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SCXML
State Chart XML

Previously, in this course...
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Previously, in this course... statecharts = state-diagrams + depth

Running Example

P
fisCIosing_IampOn\ timeOutLamp isCIosing_LampOfﬂ

timeOutLamp

isClosed

obstad\eDetected

closed

obstacle

open

stop

SLop i isOpening_LahpOn w

> t‘eOutLamp

o)

-

all actions omitted

wasn't it supposed to help ?
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Previously, in this course... statecharts = state-diagrams + depth

Running Example

ﬁsCIosing_IampOn\ timeOutLamp isCIosing_LampOfﬂ

timeOutLamp

isClosed

isClosed

obstad\eDetected

closed

) -

obstaclePetected
isOpened open

> t‘eOutLamp

stop

SLop i isOpening_LahpOn w

all actions omitted

* Substates may be nested to any level. A nested state machine may have at most one initial state and one final state.

* Substates are used to simplify complex flat state machines by showing that some states are only possible
within a particular context (the enclosing state).

* A composite state factorizes the possible exits from all (most of) the states




Previously, in this course... statecharts = state-diagrams + depth

Running Example

isClosing |
(A ot e )
CLampBlinkOff CLampBlinkOn
F' timeout
timeou
., isClosed
obstacleDetedted
_closed
isOpening open
OLampBlinkOff OLampBlinkOn
timeout
timeout

all actions omitted

* A simple state is one which has no substructure.

* A state which has substates (nested states) is called a composite state (or compound state).

* Substates may be nested to any level. A nested state machine may have at most one initial state and one final state.

* Substates are used to simplify complex flat state machines by showing that some states are only possible
within a particular context (the enclosing state).

* A composite state factorizes the possible exits from all (most of) the states
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Previously in this course... COTE DAZUR -+
=
< stopWatch ] main region

@EventDriven

@ChildFirstExecution ?

/1 In composite states, exect =

// child states first. stoppedClean leftButton / raise reset stoppedDirty

/f @ParentFirstExecution do

interface: leftButton

/ raise start leftButton
[ raise stop

in event leftButton
in event rightButton ]
out event start
out event stop
out event reset r
out event pause | rightButton /raise pause l
out event resume 1
out event updateCounter 2] started paused
out event updateDisplay [i>=5]/

raise updateDisplay;
internal: i=0 T
vari:integer=20

—_—- timelsRunning

rightButton /raise resume |

after 7ms /
raise updateCounter; | = i+1

A simple state is one which has no substructure.

A state which has substates (nested states) is called a composite state (or compound state).

Substates may be nested to any level. A nested state machine may have at most one initial state and one final state.
Substates are used to simplify complex flat state machines by showing that some states are only possible
within a particular context (the enclosing state).

* A composite state factorizes the possible exits from all (most of) the states

Taken and modified from http://sce.uhcl.edu/helm/rationalunifiedprocess/process/modguide/md_stadm.htm
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History state

Deep or shallow...

)
® normalBehavior

@ ' freezedBehavior
“\
(@ state 2 | o1 | State3 | »
| ‘ freeze

'
State 5

pr—
State_4
e5

—

.

* <history> allows for pause and resume semantics in compound states. Before the
state machine exits a compound state, it records the state's active descendants. If the 'type' attribute of the
<history> state is set to "deep", the state machine saves the state's full active descendant configuration, down
to the atomic descendant(s). If 'type' is set to "shallow", the state machine remembers only which immediate
child was active. After that, if a transition takes a <history> child of the state as its target, the state machine re-
enters not only the parent compound state but also the state(s) in the saved configuration. Thus a transition
with a deep history state as its target returns to exactly where the state was when it was last exited, while a
transition with a shallow history state as a target re-enters the previously active child state, but will enter the
child's default initial state (if the child is itself compound.).
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TD stopWatch

Version 3

Vous allez ajouter du comportement a la version 2. Il s’agit ici d’ajouter un troisieme bouton “mode”. Ce
bouton permet d’afficher I’heure ou la date pendant 1 seconde. Au premier appuie sur le bouton, 1’affichage
devra montrer 1’heure courante. Au bout d’une seconde, si le bouton n’a pas été appuyé a nouveau, le
chronometre retourne dans 1’état ou il était. Si le bouton est appuy€ a nouveau avant 1 seconde, I’affichage
montrera la date. De méme, si aucun bouton n’est appuyé€ pendant 1 seconde on retourne au comportement
initial, sinon on remontre 1’heure courante. Le fonctionnement décrit sera actif peu importe I’état dans
lequel se trouve le chronometre (arrété, démarré , en pause, etc).

. K&/{A‘IIR@ S Finite State Machine, State Charts
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TD stopWatch

Version 3

Vous allez ajouter du comportement a la version 2. Il s’agit ici d’ajouter un troisieme bouton “mode”. Ce
bouton permet d’afficher I’heure ou la date pendant 1 seconde. Au premier appuie sur le bouton, 1’affichage
devra montrer 1’heure courante. Au bout d’une seconde, si le bouton n’a pas ét€ appuyé a nouveau, le
chronometre retourne dans 1’état ou il était. Si le bouton est appuy€ a nouveau avant 1 seconde, I’affichage
montrera la date. De méme, s1 aucun bouton n’est appuyé pendant 1 seconde on retourne au comportement
initial, sinon on remontre 1’heure courante. Le fonctionnement décrit sera actif peu importe I’état dans
lequel se trouve le chronometre (arrété, démarré , en pause, etc).

s

e StopWatchMode
read | stopped : T~
startStop \
timeout e
ClockDateMode
™\ " .
g (. displayTime mode displayDate
mode
startStop startStop|
mode
- b
TimePassing \
@ running ) pause Paused
&N sfter7ms
pause
\ J
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TD stopWatch

Version 3

Vous allez ajouter du comportement a la version 2. Il s’agit ici d’ajouter un troisieme bouton “mode”. Ce
bouton permet d’afficher I’heure ou la date pendant 1 seconde. Au premier appuie sur le bouton, 1’affichage
devra montrer 1’heure courante. Au bout d’une seconde, si le bouton n’a pas ét€ appuyé a nouveau, le
chronometre retourne dans 1’état ou il était. Si le bouton est appuy€ a nouveau avant 1 seconde, I’affichage
montrera la date. De méme, s1 aucun bouton n’est appuyé pendant 1 seconde on retourne au comportement
initial, sinon on remontre 1’heure courante. Le fonctionnement décrit sera actif peu importe I’état dans
lequel se trouve le chronometre (arrété, démarré , en pause, etc).

e

e StopWatchMode
read | stopped ®"\
startStop
$(
ClockDateMode
o (. displayTime ) mode ( displayDate
startStop startStop -
mode
( . . N\ A
TimePassing \
(@  running ) S Paused
'S after7ms
pause
Est-ce correct ?
\ J
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TD stopWatch

Version 3

Vous allez ajouter du comportement a la version 2. Il s’agit ici d’ajouter un troisieme bouton “mode”. Ce
bouton permet d’afficher I’heure ou la date pendant 1 seconde. Au premier appuie sur le bouton, 1’affichage
devra montrer 1’heure courante. Au bout d’une seconde, si le bouton n’a pas ét€ appuyé a nouveau, le
chronometre retourne dans 1’état ou il était. Si le bouton est appuy€ a nouveau avant 1 seconde, I’affichage
montrera la date. De méme, s1 aucun bouton n’est appuyé pendant 1 seconde on retourne au comportement
initial, sinon on remontre 1’heure courante. Le fonctionnement décrit sera actif peu importe I’état dans
lequel se trouve le chronometre (arrété, démarré , en pause, etc).

e

[ StopWatchMode
read | stopped @‘-\
startStop
$(
ClockDateMode
o (. displayTime ) mode ( displayDate
startStop startStop| moce
mode
s X : ~ h
TimePassing \
(@  running ) S Paused
'S after7ms
pause
Est-ce correct ?
L J
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TD stopWatch and hierarchy !

revisited

Version 3

Vous allez ajouter du comportement a la version 2. Il s’agit ici d’ajouter un troisieme bouton “mode”. Ce
bouton permet d’ afficher I’heure ou la date pendant 1 seconde. Au premier appuie sur le bouton, I’affichage
devra montrer 1’heure courante. Au bout d’une seconde, si le bouton n’a pas été appuyé a nouveau, le
chronometre retourne dans 1’état ou 1l était. Si le bouton est appuyé a nouveau avant 1 seconde, I’affichage
montrera la date. De méme, si aucun bouton n’est appuyé pendant 1 seconde on retourne au comportement
initial, sinon on remontre 1’heure courante. Le fonctionnement décrit sera actif peu importe 1’état dans
lequel se trouve le chronometre (arrété, démarré€ , en pause, etc).

I

stoppedClean stoppedDirty

leftButton / raise reset

leftButton / leftButton /raise stop
raise start
timelsRunning
L gl
. after 1s / raise timeMode
TimeMode ClockDateMode
it n thirdButton / raise dateMode 2
after 1s / raise timeMode ‘
& v
2 ClockMode DateMode
/ raise clockMode
L 4 '
started paused 1|
L1 »
2 rightButton /raise pause 1 thirdButton /raise clockMode
after 50ms / Tb
: i thirdButton
aiseliptateiaplay rightButton /raise resume
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State Charts

statecharts = state-diagrams + depth

+ orthogonality + broadcast-communication.

David Harel
Statecharts: A visual formalism for complex systems
Science of computer programming 8 (3), 231-274
1987

|MR@S
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Parallel states

® Parallel_1 e
Sta te 2 | | Sta te 3
(@ state 21 (@ state 3.1
L N g [ J
shared . shared e3
|[ State 22 | ‘f State_3_2
. J

Also named Orthogonal regions in UML or AND-States (Since after initialization, the
machine is in substate State 2 1 AND State 3 1.)

Everything is working as if State_2 and State 3 were independent. When the machine is

in a parallel state, all event received are broadcasted to all the parallel states. They can
consume them or not like any normal state machine

. KAIR@ S Finite State Machine, State Charts
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Parallel states

—
© Parallel_1 (rEE
State 2 State_3
(. State_2_1 ) external queue (. State_3_1 external queue
L . J [ V4
shared ¢! shared e3
|  State 2.2 f State_3_2

)

J

. KAIR@ S Finite State Machine, State Charts

Also named Orthogonal regions in UML or AND-States (Since after initialization, the
machine is in substate State 2 1 AND State 3 1.)

Everything is working as if State_2 and State 3 were independent. When the machine is

in a parallel state, all event received are broadcasted to all the parallel states. They can
consume them or not like any normal state machine
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Parallel states

. Pa I'a I|e|_1 .-E | @state 2.1 3.1 e3
State_2 State 3 e Shared \
3 [ State2.132 |
(@ state21 |® state 3 1
el 4
J J shared shared
shared ¢ shared e3 o1
| State 22 | State 3.2 |
< ) ]
State_ 2 2 3 1 o State 2 2 3 2
/ {
S\ = \_
~ J

/ The Cartesian product of the states allows for “sequential” equivalence of the input
/ language but warning about the actions, i.e., the behavior of the system !!

By using parallel states, the complexity in number of state is the sum of the number of
states in each parallel states while otherwise it is the product of them
(if we add another parallel state with 3 states, the “sequential” result have 12 states)

. K&/{A‘IIR@ S Finite State Machine, State Charts
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Parallel states

Other representations and naming: UML

Composite states / regions

« Each region within a composite state executes in parallel.
« Atransition to the final state of a region indicates completing the
activity for that region.

* Once all the regions have completed, the composite state triggers a
completion event and a completion transition (if one exists) triggers.

Optional region name
,/ Dispensing “\“

Handle drink
- . ~ . ) -, e |
it Rotating drink rack | . Releasing drink \ /' Opening dispenser door |
‘—
o = entry / start drink rack rotation ‘ -~ entry/ release current drink = entry / release dispenser door .\
\doi rotate drink rack / \ / | do/ close dispenser door
- A - ! N
Handle bookkeeping
r_/' ™ I,/ \
Log drink Update Ny
. = purchase =1 inventory = \./
\ )

Composite state with two regions

From Charles André’s slides

. KAIR@ S Finite State Machine, State Charts
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Parallel states

Yet another representation and naming

concurrent substates specify two or more state machines that execute in parallel in the context of the
enclosing object

Execution of these concurrent substates continues in parallel. These substates waits for each other to
finish to joins back into one flow

A nested concurrent state machine does not have an initial, final, or history state

join

ldle
fork
s 54 composite state
maintain )
«

concurrent substate r’rMainterlance
_Le Tesling

Testing Self
devices diagnosis

~® Commanding  [continue]

EDaC

N, keyPress [not mntinuep

p
/ Mix with the vocabulary from activity diagrams

. KAIR@ S Finite State Machine, State Charts




Parallel states

main region

t

rl

pong

. K&/{A‘IIR@ S Finite State Machine, State Charts
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Yet another representation and naming

concurrent substates specify two or more state machines that execute in parallel in the context of the
enclosing object

Execution of these concurrent substates continues in parallel. These substates waits for each other to
finish to joins back into one flow

A nested concurrent state machine does not have an initial, final, or history state

pingpong ) . Pa ra||e|_1 = | E
2 Y[
2 State 2 State 3
® State 2 1 (® state 31
i ongl | S
ping1 pong el
shared shared e3
S

after 1s after 1s ping State_2_2 ¢ | State_3 2

/ raise ping /raise pong {
ping2 pong2




Parallel states
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® Parallel_1 =£E man regon

State 2 | [state 3 0

r 2
[
@ State 2.1 State 3 1 tl
e3

\\\\\\
@ 1 ! png
shared | | | | share d

———————— pong after 1s after 1s ping
State_2_2 State_3_2 / raise ping /raise pong
ing2 ) )
pRgz L pong2

Parallel States:

The child states execute in parallel in the sense that any event that is processed is processed in
each child state independently, and each child state may take a different transition in response to
the event. (Similarly, one child state may take a transition in response to an event, while another
child ignores it.) When all of the children reach final states, the <parallel> element itself is
considered to be in a final state, and a completion event done.state.id is generated, where id is
the id of the <parallel> element.

Transitions within the individual child elements operate normally. However whenever a transition
Is taken with a target outside the <parallel> element, the <parallel> element and all of its child
elements are exited and the corresponding <onexit> handlers are executed. The handlers for the
child elements execute first, in document order, followed by those of the parent <parallel>
element, followed by an action expression in the <transition> element, and then the <onentry>
handlers in the "target" state.

Note that the semantics of the <parallel> element does not call for multiple threads or truly
concurrent processing. The children of <parallel> execute in parallel in the sense that they are all
simultaneously active and each one independently selects transitions for any event that is
received. However, the parallel children process the event in a defined, serial order, so no
conflicts or race conditions can occur. See D Algorithm for SCXML Interpretation for a detailed
description of the semantics of <parallel> and the rest of SCXML.
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Parallel states

® Parallel_1 =£S man regon

State 2 | [state 3 \ —

@ State 3.1

@ state 2 1 tl
ing1 | ]

el
shared shared &

¢ pong after s er 1s ping
State_2 2 State_3_2 / raise ping /raise pong
Y \
o2 pong2

UML:

Even though orthogonal regions imply independence of execution (allowing more or less
concurrency), the UML specification does not require that a separate thread of execution
be assigned to each orthogonal region (although this can be done if desired). In fact, most

commonly, orthogonal regions execute within the same thread . The UML specification

requires only that the designer does not rely on any particular order for event instances to

be dispatched to the relevant orthogonal regions.
NOTe tnat tne Semantcs o tne <parallel> element aoes Not call Tor muiiplie tnreaas or uuly
concurrent processing. The children of <parallel> execute in parallel in the sense that they are all
simultaneously active and each one independently selects transitions for any event that is
received. However, the parallel children process the event in a defined, serial order, so no
conflicts or race conditions can occur. See D Algorithm for SCXML Interpretation for a detailed
description of the semantics of <parallel> and the rest of SCXML.

* Douglass, Bruce Powel (1999). Doing Hard Time: Developing Real-Time Systems with UML, Objects, Frameworks, and Patterns. Addison Wesley. p. 749.
ISBN 0-201-49837-5.
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State Charts

statecharts = state-diagrams + depth

+ orthogonality +broadcast-communication.

David Harel
Statecharts: A visual formalism for complex systems
Science of computer programming 8 (3), 231-274
1987
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Communication: intuition

Usually, parallel states are not truly independent. The different state machines can communicate
through different mechanism (e.g., shared variable or timings) to synchronize their behaviors.

- The most common way to coordinate behaviors from parallel states is by sending events to each
others.

O Parallel 1 o=

State 2 JState_3

(@ waitPing

(. pingerldle

HoPing

pong Iping doPong ping

/pong

( waitPong ) ( pinged )

onEntry:
send doPong
J after 1s )

b vy

l KAIR@ S Finite State Machine, State Charts
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Usually, parallel states are not truly independent. The different state machines can communicate

through different mechanism (e.g., shared variable or timings) to synchronize their behaviors.

- The most common way to coordinate behaviors from parallel states is by sending events to each

others.

l KAIR@ S Finite State Machine, State Charts

Parallel 1

oS

b

State 2

(. pingerldle

pong

( waitPong

HoPing
/ping

JState_3

(@ waitPing

doPong
/pong

( pinged

onEntry:
send doPong
after 1s

ping
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Communication: intuition

Usually, parallel states are not truly independent. The different state machines can communicate
through different mechanism (e.g., shared variable or timings) to synchronize their behaviors.

- The most common way to coordinate behaviors from parallel states is by sending events to each

others.
® Parallel_1 e
State 2 State 3
(. pingerldle (. waitPing
)
i A
e jorfmg// doPong ping
\ ping /pong
— A //
( WaitPong\T—/ ( o
onEntry:
send doPong
J after 1s

l KAIR@ S Finite State Machine, State Charts
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Communication: intuition

The coordination between the parallel states duce the resulting behavior

O Parallel 1 o5

-

State 2 State 3
Ao I
(. pingerIdle (. waitPing
g J
HoPing . _
e i oPong ping
ping /pong
( waitPong \‘ ( pin?_:;ed )
onEntry: |
send doPong
J after 1s

. KAIR@ S Finite State Machine, State Charts
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Communication: intuition

The coordination between the parallel states duce the resulting behavior

~\

-

Parallel_1

ofs

State 2

(. pingerldle

pong

( waitPong

oPing
/ping

IState_B

(@ waitPing

doPong
/pong

ping

pinz_:jed 1

onEntry:

after 1s

send doPong

. KAIR@ S Finite State Machine, State Charts

/pingerldle_waitPing

H

( pinged_waitPong )

doPing onEntry:
send doPong
after 1s
doPong
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Communication: intuition

The coordination between the parallel states educe the resulting behavior

~

S~

Parallel 1

oS

State 2

(. pingerldle

pong

&

waitPong

HoPing
/ping

IState_S

(@ waitPing

daPong
/pong

pin;_:;ed

onEntry:
send doPong
after 1s

ping

. KAIR@ S Finite State Machine, State Charts

H

/pingerIdIe_waitPing

If ping or pong is not
sent from the outside !

f pinged_waitPong )
doPing onEntry:

send doPong
after 1s

doPong
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No target transition

ini

State_1

in2

If the 'target’' on a <transition> is omitted, then the value of 'type' does not have any effect and taking the
transition does not change the state configuration but does invoke the executable content that is included in the
transition. Note that this is different from a <transition> whose ‘'target’ is its source state. In the latter case, the
state is exited and reentered, triggering execution of its <onentry> and <onexit> executable content

. KAIR@ S Finite State Machine, State Charts
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No target transition

1 everyTest
@EventDriven
// Use the event driven execution model.
/{ Runs a run-to-completion step
// each time an event is raised.
// Switch to cycle based behavior
/1 by specifying '@CycleBased(200)
/f instead.

@ChildFirstExecution
/f In composite states, execute
/f child states first.

/{ @ParentFirstExecution does the opposite.

interface:

out event doStuff
out event exitState
out event enterstate
in event changeState

internal:

event intern
var nbCycle: integer =0

KAIR@ N Finite State Machine, State Charts

-y

u

main region

[nbCycle == 2]
StateA 2 -
every 100ms/ raise doStuff
exit /raise exitState ‘
entry /raise enterState -
1 changeState / raise intern; nbCycle++
l changeState
StateB
after 2s / raise doStuff
exit /raise exitState
entry /raise enterState
changeState
2
StateC StateD
exit / raise exitState 2— » exit/ raise exitState
entry /raise enterState changeState  entry /raise enterState 1

1

after 100ms /raise doStuff

every 100ms /raise doStuff

Université
Nice sornn swmirours
kK
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Non Determinism ?
main region
3
State_1 \
State_3
P——P
e
r1
3 A
State_A State_B
. g State_2 )
€ 1—p

- - e

N.B. If two transitions conflict, then taking them both may lead to an illegal configuration. Hence, only one of the
transitions may safely be taken. In order to resolve conflicts between transitions, we assign priorities to
transitions as follows: let transitions T1 and T2 conflict, where T1 is optimally enabled in atomic state S1, and T2
is optimally enabled in atomic state S2, where S1 and S2 are both active. We say that T1 has a higher priority
than T2 if a) T1's source state is a descendant of T2's source state, or b) S1 precedes S2 in document order.

. mIR@ S Finite State Machine, State Charts
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Université
Nice sornn swmirours
kK

Yakindu exit nodes

«~—@

Process
r
A B no_problem
®* 1 = 1 =X
proceed proceed
2 2
error_1 error_2
problem

b

# no_problem > > success # problem > > failure

Handle Result

® = Handle failure proceed
failure

success Handle Success

.' - proceed

Entry and exit points by example

https://www.itemis.com/en/yakindu/state-machine/documentation/user-guide/sclang_graphical _elements

. KAIR@ S Finite State Machine, State Charts
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Raise vs send

in1/ send actionl in1/ raise in2

State_1 State_1

in2 / send action2 in2 / send action2

The <raise> element raises an event in the current SCXML session. Note that the event will not be processed until the
current block of executable content has completed and all events that are already in the internal event queue have
been processed. For example, suppose the <raise> element occurs first in the <onentry> handler of state S followed
by executable content elements ecl and ec2. If event el is already in the internal event queue when S is entered, the
event generated by <raise> will not be processed until ecl and ec2 have finished execution and el has been
processed.

<send> is used to send events and data to external systems, including external SCXML Interpreters, or to raise events
in the current SCXML session.

. mIR@ S Finite State Machine, State Charts
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Datamodel

* |t is possible to add data and data manipulation directly inside the state

machine.

* SCXML supports the ecmascript data model (some sort of C++in Qt
Creator and a specific action langage in Yakindu)

*
* Usually , only data directly associated with the control is used in the

state machine

* To avoid mixing the application logic between the code and the
state chart

* To ease the V&V activities

* jt strongly depends on what the state chart is used for but it seems to be a good practice, even for understanding

|MR@S
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Datamodel
/A When ecmascript data model is used, N Cetamode ‘

- the log expr must not be null and it b
must conform the ecmascript syntax St
- otherwise no log is printed - O State 2
- O pingerldle
~ doPing
assign
send
log
- U waitPong
pong
v O State_3
© - U waitPing
ping
- Opinged
~ doPong
send
¢ log
M t
O Parallel_1 o3 o end
transition c
P Y Attributes scxml
State 2 State 3 Name Value
initial
o N name TestPingPong
(. pingerldle (. waitPing
L. *xmlns http://www.w3.0rg/2005/07/scxml
*version 1.0
~ datamodel ecmascript
pong AT doPong ping binding early

waitPong ¢ ( pinged

.KAIR@;
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Datamodel coreonzin ' Lrada—

Variables are declared and initialized in a specific section '
ata
id: The name of the data item. See 3.14 IDs for details.

data
g 9 9 c ~ @ Parallel_1
src: Gives the location from which the data object should be fetched. onentry
See 5.9.3 Legal Data Values and Value Expressions for details. =
9 g ~ O pingerldle
expr: Evaluates to provide the value of the data item. See 5.9.3 Legal i
Data Values and Value Expressions for details. assign
log
- U waitPong
pong
v O State_3
@ - U waitPing
ping
- Opinged
~ doPong
send
: log
- onentry
. Pa raIIEI_1 .'EE send
transition =
. y
State 2 State_3 Name Value
- *id counter
" N Src
- N (@ waitPing
(. pingerldle expr 0
V4
pong floPing doPong ping
waitPong ¢ ( pinged
_/
. EAIR® |




Datamodel

Variables are declared and initialized in a specific section

id: The name of the data item. See 3.14 IDs for details.

src: Gives the location from which the data object should be fetched.

See 5.9.3 Legal Data Values and Value Expressions for details.

expr: Evaluates to provide the value of the data item. See 5.9.3 Legal

Data Values and Value Expressions for details.

@

|

o Parallel_1 i
State 2 State 3
(. pingerldle (. waitPing
pong HoPing doPong ing
mPong ( e

UNIVERSITE :2a%:
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= Structure T.

scxml
~ datamodel

(1415
~ @ Parallel_

onentry
- O State_2
- O pingerldle
~ doPing
assign
send
log
- U waitPong
pong
v O State_3
- U waitPing
ping
~ O pinged
~ doPong
send
log
- onentry
send
transition

Attributes startTi...

Name \/al e

*id startTime

src

expr new Date().getTime()

.EAIR@Q




Datamodel

Label is any string and expr any legal ecmascript expression

(if no expression, needs to be ' ')

@
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= Structure

scxml
~ datamodel
data
data
~ @ Parallel_1
onentry
- O State_2
- O pingerldle
~ doPing
assign
send
[ _log |
(B—
pong
v O State_3
- U waitPing
ping
~ O pinged
~ doPong
send
log
~ onentry
send
transition

-

.KAIR@;

® Parallel_1 -3
State 2 State 3
f. pingerldle (. waitPing
sk oPing doPong ping
mPong ( e

Attributes
AL m \ /-1,

label ping

expr new Date().getTime() - startTime +"ms"




Datamodel

K. AIR®

@

Parallel 1

State 2

(. pingerldle

pong

. A
waitPong

HoPing

/State_3

(. waitPing
doPong
( pinged

ping

UNIVERSITE :rgt:
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= Structure T.
scxml =

~ datamodel
data
data
~ @ Parallel_1
onentry
- O State_2
- O pingerldle
~ doPing
assign
send
log
- U waitPong
pong
v O State_3
- U waitPing
ping
~ O pinged
~ doPong
send
log
~ onentry
send
transition :

Attributes transiti...|

Name Value

event
cond counter >3

target Final_1

type external

Université
Nice sornn swmirours
kK
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Datamodel ...

I
scxml :
~ datamodel
data
data
~ @ Parallel_1
onentry
- O State_2
- O pingerldle
~ doPing
assign
send
log
- U waitPong
pong
~ U State_3
- U waitPing

(ﬁ:
ping
- O pinged
~ doPong
send

log
. 1 ._EE - onentry
/5 3 ‘ f_me Valie
State 2 tate_
event
| @ pingerldle ) (. waitPing ) cond counter > 3
- target Final_1
type external
pong foPing doPong ping
[ waitbong | (" pinged
J
EAIR® |




Guarded transition

cond: is evaluated after each micro step and fired when the condition

holds

. K AIR®

(@
|

State 2

f. pingerldle

pong

waitPong

HoPing

'State_3

f. waitPing

doPong

( pinged

ping
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o g
scxml =
- datamodel
data
data
~ @ Parallel_1
onentry
- O State_2
- O pingerldle
~ doPing
assign
send
log
- U waitPong
pong
v O State_3
- U waitPing
ping
~ O pinged
~ doPong
send
log
~ onentry

transition

Attributes transiti...|
Name Valie

event

cond counter >3
target Final_1

type external




Guarded transition

o @ O

Initial Final State

CINING)

Parallel | | History
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@

A

Pa=raIIeI_1

MainWindow . . .E
fﬁa&LZ fﬁa&;3
@ pingerldle
submit
pong HoPing e g
waitPon pinged

Errors(0) / Warninas(0) / Info(0) » Search
Application Qutput 2 LI

testParallel e testParallel @

Oll

"counter

scxml.statemachine:
scxml.statemachine:
scxml.statemachine:
scxml.statemachine:
scxml.statemachine:
scxml.statemachine:
scxml.statemachine:
scxml.statemachine:
scxml.statemachine:
scxml.statemachine:
scxml.statemachine:
scxml.statemachine:

i

"enter pingerIdle"
"ping" : "35199ms"
"pong" : "36251ms"
"enter pingerIdle"
"ping" : "37800ms"
"pong" : "38753ms"
"enter pingerIdle"
"ping" : "39531ms"
"pong" : "40584ms"
"enter pingerIdle"
"ping" : "42640ms"
"enter final node" :

"counter "

"counter 2"

"counter 3"

"counter =4"

‘ Université
Nice sorm axtiron

-

~ onentry
log
~ O waitPong
pong
~ O State_3
~ O waitPing
ping
~ U pinged
~ doPong
send
log
~ onentry
send

transition
~ ® Final_1

Name Value
event
cond counter >3
target Final_1
type external




Guarded transition

Common States e

® @

Initial Final

CINING)

Parallel | | History

testParallel e

scxml.
scxml.
scxml.
scxml.
scxml.
scxml
scxml.
scxml.
scxml
scxml.
scxml.
scxml

Application Output

@

State

1
=

statemachine:
statemachine:
statemachine:
statemachine:
statemachine:

.statemachine:

statemachine:
statemachine:

.statemachine:

statemachine:
statemachine:

.statemachine:

Errors(0) / Warninas(0) / Info(0) » Search

testParallel @

"enter
n p-i ng'll
n pong"
"enter
n p-i ng'll
n pong"
"enter
n p-i ng"
n pong"
"enter
n p-i ng"
"enter
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@

A

4 7
zia—

MainWindow . .

submit

pingerIdle"
: "35199ms"
: "36251ms"
pingerIdle"
"37800ms"
"38753ms"
pingerIdle"
"39531ms"
"40584ms"
pingerIdle"
"42640ms"
final node"

Pa=raIIeI_1

State 2 State 3
pong HoPing doPong -
waitPon pinged

"counter = 0"
"counter = 1"
"counter = 2"
"counter = 3"

"counter =4"

-
~ onentry
log
~ O waitPong
pong
~ O State_3
~ O waitPing
ping
~ U pinged
~ doPong
send
log
~ onentry
send
transition
~ ® Final_1
- onent
Attributes
Name Value

event
cond counter >3
target Final_1

type external
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