
30/09/2021 Réseaux - EII-4 - L. Deneire Applications – 1

30/09/2021 Réseaux Filaires - EII-5 Option ROC - L. Deneire 2

Application layer: overview

Our goals:
§ conceptual and

implementation aspects of
application-layer protocols
• transport-layer service

models
• client-server paradigm
• peer-to-peer paradigm

§ learn about protocols by
examining popular
application-layer protocols
• HTTP
• SMTP, IMAP
• DNS

§ programming network
applications
• socket API

30/09/2021 Réseaux Filaires - EII-5 Option ROC - L. Deneire

mobile network

home network

enterprise
network

national or global ISP

local or
regional ISP

datacenter
network

content
provider
network

application
transport
network
data link
physical

application
transport
network
data link
physical

application
transport
network
data link
physical

Creating a network app
write programs that:
§ run on (different) end systems
§ communicate over network
§ e.g., web server software

communicates with browser software

no need to write software for
network-core devices
§ network-core devices do not run user

applications
§ applications on end systems allows

for rapid app development,
propagation

30/09/2021 Réseaux Filaires - EII-5 Option ROC - L. Deneire 4

mobile network

home network

enterprise
network

national or global ISP

local or
regional ISP

datacenter
network

content
provider
network

Client-server paradigm
server:
§ always-on host
§ permanent IP address
§ often in data centers, for scaling

clients:
§ contact, communicate with server
§ may be intermittently connected
§ may have dynamic IP addresses
§ do not communicate directly with

each other
§ examples: HTTP, IMAP, FTP

30/09/2021 Réseaux Filaires - EII-5 Option ROC - L. Deneire 5

mobile network

home network

enterprise
network

national or global ISP

local or
regional ISP

datacenter
network

content
provider
network

Peer-peer architecture
§ no always-on server
§ arbitrary end systems directly

communicate
§ peers request service from other

peers, provide service in return to
other peers
• self scalability – new peers bring new

service capacity, as well as new service
demands

§ peers are intermittently connected
and change IP addresses
• complex management

§ example: P2P file sharing

30/09/2021 Réseaux Filaires - EII-5 Option ROC - L. Deneire 6

Processes communicating

process: program running
within a host

§within same host, two
processes communicate
using inter-process
communication (defined by
OS)

§processes in different hosts
communicate by exchanging
messages

client process: process that
initiates communication

server process: process
that waits to be contacted

§ note: applications with
P2P architectures have
client processes &
server processes

clients, servers

30/09/2021 Réseaux Filaires - EII-5 Option ROC - L. Deneire 7

Sockets
§ process sends/receives messages to/from its socket
§ socket analogous to door
• sending process shoves message out door
• sending process relies on transport infrastructure on other side of

door to deliver message to socket at receiving process
• two sockets involved: one on each side

Internet

controlled
by OS

controlled by
app developer

transport

application

physical
link

network

process

transport

application

physical
link

network

process
socket

30/09/2021 Réseaux Filaires - EII-5 Option ROC - L. Deneire 8

Addressing processes

§ to receive messages, process
must have identifier

§ host device has unique 32-bit
IP address

§Q: does IP address of host on
which process runs suffice for
identifying the process?

§ identifier includes both IP address
and port numbers associated with
process on host.

§ example port numbers:
• HTTP server: 80
• mail server: 25

§ to send HTTP message to
gaia.cs.umass.edu web server:
• IP address: 128.119.245.12
• port number: 80

§ A: no, many processes
can be running on
same host

30/09/2021 Réseaux Filaires - EII-5 Option ROC - L. Deneire 9

An application-layer protocol defines:

§ types of messages exchanged,
• e.g., request, response

§message syntax:
• what fields in messages &

how fields are delineated
§message semantics
• meaning of information in

fields
§ rules for when and how

processes send & respond to
messages

open protocols:
§ defined in RFCs, everyone

has access to protocol
definition

§ allows for interoperability
§ e.g., HTTP, SMTP
proprietary protocols:
§ e.g., Skype

30/09/2021 Réseaux Filaires - EII-5 Option ROC - L. Deneire 10

Internet transport protocols services

TCP service:
§ reliable transport between sending

and receiving process
§ flow control: sender won’t

overwhelm receiver
§ congestion control: throttle sender

when network overloaded
§ does not provide: timing, minimum

throughput guarantee, security
§ connection-oriented: setup required

between client and server processes

UDP service:
§ unreliable data transfer

between sending and receiving
process

§ does not provide: reliability,
flow control, congestion
control, timing, throughput
guarantee, security, or
connection setup.

30/09/2021 Réseaux Filaires - EII-5 Option ROC - L. Deneire 11

Socket programming with UDP

UDP: no “connection” between client & server
• no handshaking before sending data
• sender explicitly attaches IP destination address and port # to each

packet
• receiver extracts sender IP address and port# from received packet

UDP: transmitted data may be lost or received out-of-order

Application viewpoint:
• UDP provides unreliable transfer of groups of bytes (“datagrams”)

between client and server

30/09/2021 Réseaux Filaires - EII-5 Option ROC - L. Deneire 12

Client/server socket interaction: UDP

close
clientSocket

read datagram from
clientSocket

create socket:
clientSocket =
socket(AF_INET,SOCK_DGRAM)

Create datagram with server IP and
port=x; send datagram via
clientSocket

create socket, port= x:
serverSocket =
socket(AF_INET,SOCK_DGRAM)

read datagram from
serverSocket

write reply to
serverSocket
specifying
client address,
port number

server (running on serverIP) client

30/09/2021 Réseaux Filaires - EII-5 Option ROC - L. Deneire 13

Example app: UDP client

from socket import *
serverName = ‘hostname’
serverPort = 12000
clientSocket = socket(AF_INET,

SOCK_DGRAM)
message = raw_input(’Input lowercase sentence:’)
clientSocket.sendto(message.encode(),

(serverName, serverPort))
modifiedMessage, serverAddress =

clientSocket.recvfrom(2048)
print modifiedMessage.decode()
clientSocket.close()

Python UDPClient
include Python’s socket library

create UDP socket for server

get user keyboard input

attach server name, port to message; send into socket

print out received string and close socket

read reply characters from socket into string

30/09/2021 Réseaux Filaires - EII-5 Option ROC - L. Deneire 14

Example app: UDP server
Python UDPServer

from socket import *
serverPort = 12000
serverSocket = socket(AF_INET, SOCK_DGRAM)
serverSocket.bind(('', serverPort))
print (“The server is ready to receive”)
while True:

message, clientAddress = serverSocket.recvfrom(2048)
modifiedMessage = message.decode().upper()
serverSocket.sendto(modifiedMessage.encode(),

clientAddress)

create UDP socket

bind socket to local port number 12000

loop forever

Read from UDP socket into message, getting
client’s address (client IP and port)

send upper case string back to this client

Internet transport protocols services

application

file transfer/download
e-mail

Web documents
Internet telephony

streaming audio/video
interactive games

application
layer protocol

FTP [RFC 959]
SMTP [RFC 5321]
HTTP 1.1 [RFC 7320]
SIP [RFC 3261], RTP [RFC
3550], or proprietary
HTTP [RFC 7320], DASH
WOW, FPS (proprietary)

transport protocol

TCP
TCP
TCP

TCP or UDP

TCP
UDP or TCP

30/09/2021 Réseaux - EII-4 - L. Deneire Applications – 16

IP addresses: how to get one?

That’s actually two questions:
1. Q: How does a host get IP address within its network (host part of

address)?
2. Q: How does a network get IP address for itself (network part of

address)

How does host get IP address?
§ hard-coded by sysadmin in config file (e.g., /etc/rc.config in UNIX)
§ DHCP: Dynamic Host Configuration Protocol: dynamically get address

from as server
• “plug-and-play”

30/09/2021 Réseaux - EII-4 - L. Deneire Applications – 17

DHCP: Dynamic Host Configuration Protocol
goal: host dynamically obtains IP address from network server when it

“joins” network
§ can renew its lease on address in use
§ allows reuse of addresses (only hold address while connected/on)
§ support for mobile users who join/leave network

DHCP overview:
§ host broadcasts DHCP discover msg [optional]
§ DHCP server responds with DHCP offer msg [optional]
§ host requests IP address: DHCP request msg
§ DHCP server sends address: DHCP ack msg

30/09/2021 Réseaux - EII-4 - L. Deneire Applications – 18

DHCP client-server scenario

223.1.1.1

223.1.1.2

223.1.1.3

223.1.1.4 223.1.2.9

223.1.2.2

223.1.2.1

223.1.3.2223.1.3.1

223.1.3.27

DHCP server

223.1.2.5

arriving DHCP client needs
address in this network

Typically, DHCP server will be co-
located in router, serving all subnets
to which router is attached

DHCP client-server scenario
DHCP server: 223.1.2.5 Arriving clientDHCP discover

src : 0.0.0.0, 68
dest.: 255.255.255.255,67

yiaddr: 0.0.0.0
transaction ID: 654

DHCP offer
src: 223.1.2.5, 67

dest: 255.255.255.255, 68
yiaddrr: 223.1.2.4

transaction ID: 654
lifetime: 3600 secs

DHCP request
src: 0.0.0.0, 68

dest:: 255.255.255.255, 67
yiaddrr: 223.1.2.4

transaction ID: 655
lifetime: 3600 secs

DHCP ACK
src: 223.1.2.5, 67

dest: 255.255.255.255, 68
yiaddrr: 223.1.2.4

transaction ID: 655
lifetime: 3600 secs

Broadcast: is there a
DHCP server out there?

Broadcast: I’m a DHCP
server! Here’s an IP
address you can use

Broadcast: OK. I would
like to use this IP address!

Broadcast: OK. You’ve
got that IP address!

The two steps above can
be skipped “if a client
remembers and wishes to
reuse a previously
allocated network address”
[RFC 2131]

DHCP: more than IP addresses
DHCP can return more than just allocated IP address on

subnet:
§ address of first-hop router for client
§ name and IP address of DNS sever
§ network mask (indicating network versus host portion of address)

DHCP: example

§ Connecting laptop will use DHCP
to get IP address, address of first-
hop router, address of DNS server.

router with DHCP
server built into
router

§ DHCP REQUEST message encapsulated
in UDP, encapsulated in IP, encapsulated
in Ethernet

§ Ethernet frame broadcast (dest:
FFFFFFFFFFFF) on LAN, received at router
running DHCP server

§ Ethernet demux’ed to IP demux’ed,
UDP demux’ed to DHCP

168.1.1.1

DHCP
UDP

IP
Eth
Phy

DHCP

DHCP

DHCP

DHCP

DHCP

DHCP
UDP

IP
Eth
Phy

DHCP

DHCP

DHCP

DHCPDHCP

DHCP: example

§ DCP server formulates DHCP ACK
containing client’s IP address, IP
address of first-hop router for client,
name & IP address of DNS server

§ encapsulated DHCP server reply
forwarded to client, demuxing up to
DHCP at client

router with DHCP
server built into
router

DHCP

DHCP

DHCP

DHCP

DHCP
UDP

IP
Eth
Phy

DHCP

DHCP
UDP

IP
Eth
Phy

DHCP

DHCP

DHCP

DHCP

§ client now knows its IP address, name
and IP address of DNS server, IP
address of its first-hop router

IP addresses: how to get one?
Q: how does network get subnet part of IP address?
A: gets allocated portion of its provider ISP’s address space

ISP's block 11001000 00010111 00010000 00000000 200.23.16.0/20

ISP can then allocate out its address space in 8 blocks:

Organization 0 11001000 00010111 00010000 00000000 200.23.16.0/23
Organization 1 11001000 00010111 00010010 00000000 200.23.18.0/23
Organization 2 11001000 00010111 00010100 00000000 200.23.20.0/23

... ….. …. ….
Organization 7 11001000 00010111 00011110 00000000 200.23.30.0/23

DNS: Domain Name System
people: many identifiers:
• SSN, name, passport #

Internet hosts, routers:
• IP address (32 bit) - used for

addressing datagrams
• “name”, e.g.,

www.polytech.unice.fr - used by
humans

Q: how to map between IP
address and name, and vice
versa ?

Domain Name System:
§ distributed database implemented in

hierarchy of many name servers
§ application-layer protocol: hosts,

name servers communicate to resolve
names (address/name translation)
• note: core Internet function,

implemented as application-layer
protocol
• complexity at network’s “edge”

http://www.polytech.unice.fr/

DNS: services, structure
Q: Why not centralize DNS?
§ single point of failure
§ traffic volume
§ distant centralized database
§ maintenance

DNS services
§hostname to IP address translation
§host aliasing
• canonical, alias names

§ mail server aliasing
§ load distribution
• replicated Web servers: many IP

addresses correspond to one
name

A: doesn‘t scale!
§ Comcast DNS servers

alone: 600 Billion
(milliards) DNS queries
per day

DNS: a distributed, hierarchical database
Root DNS Servers

.com DNS servers .org DNS servers .edu DNS servers

nyu.edu
DNS servers

umass.edu
DNS servers

yahoo.com
DNS servers

amazon.com
DNS servers

pbs.org
DNS servers

… …

Client wants IP address for www.amazon.com; 1st approximation:
§ client queries root server to find .com DNS server
§ client queries .com DNS server to get amazon.com DNS server
§ client queries amazon.com DNS server to get IP address for www.amazon.com

Top Level Domain

Root

Authoritative

…… … …

DNS: root name servers

§ official, contact-of-last-resort by
name servers that can not
resolve name

§ incredibly important Internet
function

• Internet couldn’t function without it!
• DNSSEC – provides security

(authentication and message
integrity)

§ ICANN (Internet Corporation for
Assigned Names and Numbers)
manages root DNS domain

13 logical root name “servers”
worldwide each “server” replicated

many times (~200 servers in US)

TLD: authoritative servers

Top-Level Domain (TLD) servers:
§ responsible for .com, .org, .net, .edu, .aero, .jobs, .museums, and all

top-level country domains, e.g.: .cn, .uk, .fr, .ca, .jp
§ Network Solutions: authoritative registry for .com, .net TLD
§ Educause: .edu TLD

Authoritative DNS servers:
§ organization’s own DNS server(s), providing authoritative hostname

to IP mappings for organization’s named hosts
§ can be maintained by organization or service provider

Local DNS name servers

§ does not strictly belong to hierarchy
§ each ISP (residential ISP, company, university) has one
• also called “default name server”

§ when host makes DNS query, query is sent to its local DNS
server
• has local cache of recent name-to-address translation pairs (but may

be out of date!)
• acts as proxy, forwards query into hierarchy

DNS name resolution: iterated query

Example: host at isen.fr wants IP
address for unice.fr

Iterated query:
§ contacted server replies

with name of server to
contact

§ “I don’t know this name,
but ask this server”

requesting host at
Myhost.Isen.fr

Myhost.unice.fr

root DNS server

local DNS server
“dns.isen.fr”

(sparc2.isen.fr)

1

2
3

4

5

6

authoritative DNS server
Taloa.unice.fr

7

8

TLD DNS server

DNS name resolution: recursive query

requesting host at
engineering.nyu.edu gaia.cs.umass.edu

root DNS server

local DNS server
dns.nyu.edu

1

2 3

45

6

authoritative DNS server
dns.cs.umass.edu

7

8

TLD DNS serverRecursive query:
§ puts burden of name

resolution on
contacted name
server

§ heavy load at upper
levels of hierarchy?

Example: host at engineering.nyu.edu
wants IP address for gaia.cs.umass.edu

Caching, Updating DNS Records

§ once (any) name server learns mapping, it caches mapping
• cache entries timeout (disappear) after some time (TTL)
• TLD servers typically cached in local name servers

• thus root name servers not often visited

§ cached entries may be out-of-date (best-effort name-to-
address translation!)
• if name host changes IP address, may not be known Internet-wide

until all TTLs expire!
§ update/notify mechanisms proposed IETF standard
• RFC 2136

DNS records
DNS: distributed database storing resource records (RR)

type=NS
§ name is domain (e.g., foo.com)
§ value is hostname of

authoritative name server for
this domain

RR format: (name, value, type, ttl)

type=A
§ name is hostname
§ value is IP address

type=CNAME
§ name is alias name for some “canonical”

(the real) name
§ www.ibm.com is really servereast.backup2.ibm.com
§ value is canonical name

type=MX
§ value is name of mailserver

associated with name

DNS protocol messages
DNS query and reply messages, both have same format:

message header:
§ identification: 16 bit # for query,

reply to query uses same #
§ flags:

• query or reply
• recursion desired
• recursion available
• reply is authoritative

identification flags

questions

questions (variable # of questions)

additional RRs# authority RRs

answer RRs

answers (variable # of RRs)

authority (variable # of RRs)

additional info (variable # of RRs)

2 bytes 2 bytes

DNS query and reply messages, both have same format:

identification flags

questions

questions (variable # of questions)

additional RRs# authority RRs

answer RRs

answers (variable # of RRs)

authority (variable # of RRs)

additional info (variable # of RRs)

2 bytes 2 bytes

name, type fields for a query

RRs in response to query

records for authoritative servers

additional “ helpful” info that may
be used

DNS protocol messages

Inserting records into DNS
Example: new startup “Network Utopia”
§ register name networkuptopia.com at DNS registrar (e.g., Network

Solutions)
• provide names, IP addresses of authoritative name server (primary and

secondary)
• registrar inserts NS, A RRs into .com TLD server:
(networkutopia.com, dns1.networkutopia.com, NS)
(dns1.networkutopia.com, 212.212.212.1, A)

§ create authoritative server locally with IP address 212.212.212.1
• type A record for www.networkuptopia.com
• type MX record for networkutopia.com

DNS security

DDoS attacks
§ bombard root servers with

traffic
• not successful to date
• traffic filtering
• local DNS servers cache IPs of TLD

servers, allowing root server
bypass

§ bombard TLD servers
• potentially more dangerous

Redirect attacks
§ man-in-middle

• intercept DNS queries
§ DNS poisoning

• send bogus relies to DNS
server, which caches

Exploit DNS for DDoS
§ send queries with spoofed

source address: target IP
§ requires amplification

DNSSEC
[RFC 4033]

Example of www.unice.fr
Look at list of root servers : https://www.iana.org/domains/root

Gives you the 13 root servers
get lower, you see that the .fr DNS servers ar D.NIC.Fr, …

Nslookup on a DNS server

Whois to know the DNS server used (and lot more)

https://www.iana.org/domains/root

Web and HTTP

First, a quick review…
§ web page consists of objects, each of which can be stored on

different Web servers
§ object can be HTML file, JPEG image, Java applet, audio file,…
§ web page consists of base HTML-file which includes several

referenced objects, each addressable by a URL, e.g.,

www.someschool.edu/someDept/pic.gif

host name path name

HTTP overview

HTTP: hypertext transfer protocol
§ Web’s application layer

protocol
§ client/server model:
• client: browser that requests,

receives, (using HTTP protocol) and
“displays”Web objects
• server: Web server sends (using

HTTP protocol) objects in response
to requests

PC running
Firefox browser

server running
Apache Web

server

iPhone running
Safari browser

HTTP requestHTTP response

HTTP request

HTTP response

HTTP overview (continued)

HTTP uses TCP:
§ client initiates TCP connection

(creates socket) to server, port 80
§ server accepts TCP connection

from client
§ HTTP messages (application-layer

protocol messages) exchanged
between browser (HTTP client) and
Web server (HTTP server)

§ TCP connection closed

HTTP is “stateless”
§ server maintains no

information about past client
requests

protocols that maintain “state”
are complex!

§ past history (state) must be
maintained

§ if server/client crashes, their views
of “state” may be inconsistent,
must be reconciled

aside

HTTP connections: two types

Non-persistent HTTP
1. TCP connection opened
2. at most one object sent

over TCP connection
3. TCP connection closed

downloading multiple
objects required multiple
connections

Persistent HTTP
§TCP connection opened to

a server
§multiple objects can be

sent over single TCP
connection between client,
and that server

§TCP connection closed

Non-persistent HTTP: example
User enters URL:

1a. HTTP client initiates TCP
connection to HTTP server
(process) at www.someSchool.edu on
port 80

2. HTTP client sends HTTP
request message (containing
URL) into TCP connection
socket. Message indicates
that client wants object
someDepartment/home.index

1b. HTTP server at host
www.someSchool.edu waiting for TCP
connection at port 80 “accepts”
connection, notifying client

3. HTTP server receives request message,
forms response message containing
requested object, and sends message
into its socket

time

(containing text, references to 10 jpeg images)
www.someSchool.edu/someDepartment/home.index

Non-persistent HTTP: example (cont.)
User enters URL:

(containing text, references to 10 jpeg images)
www.someSchool.edu/someDepartment/home.index

5. HTTP client receives response
message containing html file,
displays html. Parsing html file,
finds 10 referenced jpeg objects

6. Steps 1-5 repeated for
each of 10 jpeg objects

4. HTTP server closes TCP
connection.

time

Non-persistent HTTP: response time

RTT (definition): time for a small
packet to travel from client to
server and back

HTTP response time (per object):
§ one RTT to initiate TCP connection
§ one RTT for HTTP request and first few

bytes of HTTP response to return
§ obect/file transmission time

time to
transmit
file

initiate TCP
connection

RTT

request file

RTT

file received

time time

Non-persistent HTTP response time = 2RTT+ file transmission time

Persistent HTTP (HTTP 1.1)

Non-persistent HTTP issues:
§ requires 2 RTTs per object
§OS overhead for each TCP

connection
§browsers often open multiple

parallel TCP connections to
fetch referenced objects in
parallel

Persistent HTTP (HTTP1.1):

§ server leaves connection open after
sending response

§ subsequent HTTP messages
between same client/server sent
over open connection

§ client sends requests as soon as it
encounters a referenced object

§ as little as one RTT for all the
referenced objects (cutting
response time in half)

HTTP request message
§ two types of HTTP messages: request, response
§ HTTP request message:

• ASCII (human-readable format)

request line (GET, POST,
HEAD commands)

header
lines

carriage return, line feed
at start of line indicates
end of header lines

GET /index.html HTTP/1.1\r\n
Host: www-net.cs.umass.edu\r\n
User-Agent: Firefox/3.6.10\r\n
Accept: text/html,application/xhtml+xml\r\n
Accept-Language: en-us,en;q=0.5\r\n
Accept-Encoding: gzip,deflate\r\n
Accept-Charset: ISO-8859-1,utf-8;q=0.7\r\n
Keep-Alive: 115\r\n
Connection: keep-alive\r\n
\r\n

carriage return character
line-feed character

* Check out the online interactive exercises for more
examples: http://gaia.cs.umass.edu/kurose_ross/interactive/

HTTP request message: general format

request
line

header
lines

body

method sp sp cr lfversionURL

cr lfvalueheader field name

cr lfvalueheader field name

~~ ~~

cr lf

entity body~~ ~~

Other HTTP request messages

POST method:
§ web page often includes form

input
§ user input sent from client to

server in entity body of HTTP
POST request message

GET method (for sending data to server):

§ include user data in URL field of HTTP
GET request message (following a ‘?’):
www.somesite.com/animalsearch?monkeys&banana

HEAD method:
§ requests headers (only) that

would be returned if specified
URL were requested with an
HTTP GET method.

PUT method:
§ uploads new file (object) to server
§ completely replaces file that exists

at specified URL with content in
entity body of POST HTTP request
message

HTTP response message

status line (protocol
status code status phrase)

header
lines

data, e.g., requested
HTML file

HTTP/1.1 200 OK\r\n
Date: Sun, 26 Sep 2010 20:09:20 GMT\r\n
Server: Apache/2.0.52 (CentOS)\r\n
Last-Modified: Tue, 30 Oct 2007 17:00:02

GMT\r\n
ETag: "17dc6-a5c-bf716880"\r\n
Accept-Ranges: bytes\r\n
Content-Length: 2652\r\n
Keep-Alive: timeout=10, max=100\r\n
Connection: Keep-Alive\r\n
Content-Type: text/html; charset=ISO-8859-

1\r\n
\r\n
data data data data data ...

* Check out the online interactive exercises for more examples: http://gaia.cs.umass.edu/kurose_ross/interactive/

HTTP response status codes

200 OK
• request succeeded, requested object later in this message

301 Moved Permanently
• requested object moved, new location specified later in this message (in

Location: field)
400 Bad Request

• request msg not understood by server
404 Not Found

• requested document not found on this server
505 HTTP Version Not Supported

§ status code appears in 1st line in server-to-client response message.
§ some sample codes:

Trying out HTTP (client side) for yourself
1. Telnet to your favorite Web server:

§ opens TCP connection to port 80 (default HTTP server
port) at www.i3s.unice.fr .

§ anything typed in will be sent to port 80 at
www.i3s.unice.fr

telnet www.i3s.unice.fr 80

3. look at response message sent by HTTP server!
(or use Wireshark to look at captured HTTP request/response)

2. type in a GET HTTP request:
GET /~deneire/ HTTP/1.1
Host: www.i3s.unice.fr

§ by typing this in (hit carriage return twice), you send
this minimal (but complete) GET request to HTTP
server

http://www.i3s.unice.fr/
http://www.i3s.unice.fr/
http://www.i3s.unice.fr/

Maintaining user/server state: cookies
Recall: HTTP GET/response

interaction is stateless
§ no notion of multi-step exchanges of

HTTP messages to complete a Web
“transaction”
• no need for client/server to track

“state” of multi-step exchange
• all HTTP requests are independent of

each other
• no need for client/server to “recover”

from a partially-completed-but-never-
completely-completed transaction

a stateful protocol: client makes
two changes to X, or none at all

time time

OK

OK
unlock X

OK

update X X’

update X X’’

lock data record X

OK
X

X

X’

X’’

X’’

t’

Q: what happens if network connection or
client crashes at t’ ?

Maintaining user/server state: cookies

Web sites and client browser use
cookies to maintain some state
between transactions

four components:
1) cookie header line of HTTP response

message
2) cookie header line in next HTTP

request message
3) cookie file kept on user’s host,

managed by user’s browser
4) back-end database at Web site

Example:
§ Susan uses browser on laptop,

visits specific e-commerce site
for first time

§ when initial HTTP requests
arrives at site, site creates:

• unique ID (aka “cookie”)
• entry in backend database

for ID
• subsequent HTTP requests

from Susan to this site will
contain cookie ID value,
allowing site to “identify”
Susan

Maintaining user/server state: cookies
client

server

usual HTTP response msg

usual HTTP response msg

cookie file

one week later:

usual HTTP request msg
cookie: 1678 cookie-

specific
action

access

ebay 8734 usual HTTP request msg Amazon server
creates ID

1678 for user create
entry

usual HTTP response
set-cookie: 1678 ebay 8734

amazon 1678

usual HTTP request msg
cookie: 1678 cookie-

specific
action

access
ebay 8734
amazon 1678

backend
database

time time

HTTP cookies: comments

What cookies can be used for:
§ authorization
§ shopping carts
§ recommendations
§ user session state (Web e-mail)

cookies and privacy:
§ cookies permit sites to

learn a lot about you on
their site.

§ third party persistent
cookies (tracking cookies)
allow common identity
(cookie value) to be
tracked across multiple
web sites

aside

Challenge: How to keep state:
§ protocol endpoints: maintain state at

sender/receiver over multiple transactions
§ cookies: HTTP messages carry state

Web caches (proxy servers)

§ user configures browser to
point to a Web cache

§ browser sends all HTTP
requests to cache

• if object in cache: cache
returns object to client

• else cache requests object
from origin server, caches
received object, then
returns object to client

Goal: satisfy client request without involving origin server

client

proxy
server

client

HTTP request

HTTP response

HTTP request HTTP request

origin
server

origin
server

HTTP response HTTP response

Web caches (proxy servers)

Application Layer: 2-58

§ Web cache acts as both
client and server
• server for original

requesting client
• client to origin server

§ typically cache is
installed by ISP
(university, company,
residential ISP)

Why Web caching?
§ reduce response time for client

request
• cache is closer to client

§ reduce traffic on an institution’s
access link

§ Internet is dense with caches
• enables “poor” content providers

to more effectively deliver content

Caching example

origin
servers

public
Internet

institutional
network 1 Gbps LAN

1.54 Mbps
access link

problem: large
delays at high
utilization!

Performance:
§ LAN utilization: .0015
§ access link utilization = .97
§ end-end delay = Internet delay +

access link delay + LAN delay
= 2 sec + minutes + usecs

Scenario:
§ access link rate: 1.54 Mbps
§ RTT from institutional router to server: 2 sec
§ Web object size: 100K bits
§ Average request rate from browsers to origin

servers: 15/sec
§ average data rate to browsers: 1.50 Mbps

Caching example: buy a faster access link

origin
servers

public
Internet

institutional
network 1 Gbps LAN

1.54 Mbps
access linkPerformance:

§ LAN utilization: .0015
§ access link utilization = .97
§ end-end delay = Internet delay +

access link delay + LAN delay
= 2 sec + minutes + usecs

Scenario:
§ access link rate: 1.54 Mbps
§ RTT from institutional router to server: 2 sec
§ Web object size: 100K bits
§ Avg request rate from browsers to origin

servers: 15/sec
§ avg data rate to browsers: 1.50 Mbps

154 Mbps

154 Mbps

.0097

msecsCost: faster access link (expensive!)

Performance:
§ LAN utilization: .?
§ access link utilization = ?
§ average end-end delay = ?

Caching example: install a web cache

origin
servers

public
Internet

institutional
network 1 Gbps LAN

1.54 Mbps
access link

Scenario:
§ access link rate: 1.54 Mbps
§ RTT from institutional router to server: 2 sec
§ Web object size: 100K bits
§ Avg request rate from browsers to origin

servers: 15/sec
§ avg data rate to browsers: 1.50 Mbps

How to compute link
utilization, delay?

Cost: web cache (cheap!) local web cache

Caching example: install a web cache

origin
servers

public
Internet

institutional
network 1 Gbps LAN

1.54 Mbps
access link

local web cache

Calculating access link utilization, end-
end delay with cache:
§ suppose cache hit rate is 0.4: 40% requests

satisfied at cache, 60% requests satisfied at
origin

§ access link: 60% of requests use access link
§ data rate to browsers over access link

= 0.6 * 1.50 Mbps = .9 Mbps
§ utilization = 0.9/1.54 = .58
§ average end-end delay

= 0.6 * (delay from origin servers)
+ 0.4 * (delay when satisfied at cache)

= 0.6 (2.01) + 0.4 (~msecs) = ~ 1.2 secs
lower average end-end delay than with 154 Mbps link (and cheaper too!)

Conditional GET

Goal: don’t send object if cache has
up-to-date cached version

• no object transmission delay
• lower link utilization

§ cache: specify date of cached copy
in HTTP request
If-modified-since: <date>

§ server: response contains no
object if cached copy is up-to-date:
HTTP/1.0 304 Not Modified

HTTP request msg
If-modified-since: <date>

HTTP response
HTTP/1.0

304 Not Modified

object
not

modified
before
<date>

HTTP request msg
If-modified-since: <date>

HTTP response
HTTP/1.0 200 OK

<data>

object
modified

after
<date>

client server

HTTP/2
Key goal: decreased delay in multi-object HTTP requests

HTTP1.1: introduced multiple, pipelined GETs over single TCP
connection
§ server responds in-order (FCFS: first-come-first-served scheduling) to

GET requests
§with FCFS, small object may have to wait for transmission (head-of-

line (HOL) blocking) behind large object(s)
§ loss recovery (retransmitting lost TCP segments) stalls object

transmission

HTTP/2
Key goal: decreased delay in multi-object HTTP requests

HTTP/2: [RFC 7540, 2015] increased flexibility at server in sending
objects to client:
§ methods, status codes, most header fields unchanged from HTTP 1.1
§ transmission order of requested objects based on client-specified

object priority (not necessarily FCFS)

§ push unrequested objects to client
§ divide objects into frames, schedule frames to mitigate HOL blocking

HTTP/2: mitigating HOL blocking
HTTP 1.1: client requests 1 large object (e.g., video file, and 3 smaller
objects)

client

server

GET O1
GET O2

GET O3
GET O4

O1
O2

O3O4

object data requested

O1

O2
O3
O4

objects delivered in order requested: O2, O3, O4 wait behind O1

HTTP/2: mitigating HOL blocking
HTTP/2: objects divided into frames, frame transmission interleaved

client

server

GET O1
GET O2

GET O3
GET O4

O2

O4

object data requested

O1

O2
O3
O4

O2, O3, O4 delivered quickly, O1 slightly delayed

O3

O1

HTTP/2 to HTTP/3
Key goal: decreased delay in multi-object HTTP requests

HTTP/2 over single TCP connection means:
§ recovery from packet loss still stalls all object transmissions
• as in HTTP 1.1, browsers have incentive to open multiple parallel

TCP connections to reduce stalling, increase overall throughput
§ no security over vanilla TCP connection
§ HTTP/3: adds security , per object error- and congestion-

control (more pipelining) over UDP

E-mail

Three major components:
§user agents
§mail servers
§ simple mail transfer protocol: SMTP

User Agent
§ a.k.a. “mail reader”
§ composing, editing, reading mail messages
§e.g., Outlook, iPhone mail client
§outgoing, incoming messages stored on

server

user mailbox

outgoing
message queue

mail
server

mail
server

mail
server

SMTP

SMTP

SMTP

user
agent

user
agent

user
agent

user
agent

user
agent

user
agent

E-mail: mail servers
user mailbox

outgoing
message queue

mail
server

mail
server

mail
server

SMTP

SMTP

SMTP

user
agent

user
agent

user
agent

user
agent

user
agent

user
agent

mail servers:
§mailbox contains incoming

messages for user
§message queue of outgoing (to

be sent) mail messages
§ SMTP protocol between mail

servers to send email messages
• client: sending mail server
• “server”: receiving mail server

E-mail: the RFC (5321)

§ uses TCP to reliably transfer email message from client (mail server
initiating connection) to server, port 25

§ direct transfer: sending server (acting like client) to receiving server
§ three phases of transfer

• handshaking (greeting)
• transfer of messages
• closure

§ command/response interaction (like HTTP)
• commands: ASCII text
• response: status code and phrase

§messages must be in 7-bit ASCI

Scenario: Alice sends e-mail to Bob
1) Alice uses UA to compose e-mail

message “to” bob@someschool.edu
4) SMTP client sends Alice’s message

over the TCP connection

user
agent

mail
server

mail
server

1

2 3 4
5

6

Alice’s mail server Bob’s mail server

user
agent

2) Alice’s UA sends message to her
mail server; message placed in
message queue

3) client side of SMTP opens TCP
connection with Bob’s mail server

5) Bob’s mail server places
the message in Bob’s
mailbox

6) Bob invokes his user
agent to read message

Sample SMTP interaction

Application Layer: 2-73

S: 220 hamburger.edu
C: HELO crepes.fr
S: 250 Hello crepes.fr, pleased to meet you
C: MAIL FROM: <alice@crepes.fr>
S: 250 alice@crepes.fr... Sender ok
C: RCPT TO: <bob@hamburger.edu>
S: 250 bob@hamburger.edu ... Recipient ok
C: DATA
S: 354 Enter mail, end with "." on a line by itself
C: Do you like ketchup?
C: How about pickles?
C: .
S: 250 Message accepted for delivery
C: QUIT
S: 221 hamburger.edu closing connection

Try SMTP interaction for yourself:
telnet <servername> 25
§ see 220 reply from server
§ enter HELO, MAIL FROM:, RCPT TO:, DATA, QUIT commands

above lets you send email without using e-mail client (reader)

Note: this will only work if <servername> allows telnet connections to port 25 (this is becoming
increasingly rare because of security concerns)

SMTP: closing observations

§ SMTP uses persistent
connections

§ SMTP requires message
(header & body) to be in
7-bit ASCII

§ SMTP server uses
CRLF.CRLF to determine
end of message

comparison with HTTP:
§ HTTP: pull
§ SMTP: push

§ both have ASCII command/response
interaction, status codes

§ HTTP: each object encapsulated in its
own response message

§ SMTP: multiple objects sent in
multipart message

Mail message format

SMTP: protocol for exchanging e-mail
messages, defined in RFC 531 (like HTTP)
RFC 822 defines syntax for e-mail message
itself (like HTML)
§ header lines, e.g.,

• To:
• From:
• Subject:
these lines, within the body of the email
message area different from SMTP MAIL FROM:,
RCPT TO: commands!

§ Body: the “message” , ASCII characters only

header

body

blank
line

Mail access protocols

Application Layer: 2-77

sender’s e-mail
server

SMTP SMTP
e-mail access

protocol

receiver’s e-mail
server

(e.g., IMAP,
HTTP)

user
agent

user
agent

§ SMTP: delivery/storage of e-mail messages to receiver’s server
§mail access protocol: retrieval from server

• IMAP: Internet Mail Access Protocol [RFC 3501]: messages stored on server, IMAP
provides retrieval, deletion, folders of stored messages on server

§ HTTP: gmail, Hotmail, Yahoo!Mail, etc. provides web-based interface on
top of STMP (to send), IMAP (or POP) to retrieve e-mail messages

Test sur le mailer de free
Il faut se connecter sur une machine qui a Free comme FAI :

ssh invite1@deneire.hd.free.fr
mdp invite1

telnet smtp.free.fr 25

Il faut »s’authentifier » EHLO deneire.hd.free.fr

Puis jouer avec
SMTP MAIL FROM:, RCPT TO: …

Du coup, vous pouvez m’envoyer un mail en vous faisant passer pour “n’importe qui”

mailto:invite1@deneire.hd.free.fr

