UNIVERSITE COTE D’ AZUR
SI5/M2 INFO
2024-2025

Julien Deantoni, Nicolas Ferry

Architecting IoT Systems, Beyond Functional
Correctness

Smart Vineyard Farming

/A May be refined in the next few weeks

Project delivery

This project concerns the delivery of the Architecting IoT Systems, Beyond Functional Correctness course.
It entails the development of a comprehensive system designed to automate the management of a smart
vineyard. Teams will be responsible for delineating the specific operational environment for the system.
In addition to ensuring functional correctness, participants are expected to discern potential threats (to
any extra-functional concerns - eg. performances, scalability, energy) and proactively devise mitigation
strategies for their solutions. It is important to note that no a priori extra-functional requirements have been
specified for this project, necessitating teams to independently elicit and address them.

Deliveries are expected by email (to Julien Deantoni: firstname.lastname @univ-cotedazur.fr, with [IoT_BFC]
as object prefix) followed by “team X project” where X is the name of your team (as used in the slack ded-
icated channel). The delivery is expected before the 19" of January 2025 at 10:00PM Paris Time. The
delivery is expected as a PDF paper That follows classical scientific papers format.

The paper must contain :

¢ the name of the members of your team

* a link to the code of your system (typically a link to the git repository. Note that this git should
clearly explain how to setup and use the project)

* an introduction section specifying the context of use of the system, its functional requirements and
what are the extra functional requirements you elicited as being the most important; together with an
explanation of why (to be further detailed in the “proposed solution” section).

* a critical description of existing solution (“state of the practice” section); with the pros and cons of
each identified solution;

* a “proposed solution” section specifying:

— the differentiating extra functional requirements you elicited ;

— the main risks you identified and how you mitigated them. It can be done by rationalizing
the choices you did in your architecture. Note that the architecture should be specified and
rationalized in terms of:

1. the application architecture;
2. the hardware architecture;
3. the deployment specification;



— a critical analysis of your own solution, specifying what you did right and what could be im-
proved (and how)

* An “implementation and result” section highlighting how and why your solution is actually a good
one (or not)

* A conclusion resuming the main pros and cons of your architecture, the responsibility of each mem-
ber in the team with respect to the delivered project; as well as prospective on potential evolution.

1 Project Description: Smart Vineyards Management System

1.1 Objective

The project addresses a smart farming system to optimize production management in a large vineyard,
covering several dozen hectares. The vineyard is not connected to the national electricity network. The
goal is to equip each vine plant in the field with programmable modules, which perform essential functions
for both monitoring environmental conditions and automating the distribution of resources (such as water,
fertilizers, or pesticides). This system aims to improve production efficiency, reduce resource waste, and
minimize environmental impact.

1.2 System Overview

At the heart of this system is a digital twin dashboard, a dynamic, virtual replica of the vineyard that mimic
the actual field conditions and the modules operational status. Each programmable module is in charge of
collecting the desired environmental data, including but not limited to soil humidity, temperature, sunlight
exposure, and possibly others such as leaf wetness or how ripe the grapes are.

This digital twin dashboard consolidates all incoming data, visualizing the vineyard’s physical environ-
ment, pinpointing the exact status of each module, and offering insights into field conditions as if the
farmer were inspecting the fields in person. In addition to environmental measurements, the dashboard re-
flects the health and functionality of each module, indicating any issues or maintenance needs and enabling
remote troubleshooting.

1.3 Resource Distribution Strategy

The system includes a controlled distribution mechanism for plant resources (e.g., irrigation, fertilizers).
The digital twin dashboard must enact precise control over resource distribution, aligning with actual envi-
ronmental conditions and weather forecasts. In other words, the quantity and timing of resource distribu-
tion must depend on forecasted weather data and actual environmental conditions, ensuring the vineyard
receives only what is necessary, thus conserving resources and adapting to natural environmental condition
variations. For example, if rain is forecasted, the irrigation modules should reduce or suspend water distri-
bution to prevent overwatering and resource waste. Such strategy requires integrating weather forecast data
into the decision-making algorithm and the flexibility to adjust distribution parameters remotely, based on
updated predictions and farmers’ experience.

1.4 System Architecture Constraints

Given the large area of the vineyard, this project imposes strict requirements on system architecture and
non-functional aspects, such as energy consumption, data transmission usage and reliability or fault toler-
ance. The system must also be designed to work autonomously for long periods, minimizing the need for
frequent human intervention.

Each module must operate with minimal energy consumption to prolong battery life or optimize solar
panel efficiency if used. Modules should be able to operate under energy constraints while maintaining
data collection and communication capabilities. Also, the system architecture should support the addition
of new modules without compromising the network’s performance or reliability. This includes managing



increased data traffic and maintaining consistent communication with all modules.Given the outdoor en-
vironment, modules must be resilient to various weather conditions and potential mechanical issues. The
system must be able to identify and respond to module failures, either through self-diagnosis or via alerts
in the Digital Twin. It should be possible to update the system’s resource distribution strategy and the oper-
ational logic to answer changes in weather forecasts and other external factors (e.g., climate change, extra
ordinary phenomenon). This requires a secure mechanism to update each module’s operational parameters
remotely, enabling remote adjustments and minimizing the need for physical intervention.

1.5 Expected Outcome

The final product will be a functional prototype of a representative part of the smart vineyard management
system that demonstrates key points of your system, possibly ranging from on the field modules to the
Digital Twin management.

It is mandatory to validate the operational environment and the solution envisioned with one of the school
representatives based on actual architecture descriptions

Technical choices in terms of languages, libraries, frameworks or technologies are not imposed and you
are free to choose the one(s) that seem(s) the most suitable to your team.

As available hardware, you’ll have access to:

» Raspberry PI 3 and 4

* Arduino boards with a shield with classical sensors/actuators (leds, buttons, temperature sensors,
bluetooth, RFID, NFC, infra red, ...)

* raspberry hat for arduino sensor usage

* api camera module.

* a USB ampere-meter (to be shared among teams)

» some radio frequency emitter/receivers

* the laptops of your team members to be used as you feel is appropriate

Regrettably, access to a real vineyard for testing purposes is unavailable. As a result, the demonstration the
smart farming system will be executed through alternative methodologies, such as mocking or simulating.
To replicate any additional required hardware, you may employ basic sensors and actuators from Arduino
as part of the mock setup.

Important note

Quality of your code is of course important in general but will not be taken into account for this project
Usability in term of graphical design and or physical ergonomics is of course important but will not be
taken into account for this project

Told differently, the following extra functional properties will not be considered in this project: maintain-
ability of your code, correct versioning of your code, genericity of your code, UI design and ergonomic
aspect

T really like qualitative code but my feeling is that this is too much demanding for a 8 weeks project.



	Project Description: Smart Vineyards Management System
	Objective
	System Overview
	Resource Distribution Strategy
	System Architecture Constraints
	Expected Outcome


