
A <Basic> C++ Course

Julien Deantoni

adapted from Jean-Paul Rigault courses

10 –10 – Object-oriented Object-oriented
programming 3programming 3

 2

Outline

● Dynamic typing and virtual functions:

● Another example: the Expression class
● Derivation public / private
● Derivation and templates
● Copy of derived classes

 308/11/21 4-3

Class Expr
Arithmetic expressions as trees

-(2 + 3) * 4 - 5 / 2 -

*

- 4

+

2 3

/

5 2

 4

Class Expression

 5

Arithmetic expressions as trees

-(2 + 3) * 4 - 5 / 2 -

*

- 4

+

2 3

/

5 2

 7

Class Expr
Abstract classes
class Expr {
public:
 virtual int eval() const = 0; //fonction membre virtuelle pure

 --> rend Expr abstraite
};

class Unary : public Expr {
protected:
 Expr& op;
public:
 Unary(Expr& e) : op(e) {}
};

class Binary : public Expr {
protected:
 Expr &left_op, &right_op;
public:
 Binary(Expr& e1, Expr& e2) : left_op(e1), right_op(e2) {}
};

 8

Class Expr
Abstract classes
class Expr {
public:
 virtual int eval() const = 0; //fonction membre virtuelle pure

 --> rend Expr abstraite
};

class Unary : public Expr {
protected:
 Expr& op;
public:
 Unary(Expr& e) :Expr(), op(e) {}
};

class Binary : public Expr {
protected:
 Expr &left_op, &right_op;
public:
 Binary(Expr& e1, Expr& e2) :Expr(),left_op(e1), right_op(e2) {}
};

Appelé implicitement

Appelé implicitement

 10

Class Expr
Concrete classes
class Constant : public Expr {
private:
 int val;
public:
 Constant(int v) : val(v) {}
 int eval() const override {return val;}
};

class UnaryMinus : public Unary {
public:
 UnaryMinus(Expr& e) : Unary(e) {}
 int eval() const override {return -op->eval();}
};

class Multiplication : public Binary {
public:
 Multiplication(Expr& e1, Expr& e2) : Binary(e1, e2) {}
 int eval() const override {
 return left_op->eval() * right_op->eval();
 }
};

 11

Class Expr
Concrete classes

class Constant : public Expr {
private:
 int val;
public:
 Constant(int v) : Expr(), val(v) {}
 int eval() const override {return val;}
};
class UnaryMinus : public Unary {
public:
 UnaryMinus(Expr& e) : Unary(e) {}
 int eval() const override {return -op->eval();}
};

class Multiplication : public Binary {
public:
 Multiplication(Expr& e1, Expr& e2) : Binary(e1, e2) {}
 int eval() const override {
 return left_op->eval() * right_op->eval();
 }
};

 13

Class Expr
Using virtual functions

main()
{

// c1 = 3
Constant c1{3};
// c2 = 5
Constant c2{5};

// umin = -c1 == -3
UnaryMinus umin{c1};
// mult1 = c1*umin== -9
Multiplication mult1{c1, umin};
// min1 = c2 – (c1*umin) = 14
Minus min1{c2,mult1};

 cout << "c1 = " << c1.eval()

 << endl;
cout << "umin = " << umin.eval()
 << endl;
cout << "mult1 = " << mult1.eval()
 << endl;
cout << "min1 = " << min1.eval()
 << endl;

jdeanton@ziva$./doIt
c1 = 3
umin = -3
mult1 = -9
min1 = 14

 14

Class Expr
Using virtual functions

main()
{

// c1 = 3
Constant c1{3};
// c2 = 5
Constant c2{5};

// umin = -c1 == -3
UnaryMinus umin{c1};
// mult1 = c1*umin== -9
Multiplication mult1{c1, umin};
// min1 = c2 – (c1*umin) = 14
Minus min1 {c2,mult1};

Expr anExpr1= mult1;
Expr* anExpr2= &mult1;
Expr& anExpr3= mult1;

cout << "anExpr1 = "<< anExpr1.eval()<< endl;
cout << "anExpr2 = "<< anExpr2->eval()<< endl;
cout << "anExpr3 = "<< anExpr3.eval()<< endl;
}

jdeanton@ziva$./doIt
AnExpr1 =
anExpr2 =
anExpr3 =

 15

Class Expr
Using virtual functions

main()
{

// c1 = 3
Constant c1(3);
// c2 = 5
Constant c2(5);

// umin = -c1 == -3
Uniminus umin(c1);
// mult1 = c1*umin== -9
Mult mult1(c1, umin);
// min1 = c2 – (c1*umin) = 14
Minus min1(c2,mult1);

Expr anExpr1= mult1;
Expr* anExpr2= &mult1;
Expr& anExpr3= mult1;

cout << "anExpr1 = "<< anExpr1.eval()<< endl;
cout << "anExpr2 = "<< anExpr2->eval()<< endl;
cout << "anExpr3 = "<< anExpr3.eval()<< endl;
}

jdeanton@ziva$./doIt
AnExpr1 = Ne compile même pas !!
anExpr2 = -9
anExpr1 = -9

 16

Class Expr
Virtual function resolution(1)

● Static (compile-time) resolution is used instead of dynamic typing when
● the virtual function is invoked through an instance

Uniminus u(e);
n = u.eval(); // Uniminus::eval

● the version needed is explicited using the scope operator
class A {
public:

virtual void f() {...}
};
class B : public A {
public:

virtual void f() {
A::f();

}
};

● the virtual function is invoked within a base class constructor or
destructor…

 17

Virtual function resolution(2)

● Calling a virtual function from a
constructor or destructor

class A {
public:
 virtual void f() {
 // ...
 }
 A() {
 f(); // calls A::f
 }
};

class B : public A {
 int* _p;
public:
 virtual void f() {
 *_p = 10;
 }

 B() : A(), _p(new int(0)) {}
};

If B::f were called from A
constructor, the program would
crash since the pointer _p has
not yet been initialized

 19

Function that can be virtual

● Only member-functions (or member-operators) can be virtual; friends
cannot

● There is nothing such as virtual constructors
● The destructor may be virtual

(and generally is for abstract classes)
class Expr {

virtual int eval() const = 0;
virtual ~Expr() {};

};
class Unary : public Expr {

~Unary() {}
};
class Binary : public Expr {

~Binary() {}
};

You may have a look here: https://stackoverflow.com/questions/2198379/are-virtual-destructors-inherited

https://stackoverflow.com/questions/2198379/are-virtual-destructors-inherited

 20

Function that can be virtual

● Only member-functions (or member-operators) can be virtual; friends
cannot

● There is nothing such as virtual constructors
● The destructor may be virtual

(and generally is for abstract classes)
class Expr {

virtual int eval() const = 0;
virtual ~Expr() = default;

};
class Unary : public Expr {

virtual ~Unary() = default;
};
class Binary : public Expr {

virtual ~Binary() = default;
};

You may have a look here: https://stackoverflow.com/questions/2198379/are-virtual-destructors-inherited

https://stackoverflow.com/questions/2198379/are-virtual-destructors-inherited

 21

Derivation public / private

● Different kinds of FIFO, which contain some integers.
● Different access policies (pull(), get_One())
● Different storage policies

 22

Derivation public / private

● What if we declare Random_Int_FIFO like that ?

class Random_Int_FIFO : public Int_FIFO
{
 public:
 int get_One();
}

 23

● What if we declare Random_Int_FIFO like that ?

class Random_Int_FIFO : public Int_FIFO
{
 public:
 int get_One();
}

Possible to use a
Random_Int_FIFO
like a simple

Int_FIFO

Derivation public / private

 24

● What if we declare Random_Int_FIFO like that ?

class Random_Int_FIFO : private Int_FIFO
{
 public:
 int get_One();
}

Derivation public / private

 25

● The private derivation
● All members of derived class become private

● The “interface” of the derived class is lost...

class Random_Int_FIFO : private Int_FIFO
{
 public:
 int get_One();
}

Derivation public / private

 26

● The private derivation
● All members of derived class become private

● The “interface” of the derived class is lost...

class Random_Int_FIFO : private Int_FIFO
{
 public:
 int get_One();
}

No more
possible to

push()
integers in
the FIFO

Derivation public / private

 27

● The private derivation
● All members of derived class become private

● The “interface” of the derived class is lost...

● But some parts of the interface can be set public again

class Random_Int_FIFO : private Int_FIFO
{
 public:
 int get_One();
 using Int_FIFO::push;
}

Derivation public / private

 28

Derivation public / private

● The private derivation
● All members of derived class become private

● The “interface” of the derived class is lost...

● But some parts of the interface can be set public again

class Random_Int_FIFO : private Int_FIFO
{
 public:
 int get_One();
 using Int_FIFO::push;
}

All member-
function(s) named

push are now public

 29

Derivation public / private

● The private derivation
● All members of derived class become private
● The “interface” of the derived class is lost...
● But some parts of the interface can be set public again

class Random_Int_FIFO : private Int_FIFO
{
 public:
 int get_One();
 using Int_FIFO::push;
}

 → private derivation is not a “is a” relation anymore !

 30

Derivation public / private

class Random_Int_FIFO : private Int_FIFO
{
 public:
 int get_One();
 using Int_FIFO::push;
}

 → private derivation is not a “is a” relation anymore !

 → private derivation is closer to a “has a” relation.

● The private derivation
● All members of derived class become private
● The “interface” of the derived class is lost...
● But some parts of the interface can be set public again

 31

Derivation public / private

class Random_Int_FIFO : private Int_FIFO
{
 public:
 int get_One();
 using Int_FIFO::push;
}

 → private derivation is not a “is a” relation anymore !

 → private derivation is closer to a “has a” relation.

● The private derivation
● All members of derived class become private
● The “interface” of the derived class is lost...
● But some parts of the interface can be set public again

 → Private inheritance means “is implemented in terms of”. It's usually
inferior to composition [Effective Modern C++. Scott Meyers]

 32

Derivation public / private
● The private derivation

class Person {};
class Student:private Person {}; // private
void eat(const Person& p){} // anyone can eat
void study(const Student& s){} // only students study

int main()
{
 Person p; // p is a Person
 Student s; // s is a Student
 eat(p); // fine, p is a Person
 eat(s); // error! s isn't a Person
 return 0;
}

taken from [Effective Modern C++. Scott Meyers]

 33

Derivation public / private
● The private derivation

class Person {};
class Student:private Person {}; // private
void eat(const Person& p){} // anyone can eat
void study(const Student& s){} // only students study

int main()
{
 Person p; // p is a Person
 Student s; // s is a Student
 eat(p); // fine, p is a Person
 eat(s); // error! s isn't a Person
 return 0;
}

taken from [Effective Modern C++. Scott Meyers]

 → in contrast to public inheritance, compilers will generally not convert a derived
class object (Student) into a base class object (Person) if the inheritance
relationship between the classes is private

 34

Derivation and Template

● Derivation
● We have different FIFO that contains integers

● Access policies are different

● Different FIFO still share the internal representation
(member attributes) and some members functions

 35

● Derivation
● We have different FIFO that contains integers

● Access policies are different

● Different FIFO still share the internal representation (member
attributes) and some members functions

All object,
instances of these
classes contain

Integer

Derivation and Template

 36

● Templates
● We have one FIFO that contains a non predefined type

● Access policies are different

● Different FIFO still share the internal representation (member
attributes) and all members functions

Derivation and Template

 37

● Templates
● We have one FIFO that contains a non predefined type

● Access policies are different

● Different FIFO still share the internal representation (member
attributes) and all members functions

Depending on the
instantiation,

object, instances of
this class contains

something

Derivation and Template

 38

int main()
{
FIFO<int> fint;

FIFO<char> fchar;

FIFO<FIFO<string> > fcomplex;
}

● Templates
● We have one FIFO that contains a non predefined type

● Access policies are different

● Different FIFO still share the internal representation (member
attributes) and all members functions

Depending on the
instantiation,

object, instances of
this class contains

something

Derivation and Template

 39

int main()
{
FIFO<int> fint;

FIFO<char> fchar;

FIFO<FIFO<string> > fcomplex;
}

Depending on the
instantiation,

object, instances of
this class contains

something

Before c++11 ,
Needs a space to differentiate

from the operator>> symbol

Derivation and Template

● Templates
● We have one FIFO that contains a non predefined type

● Access policies are different

● Different FIFO still share the internal representation
(member attributes) and all members functions

 40

● Templates
● We have one FIFO that contains a non still predefined type

● Access policies are different
➔ what if we want different policies ?

● Different FIFO still share the internal representation (member
attributes) and some members functions

int main()
{
FIFO<int> fint;

FIFO<char> fchar;

FIFO<FIFO<string> > fcomplex;
}

Derivation and Template

 41

int main()
{
FIFO<int> fint;

Random_FIFO<char> random_fchar;

Priority_FIFO<FIFO<string> > priority_fcomplex;
}

Derivation and Template

 42

Derivation and class templates

● Two compatible mechanisms, with many combinations
● Both base and derived classes are templates
template <typename T> class A {...};

template <typename T> class B : public A<T> {...};

● A specialized version for the previous case
class B<int> : public A<int> {...};

● Only the base class is template
template <typename T> class A {...};

class B : public A<int> {...};

● Only the derived class is template
class A {...};

template <typename T> class B : public A {...};

 43

Copy of derived classes

● Memberwise copy construction
● If a derived class has a copy constructor, this constructor is

entirely responsible for the initialization
● If a derived class has a copy assignment operator, this

operator is entirely responsible for the assignment
● When a class does not define a needed copy

operation... C++ uses default copy (see next slide)

 class A {...};
 class B : public A {...};
 B b1, b2 = b1; // initialization (construction)
 b1 = b2; // assignment

 44

Default copy of derived classes (1)

● If a class lacks copy operation(s)
● The C++ compiler synthesizes the needed copy operation(s)

(default copy constructor, default copy assignment operator)
● Each member is copied according to its own copy semantics
● Base class(es) are considered as members during the copy

operation
● The memberwise procedure is applied recursively
● Built-in types are copied bitwise

● The synthesis process may fail…

 45

copy of derived classes

class B : public A {
int i;
char* pc;
string s;
// no copy operations

};

B b1(…);
B b2 = b1;
b1 = b2;

 46

copy of derived classes

class B : public A {
int i;
char* pc;
string s;
// no copy operations

};

B b1(…);
B b2 = b1;
b1 = b2;

 47

Default copy of derived classes

class B : public A {
int i;
char* pc;
string s;
// no copy operations

};

B b1(…);
B b2 = b1;
b1 = b2;

● Note that i and pc are bitwise
copied

B::B(const B& b)
 : A((A&)b),
 i(b.i), pc(b.pc), s(b.s)
{}

B& B::operator=(const B& b) {
 A::operator=(b); // !!
 i = b.i;
 pc = b.pc;
 s = b.s;
 return *this;
}

 48

Default copy of derived classes

class B : public A {
int i;
char* pc;
string s;
// no copy operations

};

B b1(…);
B b2 = b1;
b1 = b2;

● Note that i and pc are bitwise
copied

B::B(const B& b)
 : A((A&)b),
 i(b.i), pc(b.pc), s(b.s)
{}

B& B::operator=(const B& b) {
 A::operator=(b); // !!
 i = b.i;
 pc = b.pc;
 s = b.s;
 return *this;
}

 49

Default copy of derived classes

class B : public A {
int i;
char* pc;
string s;
// no copy operations

};

B b1(…);
B b2 = b1;
b1 = b2;

● Note that i and pc are bitwise
copied

B::B(const B& b)
 : A((A&)b),
 i(b.i), pc(b.pc), s(b.s)
{}

B& B::operator=(const B& b) {
 (A)this = (A&)b; // !!
 i = b.i;
 pc = b.pc;
 s = b.s;
 return *this;
}

 51

Redefined copy of derived classes

class B : public A {
int i;
char* pc;
string s;
// no copy operations

};

B b1(…);
B b2 = b1;
b1 = b2;

B::B(const B& b)
 : A((A&)b),
 i(b.i),
 pc(new Char(*b.pc)),
 s(b.s)
{}

B& B::operator=(const B& b) {
 (A)this = (A&)b; // !!
 i = b.i;
 pc = new Char(*b.pc);
 s = b.s;
 return *this;
}

??

??

 52

Redefined copy of derived classes

class B : public A {
int i;
char* pc;
string s;
// no copy operations

};

B b1(…);
B b2 = b1;
b1 = b2;

B::B(const B& b)
 : A((A&)b),
 i(b.i),
 pc(new Char(*b.pc)),
 s(b.s)
{}

B& B::operator=(const B& b) {
 (A)this = (A&)b; // !!
 i = b.i;
 delete this->pc ;
 pc = new Char(*b.pc);
 s = b.s;
 return *this;
}+ destructeur !! et attention aux setter

+ test à nullptr

 53

Redefined copy of derived classes

class B : public A {
int i;
char* pc;
string s;
// no copy operations

};

B b1(…);
B b2 = b1;
b1 = b2;

B::B(const B& b)
 : A((A&)b),
 i(b.i),
 pc(b.pc->clone()),
 s(b.s)
{}

B& B::operator=(const B& b) {
 (A)this = (A&)b; // !!
 i = b.i;
 pc = b.pc->clone();
 s = b.s;
 return *this;
}

??

??

 54

Redefined copy of derived classes

class B : public A {
int i;
char* pc;
string s;
// no copy operations

};

B b1(…);
B b2 = b1;
b1 = b2;

B::B(const B& b)
 : A((A&)b),
 i(b.i),
 pc(b.pc->clone()),
 s(b.s)
{}

B& B::operator=(const B& b) {
 (A)this = (A&)b; // !!
 i = b.i;
 delete this->pc;
 pc = b.pc->clone();
 s = b.s;
 return *this;
}

+ destructeur !! et attention aux setter

 56

copy of derived classes : failure cases

● Synthesis failure of default copy operations

class A {
private:
 const string _s; // const member
 B& _rb; // reference data member
 A(const A&); // private copy constructor
 A* operator=(const A&) = delete //remove synthesized operator
};

● The const member or the reference data member prevent the
synthesis of the default copy assignment (but not of the default copy
constructor)

The private copy constructor prevents the synthesis of the copy constructor
for a class that contains an A by value

Since C++11, one can decide to remove any synthesized function

 57

copy of derived classes : failure cases

● Synthesis failure of default copy operations

class A {
private:
 const string _s; // const member
 B& _rb; // reference data member
 A(const A&); // private copy constructor
 A* operator=(const A&) = delete; //remove synthesized operator
};

● The const member or the reference data member prevent the
synthesis of the default copy assignment (but not of the default copy
constructor)

● The private copy constructor prevents the synthesis of the copy
constructor for a class that contains an A by value

● Since C++11, one can decide to remove any synthesized function

 58

Name lookup and derived classes

● Name lookup
● Searching for the

right declaration
of an identifier

● Apply scope rules

 ... id ...identifier to lookup

lookup into the
hierarchy of nested blocks

lookup into the
function parameter

list

lookup into the
class hierarchy

lookup into global
(namespace) names

the function is not
a member-function

the function is a member
of a class

 59

Name lookup and derived classes (2)

class A {
public:

int i; int j; int n;
};

class B : public A {
private:

int j;
};

class C : public B {
private:

int k;
public:

void f(double);
};

int i; // global variable

void C::f(double n) {
k = 0; // this-> k, C::k

n = 3.14;// function parameter

j = 2; // B::j, but not
 // accessible here

i = 3; // A::i

i = ::i; // ::i is global i
}

 60

Name lookup and derived classes (2)

class A {
public:

int i; int j; int n;
};

class B : public A {
private:

int j;
};

class C : public B {
private:

int k;
public:

void f(double);
};

int i; // global variable

void C::f(double k) {
k = k; // != this->k=k

n = 3.14;// function parameter

j = 2; // B::j, but not
 // accessible here

i = 3; // A::i

i = ::i; // ::i is global i
}

 61

Name lookup and derived classes (2)

class A {
public:

int i; int j; int n;
};

class B : public A {
private:

int j;
};

class C : public B {
private:

int k;
public:

void f(double);
};

int i; // global variable

void C::f(double k) {
k = k; // != this->k=k

n = 3.14;// function parameter

A::j = 2; //this->A::j

i = 3; // A::i

i = ::i; // ::i is global i
}

 62

Questions ?

