
Finite State Machine, State Charts

SCXML
State Chart XML

Previously, in this course...

Finite State Machine, State Charts

Running Example

wasn’t it supposed to help ?
all actions omitted

Previously, in this course...

Finite State Machine, State Charts

Running Example

wasn’t it supposed to help ?

all actions omitted

Previously, in this course...

● Substates may be nested to any level. A nested state machine may have at most one initial state and one final state.
● Substates are used to simplify complex flat state machines by showing that some states are only possible

within a particular context (the enclosing state).
● A composite state factorizes the possible exits from all (most of) the states

Finite State Machine, State Charts

Running Example

all actions omitted

● A simple state is one which has no substructure.
● A state which has substates (nested states) is called a composite state (or compound state).
● Substates may be nested to any level. A nested state machine may have at most one initial state and one final state.
● Substates are used to simplify complex flat state machines by showing that some states are only possible

within a particular context (the enclosing state).
● A composite state factorizes the possible exits from all (most of) the states

Previously, in this course...

Finite State Machine, State Charts

Stopwatch

● A simple state is one which has no substructure.
● A state which has substates (nested states) is called a composite state (or compound state).
● Substates may be nested to any level. A nested state machine may have at most one initial state and one final state.
● Substates are used to simplify complex flat state machines by showing that some states are only possible

within a particular context (the enclosing state).
● A composite state factorizes the possible exits from all (most of) the states

Taken and modified from http://sce.uhcl.edu/helm/rationalunifiedprocess/process/modguide/md_stadm.htm

Previously in this course...

http://sce.uhcl.edu/helm/rationalunifiedprocess/process/modguide/md_stadm.htm

Finite State Machine, State Charts

History state

● <history> allows for pause and resume semantics in compound states. Before the

state machine exits a compound state, it records the state's active descendants. If the 'type' attribute of the
<history> state is set to "deep", the state machine saves the state's full active descendant configuration, down

to the atomic descendant(s). If 'type' is set to "shallow", the state machine remembers only which immediate
child was active. After that, if a transition takes a <history> child of the state as its target, the state machine re-
enters not only the parent compound state but also the state(s) in the saved configuration. Thus a transition

with a deep history state as its target returns to exactly where the state was when it was last exited, while a
transition with a shallow history state as a target re-enters the previously active child state, but will enter the

child's default initial state (if the child is itself compound.).

Deep or shallow...

Previously, in this course...

Finite State Machine, State Charts

TD stopWatch

Finite State Machine, State Charts

Row 1 Row 2 Row 3 Row 4
0

2

4

6

8

10

12

Column 1

Column 2

Column 3

TD stopWatch

Finite State Machine, State Charts

TD stopWatch

Est-ce correct ?

Finite State Machine, State Charts

TD stopWatch

Est-ce correct ?

Finite State Machine, State Charts

TD stopWatch and hierarchy !
revisited

Finite State Machine, State Charts

SCXML
State Chart XML

Parallel regions, communications
and a little bit more

Finite State Machine, State Charts

State Charts

David Harel
Statecharts: A visual formalism for complex systems

Science of computer programming 8 (3), 231-274
1987

https://scholar.google.fr/citations?view_op=view_citation&hl=fr&user=E20Gzu0AAAAJ&citation_for_view=E20Gzu0AAAAJ:u5HHmVD_uO8C

Finite State Machine, State Charts

Parallel states

Also named Orthogonal regions in UML or AND-States (Since after initialization, the
machine is in substate State_2_1 AND State_3_1.)

Everything is working as if State_2 and State_3 were independent. When the machine is
in a parallel state, all event received are broadcasted to all the parallel states. They can
consume them or not like any normal state machine

Finite State Machine, State Charts

Parallel states

Also named Orthogonal regions in UML or AND-States (Since after initialization, the
machine is in substate State_2_1 AND State_3_1.)

Everything is working as if State_2 and State_3 were independent. When the machine is
in a parallel state, all event received are broadcasted to all the parallel states. They can
consume them or not like any normal state machine

external queue external queue

Finite State Machine, State Charts

Parallel states

The Cartesian product of the states allows for “sequential” equivalence of the input
language but warning about the actions, i.e., the behavior of the system !!

By using parallel states, the complexity in number of state is the sum of the number of
states in each parallel states while otherwise it is the product of them
(if we add another parallel state with 3 states, the “sequential” result have 12 states)

Finite State Machine, State Charts

Other representations and naming: UML

Parallel states

From Charles André’s slides

Finite State Machine, State Charts

Yet another representation and naming

Parallel states

concurrent substates specify two or more state machines that execute in parallel in the context of the
enclosing object

Execution of these concurrent substates continues in parallel. These substates waits for each other to
finish to joins back into one flow

A nested concurrent state machine does not have an initial, final, or history state

Mix with the vocabulary from activity diagrams

Finite State Machine, State Charts

Yet another representation and naming

Parallel states

concurrent substates specify two or more state machines that execute in parallel in the context of the
enclosing object

Execution of these concurrent substates continues in parallel. These substates waits for each other to
finish to joins back into one flow

A nested concurrent state machine does not have an initial, final, or history state

Finite State Machine, State Charts

Parallel states

● Parallel States:
– The child states execute in parallel in the sense that any event that is processed is processed in

each child state independently, and each child state may take a different transition in response to
the event. (Similarly, one child state may take a transition in response to an event, while another
child ignores it.) When all of the children reach final states, the <parallel> element itself is
considered to be in a final state, and a completion event done.state.id is generated, where id is
the id of the <parallel> element.

– Transitions within the individual child elements operate normally. However whenever a transition
is taken with a target outside the <parallel> element, the <parallel> element and all of its child
elements are exited and the corresponding <onexit> handlers are executed. The handlers for the
child elements execute first, in document order, followed by those of the parent <parallel>
element, followed by an action expression in the <transition> element, and then the <onentry>
handlers in the "target" state.

– Note that the semantics of the <parallel> element does not call for multiple threads or truly
concurrent processing. The children of <parallel> execute in parallel in the sense that they are all
simultaneously active and each one independently selects transitions for any event that is
received. However, the parallel children process the event in a defined, serial order, so no
conflicts or race conditions can occur. See D Algorithm for SCXML Interpretation for a detailed
description of the semantics of <parallel> and the rest of SCXML.

Finite State Machine, State Charts

Parallel states

● Parallel States:
– The child states execute in parallel in the sense that any event that is processed is processed in

each child state independently, and each child state may take a different transition in response to
the event. (Similarly, one child state may take a transition in response to an event, while another
child ignores it.) When all of the children reach final states, the <parallel> element itself is
considered to be in a final state, and a completion event done.state.id is generated, where id is
the id of the <parallel> element.

– Transitions within the individual child elements operate normally. However whenever a transition
is taken with a target outside the <parallel> element, the <parallel> element and all of its child
elements are exited and the corresponding <onexit> handlers are executed. The handlers for the
child elements execute first, in document order, followed by those of the parent <parallel>
element, followed by an action expression in the <transition> element, and then the <onentry>
handlers in the "target" state.

– Note that the semantics of the <parallel> element does not call for multiple threads or truly
concurrent processing. The children of <parallel> execute in parallel in the sense that they are all
simultaneously active and each one independently selects transitions for any event that is
received. However, the parallel children process the event in a defined, serial order, so no
conflicts or race conditions can occur. See D Algorithm for SCXML Interpretation for a detailed
description of the semantics of <parallel> and the rest of SCXML.

Even though orthogonal regions imply independence of execution (allowing more or less
concurrency), the UML specification does not require that a separate thread of execution
be assigned to each orthogonal region (although this can be done if desired). In fact, most

commonly, orthogonal regions execute within the same thread*. The UML specification
requires only that the designer does not rely on any particular order for event instances to
be dispatched to the relevant orthogonal regions.

UML:

* Douglass, Bruce Powel (1999). Doing Hard Time: Developing Real-Time Systems with UML, Objects, Frameworks, and Patterns. Addison Wesley. p. 749.
ISBN 0-201-49837-5.

Finite State Machine, State Charts

SCXML
State Chart XML

Parallel regions, communications
and a little bit more

Finite State Machine, State Charts

State Charts

David Harel
Statecharts: A visual formalism for complex systems

Science of computer programming 8 (3), 231-274
1987

https://scholar.google.fr/citations?view_op=view_citation&hl=fr&user=E20Gzu0AAAAJ&citation_for_view=E20Gzu0AAAAJ:u5HHmVD_uO8C

Finite State Machine, State Charts

Communication: intuition

Usually, parallel states are not truly independent. The different state machines can communicate
through different mechanism (e.g., shared variable or timings) to synchronize their behaviors.

→ The most common way to coordinate behaviors from parallel states is by sending events to each
others.

/ping /pong

onEntry:
send doPong
after 1s

Finite State Machine, State Charts

Communication: intuition

Usually, parallel states are not truly independent. The different state machines can communicate
through different mechanism (e.g., shared variable or timings) to synchronize their behaviors.

→ The most common way to coordinate behaviors from parallel states is by sending events to each
others.

/ping /pong

onEntry:
send doPong
after 1s

Finite State Machine, State Charts

Communication: intuition

Usually, parallel states are not truly independent. The different state machines can communicate
through different mechanism (e.g., shared variable or timings) to synchronize their behaviors.

→ The most common way to coordinate behaviors from parallel states is by sending events to each
others.

/ping /pong

onEntry:
send doPong
after 1s

Finite State Machine, State Charts

Communication: intuition
The coordination between the parallel states can reduce the resulting behavior

/ping /pong

onEntry:
send doPong
after 1s

Finite State Machine, State Charts

Communication: intuition
The coordination between the parallel states can reduce the resulting behavior

/ping /pong

onEntry:
send doPong
after 1s

onEntry:
send doPong
after 1s

Finite State Machine, State Charts

Communication: intuition
The coordination between the parallel states can reduce the resulting behavior

/ping /pong

onEntry:
send doPong
after 1s

If ping or pong is not
sent from the outside !

onEntry:
send doPong
after 1s

Finite State Machine, State Charts

SCXML
State Chart XML

Parallel regions, communications
and a little bit more

Finite State Machine, State Charts

No target transition

If the 'target' on a <transition> is omitted, then the value of 'type' does not have any effect and taking the

transition does not change the state configuration but does invoke the executable content that is included in the

transition. Note that this is different from a <transition> whose 'target' is its source state. In the latter case, the

state is exited and reentered, triggering execution of its <onentry> and <onexit> executable content

Finite State Machine, State Charts

No target transition

If the 'target' on a <transition> is omitted, then the value of 'type' does not have any effect and taking the

transition does not change the state configuration but does invoke the executable content that is included in the

transition. Note that this is different from a <transition> whose 'target' is its source state. In the latter case, the

state is exited and reentered, triggering execution of its <onentry> and <onexit> executable content

Demo...

Finite State Machine, State Charts

Non Determinism ?

N.B. If two transitions conflict, then taking them both may lead to an illegal configuration. Hence, only one of the

transitions may safely be taken. In order to resolve conflicts between transitions, we assign priorities to

transitions as follows: let transitions T1 and T2 conflict, where T1 is optimally enabled in atomic state S1, and T2
is optimally enabled in atomic state S2, where S1 and S2 are both active. We say that T1 has a higher priority

than T2 if a) T1's source state is a descendant of T2's source state, or b) S1 precedes S2 in document order.

Finite State Machine, State Charts

Yakindu exit nodes

https://www.itemis.com/en/yakindu/state-machine/documentation/user-guide/sclang_graphical_elements

https://www.itemis.com/en/yakindu/state-machine/documentation/user-guide/sclang_graphical_elements

Finite State Machine, State Charts

Raise vs send

The <raise> element raises an event in the current SCXML session. Note that the event will not be processed until the
current block of executable content has completed and all events that are already in the internal event queue have
been processed. For example, suppose the <raise> element occurs first in the <onentry> handler of state S followed
by executable content elements ec1 and ec2. If event e1 is already in the internal event queue when S is entered, the
event generated by <raise> will not be processed until ec1 and ec2 have finished execution and e1 has been
processed.

<send> is used to send events and data to external systems, including external SCXML Interpreters, or to raise events
in the current SCXML session.

/ send action1

/ send action2

/ raise in2

/ send action2

Finite State Machine, State Charts

Datamodel

● It is possible to add data and data manipulation directly inside the state
machine.

● SCXML supports the ecmascript data model (some sort of C++ in Qt
Creator and a specific action langage in Yakindu)

● Usually*, only data directly associated with the control is used in the
state machine

● To avoid mixing the application logic between the code and the
state chart

● To ease the V&V activities

* it strongly depends on what the state chart is used for but it seems to be a good practice, even for understanding

Finite State Machine, State Charts

Datamodel
When ecmascript data model is used,
the log expr must not be null and it
must conform the ecmascript syntax
→ otherwise no log is printed

Finite State Machine, State Charts

Datamodel

Variables are declared and initialized in a specific section

id: The name of the data item. See 3.14 IDs for details.
src: Gives the location from which the data object should be fetched.
See 5.9.3 Legal Data Values and Value Expressions for details.
expr: Evaluates to provide the value of the data item. See 5.9.3 Legal
Data Values and Value Expressions for details.

Finite State Machine, State Charts

Datamodel

Variables are declared and initialized in a specific section

id: The name of the data item. See 3.14 IDs for details.
src: Gives the location from which the data object should be fetched.
See 5.9.3 Legal Data Values and Value Expressions for details.
expr: Evaluates to provide the value of the data item. See 5.9.3 Legal
Data Values and Value Expressions for details.

Finite State Machine, State Charts

Datamodel

Label is any string and expr any legal ecmascript expression
(if no expression, needs to be ‘ ’)

Finite State Machine, State Charts

Datamodel

Finite State Machine, State Charts

Datamodel

Finite State Machine, State Charts

Guarded transition

cond: is evaluated after each micro step and fired when the condition
holds

Finite State Machine, State Charts

Guarded transition

Finite State Machine, State Charts

Guarded transition

https://blogs.itemis.com/en/deep-java-integration
-for-yakindu-state-machines

https://blogs.itemis.com/en/deep-java-integration-for-yakindu-state-machines
https://blogs.itemis.com/en/deep-java-integration-for-yakindu-state-machines

