 2
started paused
2 >
rightButton /raise pause
1

rightButton /raise resume |

. KAIR@ S Finite State Machine, State Charts

UNIVERSITE :rgt:
COTE D'AZUR “:::-

‘ Université
Nice sormn

Stopwatch e i

in event rightButton
out event start
out event stop
out event reset

00 . 00 b4 000 out event pause

out event resume

doReset() : void
doResume() : void
doPause() : void
doStop() : void
doStart() : void

start pause

leftButton.addActionListener (new ActionListener() {
@0verride
public void actionPerformed{ActionEvent e} {
theFSM.raiselLeftButton();

}

stoppedClean]I_ stoppedDirty

eftButton / raise reset

)

—

leftButton / raise start

leftButtop / raise stop
‘ leftButton / raise stop

1
Y I 2
started paused
2 >
rightButton /raise pause
1

rightButton /raise resume |

KAIR@ N Finite State Machine, State Charts

UNIVERSITE :rgt:
COTE D'AZUR “:::-

‘ Université
Nice sormn

Stopwatch e i

in event rightButton
out event start

out event stop

out event reset

out event pause
out event resume

doReset() : void
doResume() : void
doPause() : void
doStop() : void
doStart() : void

00:00:000

start pause

leftButton.addActionListengr (new ActionListener() {
EOverride
public void actionPerfdrmed{ActionEvent &) {
theFsM. raiseLeftButton()

}
s

stoppedClean]I_ stoppedDirty

eftButton / raise reset

)

—

leftButton / raise start leftButtop / raise stop

‘ leftButton / raise stop

1
Y I 2
started paused
2 >
rightButton /raise pause
1

rightButton /raise resume |

. KAIR@ S Finite State Machine, State Charts

UNIVERSITE :2a%: /7
COTEDAZUR % Lpzzica —~

Stopwatch

doReset() : void
doResume() : void
doPause() : void
doStop() : void
doStart() : void

00:00:000

pause

\eftButton.setOnAction(new EventHandler<ActionEvent>() {
eoverr
LIE N setOnContextMenuRequested(EventHandler<? super ContextMenuEvent> value) : void - Node

the setOnDragDetected(EventHandler<? super MouseEvent> value) : void - Node
setOnDragDone(EventHandler<? super DragEvent> value) : void - Node

setOnDragDropped(EventHandler<? super DragEvent> value) : void - Node
setOnDragEntered(EventHandler<? super DragEvent> value) : void - Node
setOnDragExited(EventHandler<? super DragEvent> value) : void - Node
setOnDragOver(EventHandler<? super DragEvent> value) : void - Node
setOnInputMethodTextChanged(EventHandler<? super InputMethodEvent> value) : void - Node
setOnKeyPressed(EventHandler<? super KeyEvent> value) : void - Node
setOnKeyReleased(EventHandler<? super KeyEvent> value) : void - Node
setOnKeyTyped(EventHandler<? super KeyEvent> value) : void - Node
setOnMouseClicked(EventHandler<? super MouseEvent> value) : void - Node
setOnMouseDragEntered(EventHandler<? super MouseDragEvent> value) : void - Node
setOnMouseDragExited(EventHandler<? super MouseDragEvent> value) : void - Node
setOnMouseDragged(EventHandler<? super MouseEvent> value) : void - Node
setOnMouseDragOver(EventHandler<? super MouseDragEvent> value) : void - Node
setOnMouseDragReleased(EventHandler<? super MouseDragEvent> value) : void - Node
setOnMouseEntered(EventHandler<? super MouseEvent> value) : void - Node
setOnMouseExited(EventHandler<? super MouseEvent> value) : void - Node
setOnMouseMoved(EventHandler<? super MouseEvent> value) : void - Node
setOnMousePressed(EventHandler<? super MouseEvent> value) : void - Node
setOnMouseReleased(EventHandler<? super MouseEvent> value) : void - Node
setOnRotate(EventHandler<? super RotateEvent> value) : void - Node
setOnRotationFinished(EventHandler<? super RotateEvent> value) : void - Node

PR W o [P T LA ol SRS SR [) R) [[| [, Dot mtmrCrirment 7=l 1~ = v st~ MKl o~

) © 0

UNIVERSITE

S t O pWat C h interface: coeDRzR 5 Lpaia—

in event leftButton
in event rightButton
___y outeventstart ——
- out event stop T

/ out event reset \
00:00:000 out event pause \

‘ Université
s

doReset() : void
doResume() : void

=

=

=

E doStop() : void
wil

‘ \ doPause() : void
“ out event resume
L pause . theFSM.getStart().subscribe(new StartDbseruerEth1sJJ - doStart() : void
LeftButton. setb’h}i&’{c}’hf}iéﬁ"’E’i}éﬁiﬁéﬁaié’(é}i&i"ci’ri’E’i}é’ri{S’(”)’"’{" ™
@Override 3 '""”""""""""""""""""1 """""""""""""" """"""""""""""""""""""""""""
| puh11c class StartObserver 1mplements Observer<Void> {
public void handle(Act10nEvent event) {
i tSCInterface LeFtButt . | 3 private StopWatchGui gui; \
eFSM.ge nter ac‘()-ra1se eftButton(); o public StartDbserverEStanatchGu1 theGui) {
L } \ | gui = theGui; \
s e i |
‘ ! |

| § @Override \
| 3 public void next(Void value) {

“ e dostart(; |

stoppedClean] ———————— S S-SRI Ssesssssesesssssees s s e s s e e e e 3
pp leftButton / raise reset SEEHPSAER
‘\\ r

\ R

leftButton / raise start

leftButtop / raise stop
‘ leftButton / raise stop

1
Y I 2
started paused
2 >
rightButton /raise pause
1
rightButton /raise resume |

. KAIR@ S Finite State Machine, State Charts

UNIVERSITE :rgt:
COTE D'AZUR “:::-

‘ Université
Nic Aan

Stopwatch e e

in event rightButton
out event start
out event stop
out event reset

00 . 00 b4 000 out event pause

out event resume

doReset() : void
doResume() : void

doPause() : void
doStop() : void
doStart() : void

start pause

stoppedClean stoppedDirty

]I_eftButton / raise reset

‘ currentState I‘

—

leftButton / raise start leftButtop / raise stop

| leftButton / raise stop

1
Y] 2
started paused
external queue 2— >
~rightButton /raise pause
— g
1

rightButton /raise resume |

. KAIR@ S Finite State Machine, State Charts

UNIVERSITE :rgt:
COTE D'AZUR “:::-

‘ Université
Nic Aan

Stopwatch e e

in event rightButton
out event start

out event stop

out event reset

out event pause
out event resume

doReset() : void
doResume() : void

doPause() : void
doStop() : void
doStart() : void

00:00:000

[| stat || pause |

Inject an'¥t

stoppedClean stoppedDirty

]I_eftButton / raise reset

‘ currentState I‘

—

leftButton / raise start leftButtop / raise stop

| leftButton / raise stop

1
Y] 2
leftButton started paused
external queue 2— >
~rightButton /raise pause
—_— g
1

rightButton /raise resume |

. KAIR@ S Finite State Machine, State Charts

Stopwatch

00:00:000

[(e]

leftButton -

external queue

. KAIR@ S Finite State Machine, State Charts

Consume the
event ...

leftButton / raise start

stoppedClean

—

Y
star

—

‘ currentState I‘

UNIVERSITE

COTE DAZUR "o+

interface:

in event leftButton
in event rightButton
out event start

out event stop

out event reset

out event pause
out event resume

]I_eftButton / raise reset StoppedDirty

leftButtop / raise stop

| leftButton / raise stop

1
' 2
ted paused
2 >
~rightButton /raise pause
— g
1

rightButton /raise resume |

‘ Université
Nic Aan

doReset() : void
doResume() : void

doPause() : void
doStop() : void
doStart() : void

UNIVERSITE :rgt:
COTE D'AZUR “:::-

‘ Université
Nic Aan

Stopwatch e e

in event rightButton
out event start

out event stop

out event reset

out event pause
out event resume

doReset() : void
doResume() : void

doPause() : void
doStop() : void

=
=
=
=
@ doStart() : void

00:00:000

[(e]

stoppedClean stoppedDirty

]I_eftButton / raise reset

currentState
Consume the ‘ r

event and ~—
realize the

actions (here

inject an event)

leftButton / raise start

leftButtop / raise stop

| leftButton / raise stop

1
Y] 2
start started paused
external queue 2— >
~rightButton /raise pause
—_— g
1

rightButton /raise resume |

KAIR@ N Finite State Machine, State Charts

UNIVERSITE :sat

Stopwatch T i

in event rightButton
out event start

out event stop

out event reset

out event pause
out event resume

00:00:000

[(e]

' protected void doStart() {

3 msTimer.start();
updateTimer.start();
leftButton.setText("stop"); |
rightButton.setText("pause");

eftButton / raise reset Blanner By

)

stoppedClean]I_

Consume the ~—
event and call
the method

leftButton / raise start leftButtop / raise stop

| leftButton / raise stop

1
 J] 2
- Start started paused
external queue ‘ currentState 2 - {=
~rightButton /raise pause
— J
1

rightButton /raise resume |

KAIR@ N Finite State Machine, State Charts

COTE DAZUR "o+

‘ Université
Nic Aan

doReset() : void
doResume() : void

doPause() : void
doStop() : void
doStart() : void

UNIVERSITE :rgt:
COTE D'AZUR “:::-

‘ Université
Nic Aan

Stopwatch e e

in event rightButton
out event start

out event stop

out event reset

out event pause
out event resume

doReset() : void
doResume() : void

doPause() : void
doStop() : void

=
=
=
=
@ doStart() : void

00:00:000

[(e]

eftButton / raise reset Blanner By

)

stoppedClean]I_

S—y

leftButton / raise start leftButtop / raise stop

| leftButton / raise stop

1
 J] 2
start started paused
external queue ‘ currentState 2 - {=
~rightButton /raise pause
— J
1

rightButton /raise resume |

. KAIR@ S Finite State Machine, State Charts

UNIVERSITE :rgt:
COTE D'AZUR “:::-

Université
Nice sornn swmirours
kK

Stopwatch T i

in event rightButton
out event start

out event stop

out event reset

out event pause
out event resume

doReset() : void
doResume() : void

doPause() : void
doStop() : void

=
=
=
=
@ doStart() : void

00:04:196

| stop H pause ‘

sloppedCiesn]I_eftButton / raise reset ElopnedDity
leftButton / raise start leftButtoh / raise stop
leftButton / raise stop
v 2
started] paused
external queue ‘ currentState i -
J rightButton /raise pause
ﬁ#{
1

rightButton /raise resume |

. KAIR@ S Finite State Machine, State Charts

Stopwatch

00:04:196

| stop || pause |

protected void doStart() {
msTimer.start();
updateTimer.start();
leftButton.setText("stop");
rightButton.setText("pause");

protected void doResume() {
updateTimer.stop() ;

rightButton.setText("pause™);

leftButton

KAIR@ N Finite State Machine, State Charts

stoppedClean]I_

S—y

raise start

Y
star

—

UNIVERSITE

COTE DAZUR "o+

interface:

in event leftButton
in event rightButton
out event start

out event stop

out event reset

out event pause
out event resume

eftButton / raise reset Blanner By

)

leftButtop / raise stop

| leftButton / raise stop

1
' 2
ted paused
2 >
~rightButton /raise pause
— g
1

rightButton fraise resume |

[Université
Nice sorm ax

doReset() : void
doResume() : void
doPause() : void
doStop() : void
doStart() : void

Mealy

Stopwatch

00:04:196

| stop || pause |

protected void doStart() {
msTimer.start();
updateTimer.start();
leftButton.setText("stop");
rightButton.setText("pause");

protected void doResume() {
updateTimer.stop() ; 3
rightButton.setText("pause™);

UNIVERSITE :ege-
COTED’AZUR e

interface:

in event leftButton
in event rightButton
out event start

out event stop

out event reset

out event pause
out event resume

stoppedClean stoppedDirty
. leftButton . leftButton
entry / raise reset entry / raise stop r
leftButton
leftButton
leftButton rlghtButton
1
Y I
started paused resumed
entry / raise start |2 - » entry / raise pause entry /raise resume
rightButton /
rightButton

KAIR@ N Finite State Machine, State Charts

‘ Université
: L

doReset() : void
doResume() : void
doPause() : void
doStop() : void
doStart() : void

Moore

%

UNIVERSITE :rgt:
COTE D'AZUR “:::-

Université
Nice sornn swmirours
kK

Stopwatch T i

in event rightButton
out event start

out event stop

out event reset

out event pause
out event resume

doReset() : void
doResume() : void

doPause() : void
doStop() : void

=
=
=
=
@ doStart() : void

00:04:196

| stop || pause |

sloppedCiesn]I_eftButton / raise reset ElopnedDity
leftButton / raise start leftButtoh / raise stop
leftButton / raise stop
v 2
started] paused
external queue ‘ currentState i -
J rightButton /raise pause
ﬁ#{
1

rightButton /raise resume |

. KAIR@ S Finite State Machine, State Charts

UNIVERSITE :rgt:
COTE D'AZUR “:::-

Université
Nice sornn swmirours
kK

Stopwatch T i

in event rightButton
out event start

out event stop

out event reset

out event pause
out event resume

doReset() : void
doResume() : void
doPause() : void
doStop() : void
doStart() : void
updateText() : void

00:04:196

| stop || pause |

sloppedCiesn]I_eftButton / raise reset ElopnedDity
leftButton / raise start leftButtoh / raise stop
leftButton / raise stop
v 2
started] paused
external queue ‘ currentState i -
J rightButton /raise pause
ﬁ#{
1

rightButton /raise resume |

. KAIR@ S Finite State Machine, State Charts

UNIVERSITE 2% 7
COTEDAZUR " pzzia —

‘ Université
Nic Aan

interface:
Sto pWatC h in event leftButton
in event rightButton
out event start
out event stop
out event reset
out event pause
out event resume
00:04:196 out event updateDisplay

doReset() : void
doResume() : void
doPause() : void
doStop() : void
doStart() : void
updateText() : void

| stop || pause |

eftButton / raise reset

)

stoppedClean]I_

stoppedDirty]

S—y

Timed Automata

leftButton / raise start leftButtop / raise stop

| leftButton / raise stop

1
Y] 2
: started paused
external queue 2— I >
after 100ms ~rightButton /raise pause
/ D w— J
raise updateDisplay 1

rightButton /raise resume |

. KAIR@ S Finite State Machine, State Charts

UNIVERSITE :rgt:
COTE D'AZUR “:::-

‘ Université
Nic Aanm

Stopwatch e et

in event rightButton
out event start

out event stop

out event reset

out event pause

out event resume
00:04:196 out event updateDisplay

doReset() : void
doResume() : void

doPause() : void
doStop() : void
doStart() : void
updateText() : void

| stop || pause |

Inject an event after

the specified delay if
noF;‘ preemptedy BlaneerClean]I_eftButton / raise reset

)

stoppedDirty

S—y

leftButton / raise start leftButtop / raise stop

| leftButton / raise stop

1
Y] 2
|:> started anSEd
external queue 2- 2— I >
after 100ms ~nightButton /raise pause
’ —a J
raise updateDisplay 1

rightButton /raise resume |

. KAIR@ S Finite State Machine, State Charts

UNIVERSITE :rgt:
COTE D'AZUR “:::-

‘ Université
Nic Aanm

Stopwatch e et

in event rightButton
out event start

out event stop

out event reset

out event pause

out event resume
00:04:196 out event updateDisplay

doReset() : void
doResume() : void

doPause() : void
doStop() : void
doStart() : void
updateText() : void

| stop || pause |

Inject an event after

the specified delay if
noF;‘ preemptedy BlaneerClean]I_eftButton / raise reset

)

stoppedDirty

S—y

leftButton / raise start leftButtop / raise stop

| leftButton / raise stop

1
Y] 2
started paused
every 100ms/ »
external queue raise updateDisplay 2= . o
~rightButton /raise pause
— J
1

rightButton /raise resume |

. KAIR@ S Finite State Machine, State Charts

SCXML COTEDNZUR S £
State Chart XML

statecharts = state-diagrams + depth

+ orthogonality + broadcast-communication.

g e

UNIVERSITE :#a: 7
COTED'AZUR %22

Stopwatch
statecharts = state-diagrams + depth

A .
BlaneerBlean leftButton / raise reset BlozerRigy

-~

leftButton / raise start leftButtop / raise stop

leftButton / raise stop

1
v | 2
\

I:’ started anSEd)
8 |

2
t rightButton /raise pause

after 100ms

/ |

raise updateDisplay 1
rightButton /raise resume |

* A simple state is one which has no substructure.

h J

Taken,modified, and completed from http://sce.uhcl.edu/helm/rationalunifiedprocess/process/modguide/md_stadm.htm

. KAIR@ S Finite State Machine, State Charts

http://sce.uhcl.edu/helm/rationalunifiedprocess/process/modguide/md_stadm.htm

UNIVERSITE 2% 7
COTEDAZUR % przia —

Stopwatch
statecharts = state-diagrams + depth

main region
R leftButton / raise reset e
v e
leftButton leftButton
/ raise start / raise stop
timelsRunning
r
after 1 7ms / | rightButton /raise pause
raise updateDisplay 1
|:2.- started paused
T rightButton /raise resume ‘

* A simple state is one which has no substructure.

* A state which has substates (nested states) is called a composite state (or compound state).

* Substates may be nested to any level. A nested state machine may have at most one initial state.

* Substates are used to simplify complex flat state machines by showing that some states are only
possiblelaccessible within a particular context (the enclosing state).

* A composite state factorizes the possible exits from all (most of) the states

Taken and modified from http://sce.uhcl.edu/helm/rationalunifiedprocess/process/modguide/md_stadm.htm

. K‘&/{A‘IIR@ S Finite State Machine, State Charts

http://sce.uhcl.edu/helm/rationalunifiedprocess/process/modguide/md_stadm.htm

UNIVERSITE 2% 7
COTEDAZUR % {pzzica —

Stopwatch
statecharts = state-diagrams + depth

?
stoppedClean | ¢p tion / raise reset StoPPedDirty
| When leftButton occurs:
et . 1.Leave stoppedClean
e frsestor 2.Enter timelsRunning
tmelshunming 3. Enter started
" — | 4. After 17ms (no rightButton)
e e 1.Leave started
- : ‘ 2.Enter started
.—I rightButton /raise resume

A simple state is one which has no substructure.

A state which has substates (nested states) is called a composite state (or compound state).

Substates may be nested to any level. A nested state machine may have at most one initial state and one final state.
Substates are used to simplify complex flat state machines by showing that some states are only possible
within a particular context (the enclosing state).

* A composite state factorizes the possible exits from all (most of) the states

Taken and modified from http://sce.uhcl.edu/helm/rationalunifiedprocess/process/modguide/md_stadm.htm

. K&/{A‘II{@ S Finite State Machine, State Charts

http://sce.uhcl.edu/helm/rationalunifiedprocess/process/modguide/md_stadm.htm

UNIVERSITE 2% 7
COTEDAZUR % {pzzica —

Stopwatch
statecharts = state-diagrams + depth

main region
stoppedClean |o1p i1on / raise reset StoPPedDirty
eftBution pricmpot
— Syntactically correct but the
behavior is not the expected
r
after 17ms/ | rightButton /raise pause One
raise updateDisplay 1

started

—

1
T rightButton /raise resume |

A simple state is one which has no substructure.

A state which has substates (nested states) is called a composite state (or compound state).

Substates may be nested to any level. A nested state machine may have at most one initial state and one final state.
Substates are used to simplify complex flat state machines by showing that some states are only possible
within a particular context (the enclosing state).

* A composite state factorizes the possible exits from all (most of) the states

Taken and modified from http://sce.uhcl.edu/helm/rationalunifiedprocess/process/modguide/md_stadm.htm

. K&/{A‘IIR@ S Finite State Machine, State Charts

http://sce.uhcl.edu/helm/rationalunifiedprocess/process/modguide/md_stadm.htm

UNIVERSITE :ege-
COTED'AZUR %22

Composite State

T

ri

State_1

State_A] State_B > Slates2

¢ I [)

— - 7

After initialization, ‘e’ is injected. What happens and why ?

. KAIR@ S Finite State Machine, State Charts

UNIVERSITE :2g%: 7~
COTED’AZUR e 2L —

Composite State

State_1

ri

State_A) State_B)

S e |

After initialization, ‘e’ is injected. What happens and why ?

« Compound States: When looking for transitions, the state machine first looks in the most deeply nested active
state(s), i.e., in the atomic state(s) that have no substates. If no transitions match in the atomic state, the state
machine will look in its parent state, then in the parent's parent, etc. Thus transitions in ancestor states serve
as defaults that will be taken if no transition matches in a descendant state. If no transition matches in any
state, the event is discarded.

. KAIR@ S Finite State Machine, State Charts

UNIVERSITE :2g%: 7~
COTED’AZUR e 2L —

Composite State

State_1

ri

State_A) State_B)
._> L e

— - —

After initialization, ‘e’ is injected. What happens and why ?

« Compound States: When looking for transitions, the state machine first looks in the most deeply nested active
state(s), i.e., in the atomic state(s) that have no substates. If no transitions match in the atomic state, the state
machine will look in its parent state, then in the parent's parent, etc. Thus transitions in ancestor states serve
as defaults that will be taken if no transition matches in a descendant state. If no transition matches in any
state, the event is discarded.

enter State_1;
enter State_A4;
Inject e

exit State_A4;
enter State_B;

. mIR@ S Finite State Machine, State Charts

UNIVERSITE :2g%: 7~
COTED’AZUR e 2L —

Composite State

State_1

ri

State_A) State_B)
._’ L e

— - —

After initialization, ‘e’ is injected. What happens and why ?

« Compound States: When looking for transitions, the state machine first looks in the most deeply nested active
state(s), i.e., in the atomic state(s) that have no substates. If no transitions match in the atomic state, the state
machine will look in its parent state, then in the parent's parent, etc. Thus transitions in ancestor states serve
as defaults that will be taken if no transition matches in a descendant state. If no transition matches in any
state, the event is discarded.

enter State_1; 7 Inject e;

enter State 4; exit State B;
Inject e; exit State_ 1;
exit State_ A; enter State_2;

enter State B;

. mIR@ S Finite State Machine, State Charts

UNIVERSITE :2g%: 7~
COTED’AZUR e 2L —

Composite State

State_1

ri

State_A) State_B)
._’ L e

— ~— —

After initialization, ‘e’ is injected. What happens and why ?

« Compound States: When looking for transitions, the state machine first looks in the most deeply nested active
state(s), i.e., in the atomic state(s) that have no substates. If no transitions match in the atomic state, the state
machine will look in its parent state, then in the parent's parent, etc. Thus transitions in ancestor states serve
as defaults that will be taken if no transition matches in a descendant state. If no transition matches in any
state, the event is discarded.

enter State_1; 7 Inject e;
enter State 4; /// exit State_B;
Inject e; /// exit State_ 1;
exit State_ A; //// enter State_2;
enter State_B;// Inject e;
Inject e;

. K&/{A‘IIR@ S Finite State Machine, State Charts

UNIVERSITE :2g%: 7~
COTED’AZUR %22~ 2L —

Composite State

State_1

ri

State_A) State_B) >

.—P > e

— - —

After initialization, ‘e’ is injected. What happens and why ?

« Compound States: When looking for transitions, the state machine first looks in the most deeply nested active
state(s), i.e., in the atomic state(s) that have no substates. If no transitions match in the atomic state, the state
machine will look in its parent state, then in the parent's parent, etc. Thus transitions in ancestor states serve
as defaults that will be taken if no transition matches in a descendant state. If no transition matches in any
state, the event is discarded.

enter State I; In Yakindu, this is a semantic variation
enter State 4; point, i.e., a part of the semantics that can
Inject e be adjusted by the user

exit State_A4;

enter State B; @ChildFirstExecution . SCXML semantics

@ParentFirstExecution - Simulink Stateflow semantics

. KAIR@ S Finite State Machine, State Charts

UNIVERSITE :2g%: 7~
COTED’AZUR e 2L —

Composite State

State_1

ri

State_A) State_B) >

.—P > e

— ~— —

After initialization, ‘e’ is injected. What happens and why ?

« Compound States: When looking for transitions, the state machine first looks in the most deeply nested active
state(s), i.e., in the atomic state(s) that have no substates. If no transitions match in the atomic state, the state
machine will look in its parent state, then in the parent's parent, etc. Thus transitions in ancestor states serve
as defaults that will be taken if no transition matches in a descendant state. If no transition matches in any
state, the event is discarded.

enter State_I; In Yakindu, this is a semantic variation
enter State_4; point, i.e., a part of the semantic that

Inject e can be adjusted by the user
exit State_A,;
enter State B; @ChildFirstExecution - SCXML semantics

@ParentFirstExecution - Simulink Stateflow semantics

. K&/{A‘IIR@ S Finite State Machine, State Charts

UNIVERSITE :2g%: 7~
COTED’AZUR e 2L —

Composite State

State_1

ri

State_A) State_B) >

.—P > e

— ~— —

After initialization, ‘e’ is injected. What happens and why ?

« Compound States: When looking for transitions, the state machine first looks in the most deeply nested active
state(s), i.e., in the atomic state(s) that have no substates. If no transitions match in the atomic state, the state
machine will look in its parent state, then in the parent's parent, etc. Thus transitions in ancestor states serve
as defaults that will be taken if no transition matches in a descendant state. If no transition matches in any
state, the event is discarded.

enter State_I; In Yakindu, this is a semantic variation
enter State_4; point, i.e., a part of the semantic that

Inject e can be adjusted by the user
exit State_A4,;
Exit State_1; @ChildFirstExecution - SCXML semantics

@ParentFirstExecution — Simulink Stateflow semantics

enter State_ 2;

. K&/{A‘IIR@ S Finite State Machine, State Charts

UNIVERSITE :#at

History state SR e

-

normalBehavior
® Deep or shallow...

® K% freezedBehavior
(@state 2 | o | State3 | »
| ‘ freeze

-
State_5

pr—
State_4
e5

—

» <history> allows for pause and resume semantics in compound states. Before the state machine exits a
compound state, it records the state's active descendants. If the ‘type' attribute of the <history> state is set
to "deep", the state machine saves the state's full active descendant configuration, down to the atomic
descendant(s). If 'type' is set to "shallow", the state machine remembers only which immediate child was
active. After that, if a transition takes a <history> child of the state as its target, the state machine re-enters
not only the parent compound state but also the state(s) in the saved configuration. Thus a transition with a
deep history state as its target returns to exactly where the state was when it was last exited, while a
transition with a shallow history state as a target re-enters the previously active child state, but will enter the
child's default initial state (if the child is itself compound.).

. mIR@ S Finite State Machine, State Charts

UNIVERSITE :#at

History state SR e

-

® normalBehavior Deep or shallow...
@ sl ' freezedBehavior
I__ﬂ ‘ oo h.start();
- 5 e > this->h.submitEvent("el");
L e3 b this->h.submitEvent (" freeze");
this->h.submitEvent("resume'");
o
State_5

p—
State_4
e5

—

« <history> allows for pause and resume semantics in compound states. Before the state machine exits a
compound state, it records the state's active descendants. If the 'type' attribute of the <history> state is set
to "deep", the state machine saves the state's full active descendant configuration, down to the atomic
descendant(s). If 'type' is set to "shallow", the state machine remembers only which immediate child was
active. After that, if a transition takes a <history> child of the state as its target, the state machine re-enters
not only the parent compound state but also the state(s) in the saved configuration. Thus a transition with a
deep history state as its target returns to exactly where the state was when it was last exited, while a
transition with a shallow history state as a target re-enters the previously active child state, but will enter the
child's default initial state (if the child is itself compound.).

. mIR@ S Finite State Machine, State Charts

UNIVERSITE :#a: 7

History state

-

® normalBehavior

C:)*H\ " freezedBehavior

%
F—
o, (|
. State_2 .Stat—e-a. ’

el

— ‘ o h.start();

— = this->h.submitEvent("el");
this->h.submitEvent("freeze");
this->h.submitEvent("resume");

e3
B2

-
State_5

fTatM) scxml.statemachine: “” : “enter normalBehavior”
- scxml.statemachine: "" : "enter State_2"
} £ scxml.statemachine: "" : "enter State_3"
e — scxml.statemachine: "" : "enter FreezedBehavior"
scxml.statemachine: "" : "enter State_3"

partial trace...

» <history> allows for pause and resume semantics in compound states. Before the state machine exits a
compound state, it records the state's active descendants. If the 'type' attribute of the <history> state is set
to "deep”, the state machine saves the state's full active descendant configuration, down to the atomic
descendant(s). If 'type' is set to "shallow", the state machine remembers only which immediate child was
active. After that, if a transition takes a <history> child of the state as its target, the state machine re-enters
not only the parent compound state but also the state(s) in the saved configuration. Thus a transition with a
deep history state as its target returns to exactly where the state was when it was last exited, while a
transition with a shallow history state as a target re-enters the previously active child state, but will enter the
child's default initial state (if the child is itself compound.).

. KAIR@ S Finite State Machine, State Charts

UNIVERSITE :ege-
COTED’AZUR e

Type d’'une transition

O S

® o1 int_ext.start();
this->int_ext.submitEvent("e");

scxml.statemachine: "" : "entering S"
scxml.statemachine: "" : "entering sl1"
Transition_2 scxml.statemachine: "" : "entering s11"
;"\
s12
external

In the case of a transition located in a compound state, the 'type' attribute is significant. The behavior of a transition with ‘type' of "external” (the
default) is defined in terms of the transition's source state (which is the state that contains the transition), the transition's target state(or states), and
the Least Common Compound Ancestor (LCCA) of the source and target states (which is the closest compound state that is an ancestor of all the
source and target states). When a transition is taken, the state machine will exit all active states that are proper descendants of the LCCA, starting
with the innermost one(s) and working up to the immediate descendant(s) of the LCCA. (A 'proper descendant' of a state is a child, or a child of a
child, or a child of a child of a child, etc.) Then the state machine enters the target state(s), plus any states that are between it and the LCCA, starting
with the outermost one (i.e., the immediate descendant of the LCCA) and working down to the target state(s). As states are exited, their <onexit>
handlers are executed. Then the executable content in the transition is executed, followed by the <onentry> handlers of the states that are entered. If
the target state(s) of the transition is not atomic, the state machine will enter their default initial states recursively until it reaches an atomic state(s).

The behavior of transitions with 'type' of “internal” is identical, except in the case of a transition whose source state is a compound state and whose
target(s) is a descendant of the source. In such a case, an internal transition will not exit and re-enter its source state, while an external one will, [...]

. KAIR@ S Finite State Machine, State Charts

UNIVERSITE :ege-
COTED’AZUR e

Type d’'une transition

o S
® o1 int_ext.start();
this->int_ext.submitEvent("e");
scxml.statemachine: "" : "entering S"
scxml.statemachine: "" : "entering sl1"
Transition_2 scxml.statemachine: "" : "entering s11"
12
. scxml.statemachine: "" : "leaving s11"
scxml.statemachine: "" : "leaving s1"
scxml.statemachine: "" : "executing transition"
h scxml.statemachine: "" : "entering s1"
external scxml.statemachine: "" : "entering s12"

In the case of a transition located in a compound state, the 'type' attribute is significant. The behavior of a transition with ‘type' of "external” (the
default) is defined in terms of the transition's source state (which is the state that contains the transition), the transition's target state(or states), and
the Least Common Compound Ancestor (LCCA) of the source and target states (which is the closest compound state that is an ancestor of all the
source and target states). When a transition is taken, the state machine will exit all active states that are proper descendants of the LCCA, starting
with the innermost one(s) and working up to the immediate descendant(s) of the LCCA. (A 'proper descendant' of a state is a child, or a child of a
child, or a child of a child of a child, etc.) Then the state machine enters the target state(s), plus any states that are between it and the LCCA, starting
with the outermost one (i.e., the immediate descendant of the LCCA) and working down to the target state(s). As states are exited, their <onexit>
handlers are executed. Then the executable content in the transition is executed, followed by the <onentry> handlers of the states that are entered. If
the target state(s) of the transition is not atomic, the state machine will enter their default initial states recursively until it reaches an atomic state(s).

The behavior of transitions with ‘type' of “internal” is identical, except in the case of a transition whose source state is a compound state and whose
target(s) is a descendant of the source. In such a case, an internal transition will not exit and re-enter its source state, while an external one will, [...]

. KAIR@ S Finite State Machine, State Charts

UNIVERSITE :ege-
COTED’AZUR e

Type d’'une transition

h

- S

- s1

Transition_2

s12

external

.

int_ext.start();
this->int_ext.submitEvent("e");

scxml.statemachine: "" : "entering S"
scxml.statemachine: "" : "entering sl1"
scxml.statemachine: "" : "entering s11"
scxml.statemachine: "" : "leaving s11"
scxml.statemachine: "" : "leaving sl1"
scxml.statemachine: "" : "executing transition"
scxml.statemachine: "" : "entering s1"
scxml.statemachine: "" : "entering sl12"

In the case of a transition located in a compound state, the 'type' attribute is significant. The behavior of a transition with ‘type' of "external” (the
default) is defined in terms of the transition's source state (which is the state that contains the transition), the transition's target state(or states), and
the Least Common Compound Ancestor (LCCA) of the source and target states (which is the closest compound state that is an ancestor of all the
source and target states). When a transition is taken, the state machine will exit all active states that are proper descendants of the LCCA, starting
with the innermost one(s) and working up to the immediate descendant(s) of the LCCA. (A 'proper descendant' of a state is a child, or a child of a
child, or a child of a child of a child, etc.) Then the state machine enters the target state(s), plus any states that are between it and the LCCA, starting
with the outermost one (i.e., the immediate descendant of the LCCA) and working down to the target state(s). As states are exited, their <onexit>
handlers are executed. Then the executable content in the transition is executed, followed by the <onentry> handlers of the states that are entered. If
the target state(s) of the transition is not atomic, the state machine will enter their default initial states recursively until it reaches an atomic state(s).

The behavior of transitions with ‘type' of “internal” is identical, except in the case of a transition whose source state is a compound state and whose
target(s) is a descendant of the source. In such a case, an internal transition will not exit and re-enter its source state, while an external one will, [...]

. KAIR@ S Finite State Machine, State Charts

UNIVERSITE :2g%: 7~
COTED’AZUR e 2L —

Type d’'une transition

O S

® o1 int_ext.start();
this->int_ext.submitEvent("e");

scxml.statemachine: "" : "entering S"
scxml.statemachine: "" : "entering sl1"
Transition_2 scxml.statemachine: "" : "entering s11"
;"\
s12
internal

In the case of a transition located in a compound state, the 'type' attribute is significant. The behavior of a transition with ‘type' of "external” (the
default) is defined in terms of the transition's source state (which is the state that contains the transition), the transition's target state(or states), and
the Least Common Compound Ancestor (LCCA) of the source and target states (which is the closest compound state that is an ancestor of all the
source and target states). When a transition is taken, the state machine will exit all active states that are proper descendants of the LCCA, starting
with the innermost one(s) and working up to the immediate descendant(s) of the LCCA. (A 'proper descendant' of a state is a child, or a child of a
child, or a child of a child of a child, etc.) Then the state machine enters the target state(s), plus any states that are between it and the LCCA, starting
with the outermost one (i.e., the immediate descendant of the LCCA) and working down to the target state(s). As states are exited, their <onexit>
handlers are executed. Then the executable content in the transition is executed, followed by the <onentry> handlers of the states that are entered. If
the target state(s) of the transition is not atomic, the state machine will enter their default initial states recursively until it reaches an atomic state(s).

The behavior of transitions with ‘type’ of “internal” is identical, except in the case of a transition whose source state is a compound state and whose
target(s) is a descendant of the source. In such a case, an internal transition will not exit and re-enter its source state, while an external one will, [...]

. KAIR@ S Finite State Machine, State Charts

UNIVERSITE :ege-
COTED'AZUR %22

Type d’'une transition

o S
® o1 int_ext.start();

this->int_ext.submitEvent("e");
scxml.statemachine: "" : "entering S"
scxml.statemachine: "" : "entering sl1"

Transition_2 scxml.statemachine: "" : "entering s11"

s12 scxml.statemachine: "" : "leaving s11"

e scxml.statemachine: "" : "executing transition"

scxml.statemachine: "" : "entering s12"

internal

In the case of a transition located in a compound state, the 'type' attribute is significant. The behavior of a transition with 'type' of "external” (the
default) is defined in terms of the transition's source state (which is the state that contains the transition), the transition's target state(or states), and
the Least Common Compound Ancestor (LCCA) of the source and target states (which is the closest compound state that is an ancestor of all the
source and target states). When a transition is taken, the state machine will exit all active states that are proper descendants of the LCCA, starting
with the innermost one(s) and working up to the immediate descendant(s) of the LCCA. (A 'proper descendant' of a state is a child, or a child of a
child, or a child of a child of a child, etc.) Then the state machine enters the target state(s), plus any states that are between it and the LCCA, starting
with the outermost one (i.e., the immediate descendant of the LCCA) and working down to the target state(s). As states are exited, their <onexit>
handlers are executed. Then the executable content in the transition is executed, followed by the <onentry> handlers of the states that are entered. If
the target state(s) of the transition is not atomic, the state machine will enter their default initial states recursively until it reaches an atomic state(s).

The behavior of transitions with ‘type' of “internal” is identical, except in the case of a transition whose source state is a compound state and whose
target(s) is a descendant of the source. In such a case, an internal transition will not exit and re-enter its source state, while an external one will, [...]

. KAIR@ S Finite State Machine, State Charts

UNIVERSITE :#a: 7
COTED'AZUR %22

Type d’'une transition

® S

R 7

Transition_2

Such concept does not exist in Yakindu, even in
the SCXML domain :’(

{—‘\
s12

internal

In the case of a transition located in a compound state, the 'type' attribute is significant. The behavior of a transition with 'type' of "external” (the
default) is defined in terms of the transition's source state (which is the state that contains the transition), the transition's target state(or states), and
the Least Common Compound Ancestor (LCCA) of the source and target states (which is the closest compound state that is an ancestor of all the
source and target states). When a transition is taken, the state machine will exit all active states that are proper descendants of the LCCA, starting
with the innermost one(s) and working up to the immediate descendant(s) of the LCCA. (A 'proper descendant' of a state is a child, or a child of a
child, or a child of a child of a child, etc.) Then the state machine enters the target state(s), plus any states that are between it and the LCCA, starting
with the outermost one (i.e., the immediate descendant of the LCCA) and working down to the target state(s). As states are exited, their <onexit>
handlers are executed. Then the executable content in the transition is executed, followed by the <onentry> handlers of the states that are entered. If
the target state(s) of the transition is not atomic, the state machine will enter their default initial states recursively until it reaches an atomic state(s).

The behavior of transitions with ‘type' of “internal” is identical, except in the case of a transition whose source state is a compound state and whose
target(s) is a descendant of the source. In such a case, an internal transition will not exit and re-enter its source state, while an external one will, [...]

. KAIR@ S Finite State Machine, State Charts

UNIVERSITE 2% 7
COTEDAZUR " pzzia —

Running Example

isClosing

close /startClosingMotor isClosed/stopClosingMotor

obstacleDgtected

/ startOpepingMotor A4
(.opened W (closed W
isOpened
/ stopOpeningMotor
open

| start@peningMotor

isOpening

stop
stop

@) <

. KAIR@ S Finite State Machine, State Charts

UNIVERSITE :rgt:
COTED'AZUR “::-

Running Example

P
(isCIosing_IampOn\ timeOutLamp isCIosing_LampOfﬂ

timeOutLamp

isClosed

closed

obstacle »

open

stop

stop

(isOpening:LampOfﬂ i isOpening_LajnpOn w

t‘eOutLamp

all actions omitted

@.@

wasn'’t it supposed to help ?

. KAIR@ S Finite State Machine, State Charts

Composite State

;
1
1

o

v

BlinkingOff |

LampControl

startBlinking

stopBlinks

BlinkingOn

(@

LampOn

A simple state is one which has no substructure.
A state which has substates (nested states) is called a composite state (or compound state).
Substates may be nested to any level. A nested state machine may have at most one initial state and one final state.
Substates are used to simplify complex flat state machines by showing that some states are only possible
within a particular context (the enclosing state).

A composite state factorizes the possible exits from all (most of) the states

. K&/{A‘II{@ S Finite State Machine, State Charts

stop

UNIVERSITE 2% 7
COTEDAZUR % {pzzica —

=
ﬁsClosing_IampOn timeOutLamp

close

isOpenefl

(isO pening_La mpOfﬂ

isCIosing_LampOfﬂ

timeQutLamp

isClosed

—closed

obstaclepetectey
open

i isOpening_LahpOn w

~ tKeDutLamp

timgOutLamp

stop

