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Mutual Exclusion

• We will clarify our understanding of 

mutual exclusion

• We will also show you how to reason 

about various properties in an 

asynchronous concurrent setting



Mutual Exclusion

In his 1965 paper E. W. Dijkstra wrote:

"Given in this paper is a solution to a problem which, to 

the knowledge of the author, has been an open 

question since at least 1962, irrespective of the 

solvability. [...]  Although the setting of the problem 

might seem somewhat academic at first, the author 

trusts that anyone familiar with the logical problems 

that arise in computer coupling will appreciate the 

significance of the fact that this problem indeed can 

be solved."
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Mutual Exclusion

• Formal problem definitions

• Solutions for 2 threads

• Solutions for n threads

• Fair solutions

• Inherent costs
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Warning

• You will never use these protocols

– Get over it

• You are advised to understand them

– The same issues show up everywhere

– Except hidden and more complex
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Why is Concurrent Programming 

so Hard?

• Try preparing a seven-course banquet

– By yourself

– With one friend

– With twenty-seven friends …

• Before we can talk about programs

– Need a language

– Describing time and concurrency
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• “Absolute, true and mathematical time, 
of itself and from its own nature, flows 
equably without relation to anything 
external.” (Isaac Newton, 1689)

• “Time is what keeps everything from 
happening at once.” (Ray Cummings, 
1922)

Time

time



Art of Multiprocessor 

Programming

11

time

• An event a0 of thread A is

– Instantaneous

– No simultaneous events (break ties)

a0

Events
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time

• A thread A is (formally) a sequence a0,

a1, ... of events 

– “Trace” model

– Notation: a0 ➔ a1 indicates order

a0

Threads

a1 a2 …
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• Assign to shared variable

• Assign to local variable

• Invoke method

• Return from method

• Lots of other things …

Example Thread Events
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Threads are State Machines

Events are 

transitions

a0

a1a2

a3
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States

• Thread State

– Program counter

– Local variables

• System state

– Object fields (shared variables)

– Union of thread states
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time

• Thread A

Concurrency
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time

time

• Thread A

• Thread B

Concurrency
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time

Interleavings

• Events of two or more threads

– Interleaved

– Not necessarily independent (why?)
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time

• An interval A0 =(a0,a1) is

– Time between events a0 and a1

a0 a1

Intervals

A0
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time

Intervals may Overlap

a0 a1A0

b0 b1B0
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time

Intervals may be Disjoint

a0 a1A0

b0 b1B0
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time

Precedence

a0 a1A0

b0 b1B0

Interval A0 precedes interval B0
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Precedence

• Notation: A0 ➔ B0

• Formally,

– End event of A0 before start event of B0

– Also called “happens before” or “precedes”
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Precedence Ordering

• Remark: A0 ➔ B0 is just like saying 

– 1066 AD ➔ 1492 AD, 

– Middle Ages ➔Renaissance,

• Oh wait, 

– what about this week vs this month?
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Precedence Ordering

• Never true that A➔ A

• If A➔B then not true that B➔A

• If A➔B & B➔C then A➔C

• Funny thing: A➔B & B➔A might both be 

false! 
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Partial Orders
(review)

• Irreflexive:

– Never true that A➔ A

• Antisymmetric:

– If A➔ B then not true that B➔ A 

• Transitive:

– If A➔ B & B➔ C then A➔ C
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Total Orders
(review)

• Also

– Irreflexive

– Antisymmetric

– Transitive

• Except that for every distinct A, B,

– Either A➔ B or B➔ A 
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Repeated Events

while (mumble) {

a0; a1;

}

a0
k

k-th occurrence of 

event a0

A0
k

k-th occurrence of 

interval A0 =(a0,a1)
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Locks (Mutual Exclusion)

public interface Lock {

public void lock();

public void unlock();

}
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Locks (Mutual Exclusion)

public interface Lock {

public void lock();

public void unlock();

}

acquire lock
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Locks (Mutual Exclusion)

public interface Lock {

public void lock();

public void unlock();

}
release lock

acquire lock
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Using Locks

public class Counter {

private long value;

private Lock lock;

public long getAndIncrement() {

lock.lock();

try {

int temp = value;

value = value + 1;

} finally {

lock.unlock();

}

return temp;

}}
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Using Locks

public class Counter {

private long value;

private Lock lock;

public long getAndIncrement() {

lock.lock();

try {

int temp = value;

value = value + 1;

} finally {

lock.unlock();

}

return temp;

}}

acquire Lock
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Using Locks

public class Counter {

private long value;

private Lock lock;

public long getAndIncrement() {

lock.lock();

try {

int temp = value;

value = value + 1;

} finally {

lock.unlock();

}

return temp;

}}

Release lock

(no matter what)
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Using Locks

public class Counter {

private long value;

private Lock lock;

public long getAndIncrement() {

lock.lock();

try {

int temp = value;

value = value + 1;

} finally {

lock.unlock();

}

return temp;

}}

critical section
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Mutual Exclusion

• Let CSi
k be thread i's k-th critical 

section execution
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Mutual Exclusion

• Let CSi
k be thread i's k-th critical 

section execution

• And CSj
m be thread j's m-th critical 

section execution
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Mutual Exclusion

• Let CSi
k be thread i's k-th critical 

section execution

• And CSj
m be j's m-th execution

• Then either

– or
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Mutual Exclusion

• Let CSi
k be thread i's k-th critical 

section execution

• And CSj
m be j's m-th execution

• Then either

– or

CSi
k
➔ CSj

m
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Mutual Exclusion

• Let CSi
k be thread i's k-th critical 

section execution

• And CSj
m be j's m-th execution

• Then either

– or

CSi
k
➔ CSj

m

CSj
m
➔ CSi

k
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Deadlock-Free

• If some thread calls lock()

– And never returns

– Then other threads must complete lock()

and unlock() calls infinitely often

• System as a whole makes progress

– Even if individuals starve



Art of Multiprocessor 

Programming

43

Starvation-Free

• If some thread calls lock()

– It will eventually return

• Individual threads make progress
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Two-Thread vs n-Thread 

Solutions

• 2-thread solutions first

– Illustrate most basic ideas

– Fits on one slide

• Then n-thread solutions 



Art of Multiprocessor 

Programming

45

class … implements Lock {

…

// thread-local index, 0 or 1

public void lock() {

int i = ThreadID.get();

int j = 1 - i;

…

}

}

Two-Thread Conventions
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class … implements Lock {

…

// thread-local index, 0 or 1

public void lock() {

int i = ThreadID.get();

int j = 1 - i;

…

}  

}

Two-Thread Conventions

Henceforth: i is current 

thread, j is other thread



LockOne

class LockOne implements Lock {

private boolean[] flag = new boolean[2];

public void lock() {

flag[i] = true;

while (flag[j]) {}

}



LockOne

class LockOne implements Lock {

private boolean[] flag = new boolean[2];

public void lock() {

flag[i] = true;

while (flag[j]) {}

} Each thread has flag



LockOne

class LockOne implements Lock {

private boolean[] flag = new boolean[2];

public void lock() {

flag[i] = true;

while (flag[j]) {}

}
Set my flag



LockOne

class LockOne implements Lock {

private boolean[] flag = new boolean[2];

public void lock() {

flag[i] = true;

while (flag[j]) {}

}

Wait for other flag to 

become false
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• Assume CSA
j overlaps CSB

k

• Consider each thread's last
– (jth and kth) read and write …

– in lock() before entering 

• Derive a contradiction

LockOne Satisfies Mutual 

Exclusion
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• writeA(flag[A]=true) →

readA(flag[B]==false) →CSA

• writeB(flag[B]=true) →

readB(flag[A]==false) → CSB

From the Code

class LockOne implements Lock {

…

public void lock() {

flag[i] = true;

while (flag[j]) {}

}
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• readA(flag[B]==false) →

writeB(flag[B]=true)

• readB(flag[A]==false) →

writeA(flag[A]=true)

From the Assumption
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• Assumptions:
– readA(flag[B]==false) → writeB(flag[B]=true)

– readB(flag[A]==false) → writeA(flag[A]=true)

• From the code
– writeA(flag[A]=true) → readA(flag[B]==false)

– writeB(flag[B]=true) → readB(flag[A]==false)

Combining
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• Assumptions:
– readA(flag[B]==false) → writeB(flag[B]=true)

– readB(flag[A]==false) → writeA(flag[A]=true)

• From the code
– writeA(flag[A]=true) → readA(flag[B]==false)

– writeB(flag[B]=true) → readB(flag[A]==false)

Combining
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• Assumptions:
– readA(flag[B]==false) → writeB(flag[B]=true)

– readB(flag[A]==false) → writeA(flag[A]=true)

• From the code
– writeA(flag[A]=true) → readA(flag[B]==false)

– writeB(flag[B]=true) → readB(flag[A]==false)

Combining
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• Assumptions:
– readA(flag[B]==false) → writeB(flag[B]=true)

– readB(flag[A]==false) → writeA(flag[A]=true)

• From the code
– writeA(flag[A]=true) → readA(flag[B]==false)

– writeB(flag[B]=true) → readB(flag[A]==false)

Combining
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• Assumptions:
– readA(flag[B]==false) → writeB(flag[B]=true)

– readB(flag[A]==false) → writeA(flag[A]=true)

• From the code
– writeA(flag[A]=true) → readA(flag[B]==false)

– writeB(flag[B]=true) → readB(flag[A]==false)

Combining
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• Assumptions:
– readA(flag[B]==false) → writeB(flag[B]=true)

– readB(flag[A]==false) → writeA(flag[A]=true)

• From the code
– writeA(flag[A]=true) → readA(flag[B]==false)

– writeB(flag[B]=true) → readB(flag[A]==false)

Combining
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Cycle!
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Deadlock Freedom

• LockOne Fails deadlock-freedom

– Concurrent execution can deadlock

– Sequential executions OK

flag[i] = true;    flag[j] = true;

while (flag[j]){}  while (flag[i]){}
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LockTwo

public class LockTwo implements Lock {

private int victim;

public void lock() {

victim = i;

while (victim == i) {}; 

}

public void unlock() {}

}
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LockTwo

public class LockTwo implements Lock {

private int victim;

public void lock() {

victim = i;

while (victim == i) {}; 

}

public void unlock() {}

}

Let other go 

first
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LockTwo

public class LockTwo implements Lock {

private int victim;

public void lock() {

victim = i;

while (victim == i) {}; 

}

public void unlock() {}

}

Wait for 

permission
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LockTwo

public class Lock2 implements Lock {

private int victim;

public void lock() {

victim = i;

while (victim == i) {}; 

}

public void unlock() {}

}

Nothing to do
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public void LockTwo() {

victim = i;

while (victim == i) {}; 

}

LockTwo Claims

• Satisfies mutual exclusion

– If thread i in CS

– Then victim == j

– Cannot be both 0 and 1

• Not deadlock free

– Sequential execution deadlocks

– Concurrent execution does not
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Peterson's Algorithm

public void lock() {

flag[i] = true; 

victim  = i;

while (flag[j] && victim == i) {};

}

public void unlock() {

flag[i] = false;

}
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Peterson's Algorithm

public void lock() {

flag[i] = true; 

victim  = i; 

while (flag[j] && victim == i) {};

}

public void unlock() {

flag[i] = false;

}

Announce I'm 

interested
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Peterson's Algorithm

public void lock() {

flag[i] = true; 

victim  = i;

while (flag[j] && victim == i) {};

}

public void unlock() {

flag[i] = false;

}

Announce I'm 

interested

Defer to other
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Peterson's Algorithm

public void lock() {

flag[i] = true; 

victim  = i;

while (flag[j] && victim == i) {};

}

public void unlock() {

flag[i] = false;

}

Announce I'm 

interested

Defer to other

Wait while other 

interested & I'm 

the victim
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Peterson's Algorithm

public void lock() {

flag[i] = true; 

victim  = i;

while (flag[j] && victim == i) {};

}

public void unlock() {

flag[i] = false;

}

No longer 

interested

Announce I'm 

interested

Defer to other

Wait while other 

interested & I'm 

the victim
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Mutual Exclusion

(1) writeB(Flag[B]=true)➔writeB(victim=B)

public void lock() {

flag[i] = true; 

victim  = i;

while (flag[j] && victim == i) {};

}

From the Code
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Also from the Code

(2) writeA(victim=A)➔readA(flag[B])

➔readA(victim)

public void lock() {

flag[i] = true; 

victim  = i;

while (flag[j] && victim == i) {};

}



Art of Multiprocessor 

Programming

74

Assumption

W.L.O.G. assume A is the last 

thread to write victim

(3) writeB(victim=B)➔writeA(victim=A)
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Combining Observations

(1) writeB(flag[B]=true)➔writeB(victim=B)

(3) writeB(victim=B)➔writeA(victim=A)

(2) writeA(victim=A)➔readA(flag[B])

➔ readA(victim)
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Combining Observations

(1) writeB(flag[B]=true)➔writeB(victim=B)

(3) writeB(victim=B)➔writeA(victim=A)

(2) writeA(victim=A)➔readA(flag[B])

➔ readA(victim)
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Combining Observations

(1) writeB(flag[B]=true)➔writeB(victim=B)

(3) writeB(victim=B)➔writeA(victim=A)

(2) writeA(victim=A)➔readA(flag[B])

➔ readA(victim)

A read flag[B] == true and victim == A, so it 

could not have entered the CS  (QED)
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Deadlock Free

• Thread blocked 
– only at while loop

– only if other's flag is true

– only if it is the victim

• Solo: other's flag is false

• Both: one or the other not the victim

public void lock() {

…

while (flag[j] && victim == i) {};
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Starvation Free

• Thread i blocked 
only if j repeatedly 
re-enters so that 

flag[j] == true and
victim == i

• When j re-enters
– it sets victim to j.

– So i gets in

public void lock() {

flag[i] = true; 

victim    = i;

while (flag[j] && victim == i) {};

}

public void unlock() {

flag[i] = false;  

}
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Bounded Waiting

• Want stronger fairness guarantees

• Thread not “overtaken” too much

• If A starts before B, then A enters 

before B?

• But what does “start” mean?

• Need to adjust definitions ….
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Bounded Waiting

• Divide lock() method into 2 parts:

– Doorway interval:

• Written DA

• always finishes in finite steps

– Waiting interval:

• Written WA

• may take unbounded steps



Art of Multiprocessor 

Programming

100

• For threads A and B:

– If DA
k
➔ DB 

j

• A's k-th doorway precedes B's j-th doorway

– Then CSA
k
➔ CSB

j+r

• A's k-th critical section precedes B's j+r-th

critical section

• B cannot overtake A more than r times

• First-come-first-served ➔ r = 0

r-Bounded Waiting
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What is “r” for Peterson's 

Algorithm?

public void lock() {

flag[i] = true; 

victim  = i;

while (flag[j] && victim == i) {};

}

public void unlock() {

flag[i] = false;

}

Answer: r = 0



Art of Multiprocessor 

Programming

103

• For threads A and B:

– If DA
k
➔ DB 

j

• A's k-th doorway precedes B's j-th doorway

– Then CSA
k
➔ CSB

j

• A's k-th critical section precedes B's j-th critical 

section

• B cannot overtake A

First-Come-First-Served
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Bakery Algorithm

• Provides First-Come-First-Served for n
threads

• How?

– Take a “number”

– Wait until lower numbers have been served

• Lexicographic order

– (a,i) > (b,j)
• If a > b, or a = b and i > j
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Bakery Algorithm

class Bakery implements Lock {

boolean[] flag;

Label[] label;

public Bakery (int n) {

flag  = new boolean[n];

label = new Label[n];

for (int i = 0; i < n; i++) { 

flag[i] = false; label[i] = 0;

}

}

…
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Bakery Algorithm

class Bakery implements Lock {

boolean[] flag;

Label[] label;

public Bakery (int n) {

flag  = new boolean[n];

label = new Label[n];

for (int i = 0; i < n; i++) { 

flag[i] = false; label[i] = 0;

}

}

…

n-10

f f f f t ft

2

f

0 0 0 0 5 04 0

6

CS
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Bakery Algorithm

class Bakery implements Lock {

…

public void lock() {  

flag[i]  = true;  

label[i] = max(label[0], …,label[n-1])+1;

while ($k flag[k]
&& (label[i],i) > (label[k],k));

}
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Bakery Algorithm

class Bakery implements Lock {

…

public void lock() {

flag[i]  = true;  

label[i] = max(label[0], …,label[n-1])+1;

while ($k flag[k]
&& (label[i],i) > (label[k],k));

}

Doorway
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Bakery Algorithm

class Bakery implements Lock {

…

public void lock() {  

flag[i]  = true;  

label[i] = max(label[0], …,label[n-1])+1;

while ($k flag[k]
&& (label[i],i) > (label[k],k));

}

I'm interested
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Bakery Algorithm

class Bakery implements Lock {

…

public void lock() {  

flag[i]  = true;

label[i] = max(label[0], …,label[n-1])+1;

while ($k flag[k]
&& (label[i],i) > (label[k],k));

}

Take increasing 

label (read labels 

in some arbitrary 

order)
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Bakery Algorithm

class Bakery implements Lock {

…

public void lock() {  

flag[i]  = true;  

label[i] = max(label[0], …,label[n-1])+1;

while ($k flag[k]
&& (label[i],i) > (label[k],k));

}

Someone is 

interested
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Bakery Algorithm
class Bakery implements Lock {

boolean flag[n];

int label[n];

public void lock() {  

flag[i]  = true;  

label[i] = max(label[0], …,label[n-1])+1;

while ($k flag[k]
&& (label[i],i) > (label[k],k));

}

Someone is 

interested …

… whose (label,i) in 

lexicographic order is lower
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Bakery Algorithm

class Bakery implements Lock {

…

public void unlock() {  

flag[i] = false;

}

}
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Bakery Algorithm

class Bakery implements Lock {

…

public void unlock() {  

flag[i] = false;

}

}

No longer 

interested

labels are always increasing 
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No Deadlock

• There is always one thread with earliest 

label

• Ties are impossible (why?)
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First-Come-First-Served

• If DA ➔ DB then

– A's label is smaller

• And:

– writeA(label[A]) ➔

– readB(label[A]) ➔

– writeB(label[B]) ➔ readB(flag[A])

• So B sees

– smaller label for A

– locked out while flag[A] is true

class Bakery implements Lock {

public void lock() {  

flag[i]  = true;

label[i] = max(label[0],

…,label[n-1])+1;

while ($k flag[k]
&& (label[i],i) > 

(label[k],k));

}
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Mutual Exclusion

• Suppose A and B in 

CS together

• Suppose A has 

earlier label

• When B entered, it 

must have seen

– flag[A] is false, or

– label[A] > label[B]

class Bakery implements Lock {

public void lock() {  

flag[i]  = true;

label[i] = max(label[0],

…,label[n-1])+1;

while ($k flag[k]
&& (label[i],i) > 

(label[k],k));

}
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Mutual Exclusion

• Labels are strictly increasing so

• B must have seen flag[A] == false
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Mutual Exclusion

• Labels are strictly increasing so

• B must have seen flag[A] == false

• LabelingB ➔ readB(flag[A]) ➔

writeA(flag[A]) ➔ LabelingA
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Mutual Exclusion

• Labels are strictly increasing so

• B must have seen flag[A] == false

• LabelingB ➔ readB(flag[A]) ➔

writeA(flag[A]) ➔ LabelingA

• Which contradicts the assumption that A

has an earlier label
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Bakery Y232K Bug
class Bakery implements Lock {

…

public void lock() {  

flag[i]  = true;

label[i] = max(label[0], …,label[n-1])+1;

while ($k flag[k]
&& (label[i],i) > (label[k],k));

}
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Bakery Y232K Bug
class Bakery implements Lock {

…

public void lock() {  

flag[i]  = true;

label[i] = max(label[0], …,label[n-1])+1;

while ($k flag[k]
&& (label[i],i) > (label[k],k));

}

Mutex breaks if 
label[i] overflows
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Does Overflow Actually Matter?

• Yes

– Y2K

– 18 January 2038 (Unix time_t rollover)

– 16-bit counters

• No

– 64-bit counters

• Maybe

– 32-bit counters
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Deep Philosophical Question

• The Bakery Algorithm is

– Succinct,

– Elegant, and

– Fair.

• Q: So why isn't it practical?

• A: Well, you have to read N distinct 

variables
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Shared Memory

• Shared read/write memory locations  

called Registers (historical reasons)

• Come in different flavors

– Multi-Reader-Single-Writer (flag[])

– Multi-Reader-Multi-Writer (victim[])

– Not that interesting: SRMW and SRSW
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Theorem

At least N MRSW (multi-reader/single-

writer) registers are needed to solve 

deadlock-free mutual exclusion.

N registers such as flag[]…
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Theorem

Deadlock-free mutual exclusion for 3

threads requires at least 3 multi-reader 

multi-writer registers
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Theorem

Deadlock-free mutual exclusion for n

threads requires at least n multi-reader 

multi-writer registers
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Summary of Lecture

• In the 1960's several incorrect solutions 

to starvation-free mutual exclusion 

using RW-registers were published…

• Today we know how to solve FIFO N

thread mutual exclusion using 2N RW-

Registers 
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Summary of Lecture

• N RW-Registers inefficient

– Because writes “cover” older writes

• Need stronger hardware operations 

– that do not have the “covering problem”

• In next lectures - understand what these 

operations are…
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