
Behavioral Semantics of Languages

Behavioral Semantics of LanguagesBehavioral Semantics of Languages

Julien Deantoni

Behavioral Semantics of Languages

Modéliser un langage

● Une syntaxe abstraite (et concrète) décrivant un langage et
permettant de définir des comportements (des modèles)

● Une sémantique expliquant comment les programmes
conformes à la grammaire (les comportements) sont executés

while (b)
do

C ;
done

syntax semantics

Exécuter C de manière répétée (et
sequentielle), aussi longtemps que

l’expression b est vraie.

Behavioral Semantics of Languages

Modéliser un langage

● Une syntaxe abstraite (et concrète) décrivant un langage et
permettant de définir des comportements (des modèles)

● Une sémantique expliquant comment les programmes
conformes à la grammaire (les comportements) sont executés

while (b)
do

C ;
done

syntax semantics

Exécuter C de manière répétée (et
sequentielle), aussi longtemps que

l’expression b est vraie.

● 1) évaluer l’expression b.
● si b == vrai, exécuter C et retourner à 1)
● si b == faux, sortir.

Behavioral Semantics of Languages

● Une syntaxe abstraite (et concrète) décrivant un langage et
permettant de définir des comportements (des modèles)

● Une sémantique expliquant comment les programmes
conformes à la grammaire (les comportements) sont executés

TFSM

s1s1

i:=0 After 10 / ! ping

? pong /
 i++

s2s2
I > 10 /
 ! finish

Nous avons ici plusieurs
sémantiques possibles

Modéliser un langage

Behavioral Semantics of Languages

Why modeling behavioral semantics
● People learning the language can understand the subtleties of its use

● The model over which the semantics is defined (the semantic domain) can indicate what the
requirements are for implementing the language (as a compiler/interpreter/...)

● Global properties of any program written in the language, and any state occurring in such a
program, can be understood from the formal semantics

● Implementers of tools for the language (parsers, compilers, interpreters, debuggers etc) have
a formal reference for their tool and a formal definition of its correctness/completeness

● Programs written in the language can be verified formally against a formal specification (or at
least a definition for their correctness exists)

● 2 different programs in the language can be proved formally as equivalent/non-equivalent

● From a computer readable version of the semantics, an interpreter can be automatically
generated – full compiler generation is not (yet) feasible

http://www.cs.tau.ac.il/~msagiv/courses/pa07/Operational_Semantics.pdf

http://www.cs.tau.ac.il/~msagiv/courses/pa07/Operational_Semantics.pdf

Behavioral Semantics of Languages

Sémantique comportementale
● Les principales manières de décrire la sémantique :

● Transformational : the semantics is defined by reducing constructs of the language to more
elementary ones by means of definitional transformations into a simpler language whose the
semantics is already given.
● Denotational : the meaning of the program is given by the translation of a program to a

mathematical function, which maps the state of the machine before execution to the state
after execution.

● Axiomatic : the semantics is defined by a logical theory associated to each language elements in
order to enable some properties to be proven (the formulae describe, for each statement, the
 relation between the pre-state and the post-state of the statement execution)

● Operational : the meaning is given by defining an abstract interpreter of the language where
rules define how operators modify the system state.
● Attribute Grammar : the semantics is defined by decorations of a context free grammar with

attributes you are interested in. Basically attributes can take values from arbitrary domains
and arbitrary functions can be specified, written in a language of choice, to describe how
attributes values in rules are derived from each other. The set of attributes defines the state
of the system

Behavioral Semantics of Languages

Transformational semantics
● Transformational : the semantics is defined by reducing constructs of the language to more

elementary ones by means of definitional transformations into a simpler language whose the
semantics is already given.

C
language

x86 assembly
languageT

conformsTo
conformsTodefines

Behavioral Semantics of Languages

Axiomatic semantics
● Axiomatic : the semantics is defined by a logical theory associated to each language elements in

order to enable some properties to be proven (the formulae describe, for each statement,
the relation between the pre-state and the post-state of the executing the statement)

http://www.cs.purdue.edu/homes/suresh/565-Spring2009/lectures/lecture-6.pdf

http://www.cs.purdue.edu/homes/suresh/565-Spring2009/lectures/lecture-6.pdf

Behavioral Semantics of Languages

Axiomatic semantics
● Axiomatic : the semantics is defined by a logical theory associated to each language elements in

order to enable some properties to be proven (the formulae describe, for each statement,
the relation between the pre-state and the post-state of the executing the statement)

while (b)
do

C ;
done

https://courses.engr.illinois.edu/cs421/fa2018/CS421D/lectures/27-28-HoareLogic-2x3.pdf

{x ∈ ℤ} while B do C od { x ∈ ℤ ∧ x > 10}

https://courses.engr.illinois.edu/cs421/fa2018/CS421D/lectures/27-28-HoareLogic-2x3.pdf

Behavioral Semantics of Languages

Operational semantics
● The operational semantics for a programming language describes how a valid program is interpreted as

sequences of computational steps. These sequences then are the meaning of the program.

● Structural Operational Semantics [http://homepages.inf.ed.ac.uk/gdp/publications/sos_jlap.pdf]

From wikipedia

while (b)
do

C ;
done

Condition

Rewriting rule

’

http://homepages.inf.ed.ac.uk/gdp/publications/sos_jlap.pdf

Behavioral Semantics of Languages 11

GEMOC approach : context

MoCCML

Abstract
Syntax

Model

MoCC

Execution
Model

Mapping

conforms to

imports

refersTo

Automatic
generation

imports

instantiates

Concurrency Semantics
Executable
DSML

Ecore

Analysis
Optimization
Refinement

...

conforms to conforms to

Executable
model

Meta-
languages

Generic Execution Engine

configures

Runtime

KerMeta

Rewriting Rules
&

Runtime State

weaves

conforms to

An interpreter

A model

A Language

Syntax Operational
semantics

conformsTo

(partially)
implements

● We consider models that can be interpreted according to their (concurrent and timed)
operational semantics

● We do not want to implement all the tooling for each new language

Behavioral Semantics of Languages 12

GEMOC approach : context

MoCCML

Abstract
Syntax

Model

MoCC

Execution
Model

Mapping

conforms to

imports

refersTo

Automatic
generation

imports

instantiates

Concurrency Semantics
Executable
DSML

Ecore

Analysis
Optimization
Refinement

...

conforms to conforms to

Executable
model

Meta-
languages

Generic Execution Engine

configures

Runtime

KerMeta

Rewriting Rules
&

Runtime State

weaves

conforms to

An interpreter

A model

A Language

Syntax Operational
semantics

conformsTo

(partially)
implements

● We consider models that can be interpreted according to their (concurrent and timed)
operational semantics

● We do not want to implement all the tooling for each new language

We need to make the
operational semantics

explicit… and as formal
as possible

Behavioral Semantics of Languages 13

GEMOC approach : context

MoCCML

Abstract
Syntax

Model

MoCC

Execution
Model

Mapping

conforms to

imports

refersTo

Automatic
generation

imports

instantiates

Concurrency Semantics
Executable
DSML

Ecore

Analysis
Optimization
Refinement

...

conforms to conforms to

Executable
model

Meta-
languages

Generic Execution Engine

configures

Runtime

KerMeta

Rewriting Rules
&

Runtime State

weaves

conforms to

● We consider models that can be interpreted according to their (concurrent and timed)
operational semantics

● We do not want to implement all the tooling for each new language

An interpreter

A model

A Language

Syntax Operational
semantics

conformsTo

(partially)
implements

What is a Syntax

Tooling the
meta language
to avoid tooling
each language

Behavioral Semantics of Languages 14

GEMOC approach : context

MoCCML

Abstract
Syntax

Model

MoCC

Execution
Model

Mapping

conforms to

imports

refersTo

Automatic
generation

imports

instantiates

Concurrency Semantics
Executable
DSML

Ecore

Analysis
Optimization
Refinement

...

conforms to conforms to

Executable
model

Meta-
languages

Generic Execution Engine

configures

Runtime

KerMeta

Rewriting Rules
&

Runtime State

weaves

conforms to

● We consider models that can be interpreted according to their (concurrent and timed)
operational semantics

● We do not want to implement all the tooling for each new language

An interpreter

A model

A Language

Syntax Operational
semantics

conformsTo

(partially)
implements

What is a Syntax What is an operational semantics

Tooling the
meta language
to avoid tooling
each language

Behavioral Semantics of Languages 15

The GEMOC approach

MoCCML

Abstract
Syntax

Model

MoCC

Execution
Model

Mapping

conforms to

imports

refersTo

Automatic
generation

imports

instantiates

Concurrency Semantics
Executable
DSML

Ecore

Analysis
Optimization
Refinement

...

conforms to conforms to

Executable
model

Meta-
languages

Generic Execution Engine

configures

Runtime

KerMeta

Rewriting Rules
&

Runtime State

weaves

conforms to

Behavioral Semantics of Languages 16

The GEMOC approach

MoCCML

Abstract
Syntax

Model

MoCC

Execution
Model

Mapping

conforms to

imports

refersTo

Automatic
generation

imports

instantiates

Concurrency Semantics
Executable
DSML

Ecore

Analysis
Optimization
Refinement

...

conforms to conforms to

Executable
model

Meta-
languages

Generic Execution Engine

configures

Runtime

KerMeta

Rewriting Rules
&

Runtime State

weaves

conforms to

Two strongly linked parts:
● the data representing the runtime state of the model.
● The actions specifies how the model state is evolving

Behavioral Semantics of Languages

Kermeta 3 (K3)

● K3 is an action language built on top of the Xtend programming language and mainly used to
implement the execution semantics of Ecore metamodels. Concretely, K3 allows to "re-
open" the classes generated from an Ecore metamodel using simple annotations in order
to weave new features and operations.

● Main features of K3 include:

● Executable metamodeling: Using K3, one can insert new methods in existing Ecore
meta-classes, with their implementation. These methods define the execution
semantics of the corresponding metamodel in the form of an interpreter;

● Metamodel extension: The very same mechanism can be used to extend existing Ecore
metamodels and insert new features (eg. attributes) in a non-intrusive way;

● Full Java compatibility: K3 files are plain Xtend files. As such, K3 files are ultimately
compiled as plain Java code. This means that Java code and API can be used in K3 files
and vice versa.

● . We can use it to weave the state and the rewriting rules, e.g.,

From wikipedia

http://diverse-project.github.io/k3/

http://diverse-project.github.io/k3/

Behavioral Semantics of Languages

Kermeta 3 (K3)

● K3 is an action language built on top of the Xtend programming language and mainly used to implement the
execution semantics of Ecore metamodels. Concretely, K3 allows to "re-open" the classes generated
from an Ecore metamodel using simple annotations in order to weave new features and operations.

● We can use it to weave the state and the rewriting rules, e.g.,

From wikipedia

http://diverse-project.github.io/k3/

http://diverse-project.github.io/k3/

Behavioral Semantics of Languages 19

The GEMOC approach

MoCCML

Abstract
Syntax

Model

MoCC

Execution
Model

Mapping

conforms to

imports

refersTo

Automatic
generation

imports

instantiates

Concurrency Semantics
Executable
DSML

Ecore

Analysis
Optimization
Refinement

...

conforms to conforms to

Executable
model

Meta-
languages

Generic Execution Engine

configures

Runtime

KerMeta

Rewriting Rules
&

Runtime State

weaves

conforms to

It Specifies when the rewriting rules that make the model evolving are called.
It models the (possibly timed) causalities and synchronizations between the rewriting rules

http://timesquare.inria.fr/moccml/

http://timesquare.inria.fr/moccml/

Behavioral Semantics of Languages 20

The GEMOC approach

MoCCML

Abstract
Syntax

Model

MoCC

Execution
Model

Mapping

conforms to

imports

refersTo

Automatic
generation

imports

instantiates

Concurrency Semantics
Executable
DSML

Ecore

Analysis
Optimization
Refinement

...

conforms to conforms to

Executable
model

Meta-
languages

Generic Execution Engine

configures

Runtime

KerMeta

Rewriting Rules
&

Runtime State

weaves

conforms to

Concurrent and timed
operational semantics

The GEMOC approach

 21

MoCCML

Abstract
Syntax

Model

MoCC

Execution
Model

Mapping

conforms to

imports

refersTo

Automatic
generation

imports

instantiates

Concurrency Semantics
Executable
DSML

Ecore

Analysis
Optimization
Refinement

...

conforms to conforms to

Executable
model

Meta-
languages

Generic Execution Engine

configures

Runtime

KerMeta

Rewriting Rules
&

Runtime State

weaves

conforms to

Symbolic representation of all partial orders, representing
the acceptable rewriting rule schedules in CCSL

The GEMOC approach

 22

MoCCML

Abstract
Syntax

Model

MoCC

Execution
Model

Mapping

conforms to

imports

refersTo

Automatic
generation

imports

instantiates

Concurrency Semantics
Executable
DSML

Ecore

Analysis
Optimization
Refinement

...

conforms to conforms to

Executable
model

Meta-
languages

Generic Execution Engine

configures

Runtime

KerMeta

Rewriting Rules
&

Runtime State

weaves

conforms to

+ graphical concrete syntax in Sirius or Xtext,
which uses a meta-language as well

The GEMOC Studio

 23

Design and compose your
executable DSMLs

http://gemoc.org/studio
Language
Workbench

Modeling
Workbench

Edit and debug
your heterogeneous models

Research Consortium
http://eclipse.org/gemoc

http://gemoc.org/studio
http://eclipse.org/gemoc

Behavioral Semantics of Languages 24

 currentMarking: EInt

Running example:
AS Ecore+SiriusEcore+Sirius

 currentMarking: EInt

Behavioral Semantics of Languages 26

 currentMarking: EInt

Running example:
AS Ecore+SiriusEcore+Sirius

H264 encoder

Behavioral Semantics of Languages 27

 currentMarking: EInt

Running example:
AS Ecore+SiriusEcore+Sirius

Behavioral Semantics of Languages 28

 currentMarking: EInt

Running example:
AS+DSA

Domain Specific Action

 (model state)
● The current marking

represents the runtime
state of this simple
language

Kermeta3Kermeta3

Behavioral Semantics of Languages 29

 currentMarking: EInt fire()

Running example:
AS+DSA

def fire(){
 _self.sourcePlaces.forEach [

 currentMarking – –
]

 _self.targetPlaces.forEach [
 currentMarking ++

]
 }

Domain Specific Action

 (rewriting rules)

Kermeta3Kermeta3

Behavioral Semantics of Languages 30

 currentMarking: EInt fire()

Running example:
AS+DSA

Domain Specific Action

 (rewriting rules)

Kermeta3Kermeta3

def fire(){
 _self.sourcePlaces.forEach [

 currentMarking – –
]

 _self.targetPlaces.forEach [
 currentMarking ++

]
 }

Behavioral Semantics of Languages 31

 currentMarking: EInt fire()

Running example:
AS+DSA

def fire(){
 _self.sourcePlaces.forEach [

 currentMarking – –
]

 _self.targetPlaces.forEach [
 currentMarking ++

]
 }

Domain Specific Action

 (rewriting rules)

Kermeta3Kermeta3

Behavioral Semantics of Languages 32

 currentMarking: EInt fire()

Running example:
AS+DSA

def fire(){
 _self.sourcePlaces.forEach [

 currentMarking – –
]

 _self.targetPlaces.forEach [
 currentMarking ++

]
 }

Domain Specific Action

 (rewriting rules)

Kermeta3Kermeta3

Behavioral Semantics of Languages 33

 currentMarking: EInt fire()

Running example:
AS+DSA

def fire(){
 _self.sourcePlaces.forEach [

 currentMarking – –
]

 _self.targetPlaces.forEach [
 currentMarking ++

]
 }

Domain Specific Action

 (rewriting rules)

Kermeta3Kermeta3

Behavioral Semantics of Languages 34

 currentMarking: EInt fire()

Running example:
AS+DSA

def fire(){
 _self.sourcePlaces.forEach [

 currentMarking – –
]

 _self.targetPlaces.forEach [
 currentMarking ++

]
 }

Domain Specific Action

 (rewriting rules)

 Nobody calls the fire() operation.
This is the model of concurrency and
causality that specifies when things

happen

Kermeta3Kermeta3

Behavioral Semantics of Languages 35

 currentMarking: EInt fire()

Running example:
AS+DSA+DSE

fireIt: DSE

ECLECL

Domain Specific Events
act as “handles” to the
DSA

Behavioral Semantics of Languages 36

 currentMarking: EInt fire()

Running example:
AS+DSA+DSE

fireIt: DSE

fire_T1: fireIt

fire_T2: fireIt

fire_T3: fireIt

fire_T4: fireIt

MoCCML mapping MoCCML mapping
(ex ECL)(ex ECL)

Domain Specific Events
act as “handles” to the
DSA

Behavioral Semantics of Languages 37

 currentMarking: EInt fire()

Running example:
AS+DSA+DSE+MoCC

fireIt: DSE

fire_T1: fireIt

fire_T2: fireIt

fire_T3: fireIt

fire_T4: fireIt

inputTransition.fireIt
precedes

outputTransition.fireIt

MoCCMLMoCCML

The MoCC constrains the
DSE and consequently
defines the acceptable
schedules of the actions

Behavioral Semantics of Languages 38

 currentMarking: EInt fire()

Running example:
AS+DSA+DSE+MoCC

fireIt: DSE

fire_T1: fireIt

fire_T2: fireIt

fire_T3: fireIt

fire_T4: fireIt

inputTransition.fireIt
precedes

outputTransition.fireIt

precedes

precedes

precedes

precedes

MoCCMLMoCCML

The MoCC constrains the
DSE and consequently
defines the acceptable
schedules of the actions

Behavioral Semantics of Languages 39

The GEMOC Studio

3
9

La n g u a g e
W o r k b e n ch

M o d e lin g
W o r k b e n ch

Automatic generation

MoCCMLMoCCML
ECLECL
Kermeta3Kermeta3
Ecore+SiriusEcore+Sirius

Behavioral Semantics of Languages 40

The GEMOC Studio

4
0

La n g u a g e
W o r k b e n ch

M o d e lin g
W o r k b e n ch

Automatic generation

MoCCMLMoCCML
ECLECL
Kermeta3Kermeta3
EcoreEcore

Behavioral Semantics of Languages 41

The GEMOC Studio

4
1

La n g u a g e
W o r k b e n ch

M o d e lin g
W o r k b e n ch

Automatic generation

MoCCMLMoCCML
ECLECL
Kermeta3Kermeta3
EcoreEcore

