
Mutual Exclusion

Companion slides for

The Art of Multiprocessor Programming

by Maurice Herlihy & Nir Shavit

Art of Multiprocessor

Programming

5

Mutual Exclusion

• We will clarify our understanding of

mutual exclusion

• We will also show you how to reason

about various properties in an

asynchronous concurrent setting

Mutual Exclusion

In his 1965 paper E. W. Dijkstra wrote:

"Given in this paper is a solution to a problem which, to

the knowledge of the author, has been an open

question since at least 1962, irrespective of the

solvability. [...] Although the setting of the problem

might seem somewhat academic at first, the author

trusts that anyone familiar with the logical problems

that arise in computer coupling will appreciate the

significance of the fact that this problem indeed can

be solved."

Art of Multiprocessor

Programming

6

Art of Multiprocessor

Programming

7

Mutual Exclusion

• Formal problem definitions

• Solutions for 2 threads

• Solutions for n threads

• Fair solutions

• Inherent costs

Art of Multiprocessor

Programming

8

Warning

• You will never use these protocols

– Get over it

• You are advised to understand them

– The same issues show up everywhere

– Except hidden and more complex

Art of Multiprocessor

Programming

9

Why is Concurrent Programming

so Hard?

• Try preparing a seven-course banquet

– By yourself

– With one friend

– With twenty-seven friends …

• Before we can talk about programs

– Need a language

– Describing time and concurrency

Art of Multiprocessor

Programming

10

• “Absolute, true and mathematical time,
of itself and from its own nature, flows
equably without relation to anything
external.” (Isaac Newton, 1689)

• “Time is what keeps everything from
happening at once.” (Ray Cummings,
1922)

Time

time

Art of Multiprocessor

Programming

11

time

• An event a0 of thread A is

– Instantaneous

– No simultaneous events (break ties)

a0

Events

Art of Multiprocessor

Programming

12

time

• A thread A is (formally) a sequence a0,

a1, ... of events

– “Trace” model

– Notation: a0 ➔ a1 indicates order

a0

Threads

a1 a2 …

Art of Multiprocessor

Programming

13

• Assign to shared variable

• Assign to local variable

• Invoke method

• Return from method

• Lots of other things …

Example Thread Events

Art of Multiprocessor

Programming

14

Threads are State Machines

Events are

transitions

a0

a1a2

a3

Art of Multiprocessor

Programming

15

States

• Thread State

– Program counter

– Local variables

• System state

– Object fields (shared variables)

– Union of thread states

Art of Multiprocessor

Programming

16

time

• Thread A

Concurrency

Art of Multiprocessor

Programming

17

time

time

• Thread A

• Thread B

Concurrency

Art of Multiprocessor

Programming

18

time

Interleavings

• Events of two or more threads

– Interleaved

– Not necessarily independent (why?)

Art of Multiprocessor

Programming

19

time

• An interval A0 =(a0,a1) is

– Time between events a0 and a1

a0 a1

Intervals

A0

Art of Multiprocessor

Programming

20

time

Intervals may Overlap

a0 a1A0

b0 b1B0

Art of Multiprocessor

Programming

21

time

Intervals may be Disjoint

a0 a1A0

b0 b1B0

Art of Multiprocessor

Programming

22

time

Precedence

a0 a1A0

b0 b1B0

Interval A0 precedes interval B0

Art of Multiprocessor

Programming

23

Precedence

• Notation: A0 ➔ B0

• Formally,

– End event of A0 before start event of B0

– Also called “happens before” or “precedes”

Art of Multiprocessor

Programming

24

Precedence Ordering

• Remark: A0 ➔ B0 is just like saying

– 1066 AD ➔ 1492 AD,

– Middle Ages ➔Renaissance,

• Oh wait,

– what about this week vs this month?

Art of Multiprocessor

Programming

25

Precedence Ordering

• Never true that A➔ A

• If A➔B then not true that B➔A

• If A➔B & B➔C then A➔C

• Funny thing: A➔B & B➔A might both be

false!

Art of Multiprocessor

Programming

26

Partial Orders
(review)

• Irreflexive:

– Never true that A➔ A

• Antisymmetric:

– If A➔ B then not true that B➔ A

• Transitive:

– If A➔ B & B➔ C then A➔ C

Art of Multiprocessor

Programming

27

Total Orders
(review)

• Also

– Irreflexive

– Antisymmetric

– Transitive

• Except that for every distinct A, B,

– Either A➔ B or B➔ A

Art of Multiprocessor

Programming

28

Repeated Events

while (mumble) {

a0; a1;

}

a0
k

k-th occurrence of

event a0

A0
k

k-th occurrence of

interval A0 =(a0,a1)

Art of Multiprocessor

Programming

30

Locks (Mutual Exclusion)

public interface Lock {

public void lock();

public void unlock();

}

Art of Multiprocessor

Programming

31

Locks (Mutual Exclusion)

public interface Lock {

public void lock();

public void unlock();

}

acquire lock

Art of Multiprocessor

Programming

32

Locks (Mutual Exclusion)

public interface Lock {

public void lock();

public void unlock();

}
release lock

acquire lock

Art of Multiprocessor

Programming

33

Using Locks

public class Counter {

private long value;

private Lock lock;

public long getAndIncrement() {

lock.lock();

try {

int temp = value;

value = value + 1;

} finally {

lock.unlock();

}

return temp;

}}

Art of Multiprocessor

Programming

34

Using Locks

public class Counter {

private long value;

private Lock lock;

public long getAndIncrement() {

lock.lock();

try {

int temp = value;

value = value + 1;

} finally {

lock.unlock();

}

return temp;

}}

acquire Lock

Art of Multiprocessor

Programming

35

Using Locks

public class Counter {

private long value;

private Lock lock;

public long getAndIncrement() {

lock.lock();

try {

int temp = value;

value = value + 1;

} finally {

lock.unlock();

}

return temp;

}}

Release lock

(no matter what)

Art of Multiprocessor

Programming

36

Using Locks

public class Counter {

private long value;

private Lock lock;

public long getAndIncrement() {

lock.lock();

try {

int temp = value;

value = value + 1;

} finally {

lock.unlock();

}

return temp;

}}

critical section

Art of Multiprocessor

Programming

37

Mutual Exclusion

• Let CSi
k be thread i's k-th critical

section execution

Art of Multiprocessor

Programming

38

Mutual Exclusion

• Let CSi
k be thread i's k-th critical

section execution

• And CSj
m be thread j's m-th critical

section execution

Art of Multiprocessor

Programming

39

Mutual Exclusion

• Let CSi
k be thread i's k-th critical

section execution

• And CSj
m be j's m-th execution

• Then either

– or

Art of Multiprocessor

Programming

40

Mutual Exclusion

• Let CSi
k be thread i's k-th critical

section execution

• And CSj
m be j's m-th execution

• Then either

– or

CSi
k
➔ CSj

m

Art of Multiprocessor

Programming

41

Mutual Exclusion

• Let CSi
k be thread i's k-th critical

section execution

• And CSj
m be j's m-th execution

• Then either

– or

CSi
k
➔ CSj

m

CSj
m
➔ CSi

k

Art of Multiprocessor

Programming

42

Deadlock-Free

• If some thread calls lock()

– And never returns

– Then other threads must complete lock()

and unlock() calls infinitely often

• System as a whole makes progress

– Even if individuals starve

Art of Multiprocessor

Programming

43

Starvation-Free

• If some thread calls lock()

– It will eventually return

• Individual threads make progress

Art of Multiprocessor

Programming

44

Two-Thread vs n-Thread

Solutions

• 2-thread solutions first

– Illustrate most basic ideas

– Fits on one slide

• Then n-thread solutions

Art of Multiprocessor

Programming

45

class … implements Lock {

…

// thread-local index, 0 or 1

public void lock() {

int i = ThreadID.get();

int j = 1 - i;

…

}

}

Two-Thread Conventions

Art of Multiprocessor

Programming

46

class … implements Lock {

…

// thread-local index, 0 or 1

public void lock() {

int i = ThreadID.get();

int j = 1 - i;

…

}

}

Two-Thread Conventions

Henceforth: i is current

thread, j is other thread

LockOne

class LockOne implements Lock {

private boolean[] flag = new boolean[2];

public void lock() {

flag[i] = true;

while (flag[j]) {}

}

LockOne

class LockOne implements Lock {

private boolean[] flag = new boolean[2];

public void lock() {

flag[i] = true;

while (flag[j]) {}

} Each thread has flag

LockOne

class LockOne implements Lock {

private boolean[] flag = new boolean[2];

public void lock() {

flag[i] = true;

while (flag[j]) {}

}
Set my flag

LockOne

class LockOne implements Lock {

private boolean[] flag = new boolean[2];

public void lock() {

flag[i] = true;

while (flag[j]) {}

}

Wait for other flag to

become false

Art of Multiprocessor

Programming

51

• Assume CSA
j overlaps CSB

k

• Consider each thread's last
– (jth and kth) read and write …

– in lock() before entering

• Derive a contradiction

LockOne Satisfies Mutual

Exclusion

Art of Multiprocessor

Programming

52

• writeA(flag[A]=true) →

readA(flag[B]==false) →CSA

• writeB(flag[B]=true) →

readB(flag[A]==false) → CSB

From the Code

class LockOne implements Lock {

…

public void lock() {

flag[i] = true;

while (flag[j]) {}

}

Art of Multiprocessor

Programming

53

• readA(flag[B]==false) →

writeB(flag[B]=true)

• readB(flag[A]==false) →

writeA(flag[A]=true)

From the Assumption

Art of Multiprocessor

Programming

54

• Assumptions:
– readA(flag[B]==false) → writeB(flag[B]=true)

– readB(flag[A]==false) → writeA(flag[A]=true)

• From the code
– writeA(flag[A]=true) → readA(flag[B]==false)

– writeB(flag[B]=true) → readB(flag[A]==false)

Combining

Art of Multiprocessor

Programming

55

• Assumptions:
– readA(flag[B]==false) → writeB(flag[B]=true)

– readB(flag[A]==false) → writeA(flag[A]=true)

• From the code
– writeA(flag[A]=true) → readA(flag[B]==false)

– writeB(flag[B]=true) → readB(flag[A]==false)

Combining

Art of Multiprocessor

Programming

56

• Assumptions:
– readA(flag[B]==false) → writeB(flag[B]=true)

– readB(flag[A]==false) → writeA(flag[A]=true)

• From the code
– writeA(flag[A]=true) → readA(flag[B]==false)

– writeB(flag[B]=true) → readB(flag[A]==false)

Combining

Art of Multiprocessor

Programming

57

• Assumptions:
– readA(flag[B]==false) → writeB(flag[B]=true)

– readB(flag[A]==false) → writeA(flag[A]=true)

• From the code
– writeA(flag[A]=true) → readA(flag[B]==false)

– writeB(flag[B]=true) → readB(flag[A]==false)

Combining

Art of Multiprocessor

Programming

58

• Assumptions:
– readA(flag[B]==false) → writeB(flag[B]=true)

– readB(flag[A]==false) → writeA(flag[A]=true)

• From the code
– writeA(flag[A]=true) → readA(flag[B]==false)

– writeB(flag[B]=true) → readB(flag[A]==false)

Combining

Art of Multiprocessor

Programming

59

• Assumptions:
– readA(flag[B]==false) → writeB(flag[B]=true)

– readB(flag[A]==false) → writeA(flag[A]=true)

• From the code
– writeA(flag[A]=true) → readA(flag[B]==false)

– writeB(flag[B]=true) → readB(flag[A]==false)

Combining

Art of Multiprocessor

Programming

60

Cycle!

Art of Multiprocessor

Programming

61

Deadlock Freedom

• LockOne Fails deadlock-freedom

– Concurrent execution can deadlock

– Sequential executions OK

flag[i] = true; flag[j] = true;

while (flag[j]){} while (flag[i]){}

Art of Multiprocessor

Programming

62

LockTwo

public class LockTwo implements Lock {

private int victim;

public void lock() {

victim = i;

while (victim == i) {};

}

public void unlock() {}

}

Art of Multiprocessor

Programming

63

LockTwo

public class LockTwo implements Lock {

private int victim;

public void lock() {

victim = i;

while (victim == i) {};

}

public void unlock() {}

}

Let other go

first

Art of Multiprocessor

Programming

64

LockTwo

public class LockTwo implements Lock {

private int victim;

public void lock() {

victim = i;

while (victim == i) {};

}

public void unlock() {}

}

Wait for

permission

Art of Multiprocessor

Programming

65

LockTwo

public class Lock2 implements Lock {

private int victim;

public void lock() {

victim = i;

while (victim == i) {};

}

public void unlock() {}

}

Nothing to do

Art of Multiprocessor

Programming

66

public void LockTwo() {

victim = i;

while (victim == i) {};

}

LockTwo Claims

• Satisfies mutual exclusion

– If thread i in CS

– Then victim == j

– Cannot be both 0 and 1

• Not deadlock free

– Sequential execution deadlocks

– Concurrent execution does not

Art of Multiprocessor

Programming

67

Peterson's Algorithm

public void lock() {

flag[i] = true;

victim = i;

while (flag[j] && victim == i) {};

}

public void unlock() {

flag[i] = false;

}

Art of Multiprocessor

Programming

68

Peterson's Algorithm

public void lock() {

flag[i] = true;

victim = i;

while (flag[j] && victim == i) {};

}

public void unlock() {

flag[i] = false;

}

Announce I'm

interested

Art of Multiprocessor

Programming

69

Peterson's Algorithm

public void lock() {

flag[i] = true;

victim = i;

while (flag[j] && victim == i) {};

}

public void unlock() {

flag[i] = false;

}

Announce I'm

interested

Defer to other

Art of Multiprocessor

Programming

70

Peterson's Algorithm

public void lock() {

flag[i] = true;

victim = i;

while (flag[j] && victim == i) {};

}

public void unlock() {

flag[i] = false;

}

Announce I'm

interested

Defer to other

Wait while other

interested & I'm

the victim

Art of Multiprocessor

Programming

71

Peterson's Algorithm

public void lock() {

flag[i] = true;

victim = i;

while (flag[j] && victim == i) {};

}

public void unlock() {

flag[i] = false;

}

No longer

interested

Announce I'm

interested

Defer to other

Wait while other

interested & I'm

the victim

Art of Multiprocessor

Programming

72

Mutual Exclusion

(1) writeB(Flag[B]=true)➔writeB(victim=B)

public void lock() {

flag[i] = true;

victim = i;

while (flag[j] && victim == i) {};

}

From the Code

Art of Multiprocessor

Programming

73

Also from the Code

(2) writeA(victim=A)➔readA(flag[B])

➔readA(victim)

public void lock() {

flag[i] = true;

victim = i;

while (flag[j] && victim == i) {};

}

Art of Multiprocessor

Programming

74

Assumption

W.L.O.G. assume A is the last

thread to write victim

(3) writeB(victim=B)➔writeA(victim=A)

Art of Multiprocessor

Programming

75

Combining Observations

(1) writeB(flag[B]=true)➔writeB(victim=B)

(3) writeB(victim=B)➔writeA(victim=A)

(2) writeA(victim=A)➔readA(flag[B])

➔ readA(victim)

Art of Multiprocessor

Programming

76

Combining Observations

(1) writeB(flag[B]=true)➔writeB(victim=B)

(3) writeB(victim=B)➔writeA(victim=A)

(2) writeA(victim=A)➔readA(flag[B])

➔ readA(victim)

Art of Multiprocessor

Programming

77

Combining Observations

(1) writeB(flag[B]=true)➔writeB(victim=B)

(3) writeB(victim=B)➔writeA(victim=A)

(2) writeA(victim=A)➔readA(flag[B])

➔ readA(victim)

A read flag[B] == true and victim == A, so it

could not have entered the CS (QED)

Art of Multiprocessor

Programming

78

Deadlock Free

• Thread blocked
– only at while loop

– only if other's flag is true

– only if it is the victim

• Solo: other's flag is false

• Both: one or the other not the victim

public void lock() {

…

while (flag[j] && victim == i) {};

Art of Multiprocessor

Programming

79

Starvation Free

• Thread i blocked
only if j repeatedly
re-enters so that

flag[j] == true and
victim == i

• When j re-enters
– it sets victim to j.

– So i gets in

public void lock() {

flag[i] = true;

victim = i;

while (flag[j] && victim == i) {};

}

public void unlock() {

flag[i] = false;

}

Art of Multiprocessor

Programming

98

Bounded Waiting

• Want stronger fairness guarantees

• Thread not “overtaken” too much

• If A starts before B, then A enters

before B?

• But what does “start” mean?

• Need to adjust definitions ….

Art of Multiprocessor

Programming

99

Bounded Waiting

• Divide lock() method into 2 parts:

– Doorway interval:

• Written DA

• always finishes in finite steps

– Waiting interval:

• Written WA

• may take unbounded steps

Art of Multiprocessor

Programming

100

• For threads A and B:

– If DA
k
➔ DB

j

• A's k-th doorway precedes B's j-th doorway

– Then CSA
k
➔ CSB

j+r

• A's k-th critical section precedes B's j+r-th

critical section

• B cannot overtake A more than r times

• First-come-first-served ➔ r = 0

r-Bounded Waiting

Art of Multiprocessor

Programming

101

What is “r” for Peterson's

Algorithm?

public void lock() {

flag[i] = true;

victim = i;

while (flag[j] && victim == i) {};

}

public void unlock() {

flag[i] = false;

}

Answer: r = 0

Art of Multiprocessor

Programming

103

• For threads A and B:

– If DA
k
➔ DB

j

• A's k-th doorway precedes B's j-th doorway

– Then CSA
k
➔ CSB

j

• A's k-th critical section precedes B's j-th critical

section

• B cannot overtake A

First-Come-First-Served

Art of Multiprocessor

Programming

105

Bakery Algorithm

• Provides First-Come-First-Served for n
threads

• How?

– Take a “number”

– Wait until lower numbers have been served

• Lexicographic order

– (a,i) > (b,j)
• If a > b, or a = b and i > j

Art of Multiprocessor

Programming

106

Bakery Algorithm

class Bakery implements Lock {

boolean[] flag;

Label[] label;

public Bakery (int n) {

flag = new boolean[n];

label = new Label[n];

for (int i = 0; i < n; i++) {

flag[i] = false; label[i] = 0;

}

}

…

Art of Multiprocessor

Programming

107

Bakery Algorithm

class Bakery implements Lock {

boolean[] flag;

Label[] label;

public Bakery (int n) {

flag = new boolean[n];

label = new Label[n];

for (int i = 0; i < n; i++) {

flag[i] = false; label[i] = 0;

}

}

…

n-10

f f f f t ft

2

f

0 0 0 0 5 04 0

6

CS

Art of Multiprocessor

Programming

108

Bakery Algorithm

class Bakery implements Lock {

…

public void lock() {

flag[i] = true;

label[i] = max(label[0], …,label[n-1])+1;

while ($k flag[k]
&& (label[i],i) > (label[k],k));

}

Art of Multiprocessor

Programming

109

Bakery Algorithm

class Bakery implements Lock {

…

public void lock() {

flag[i] = true;

label[i] = max(label[0], …,label[n-1])+1;

while ($k flag[k]
&& (label[i],i) > (label[k],k));

}

Doorway

Art of Multiprocessor

Programming

110

Bakery Algorithm

class Bakery implements Lock {

…

public void lock() {

flag[i] = true;

label[i] = max(label[0], …,label[n-1])+1;

while ($k flag[k]
&& (label[i],i) > (label[k],k));

}

I'm interested

Art of Multiprocessor

Programming

111

Bakery Algorithm

class Bakery implements Lock {

…

public void lock() {

flag[i] = true;

label[i] = max(label[0], …,label[n-1])+1;

while ($k flag[k]
&& (label[i],i) > (label[k],k));

}

Take increasing

label (read labels

in some arbitrary

order)

Art of Multiprocessor

Programming

112

Bakery Algorithm

class Bakery implements Lock {

…

public void lock() {

flag[i] = true;

label[i] = max(label[0], …,label[n-1])+1;

while ($k flag[k]
&& (label[i],i) > (label[k],k));

}

Someone is

interested

Art of Multiprocessor

Programming

113

Bakery Algorithm
class Bakery implements Lock {

boolean flag[n];

int label[n];

public void lock() {

flag[i] = true;

label[i] = max(label[0], …,label[n-1])+1;

while ($k flag[k]
&& (label[i],i) > (label[k],k));

}

Someone is

interested …

… whose (label,i) in

lexicographic order is lower

Art of Multiprocessor

Programming

114

Bakery Algorithm

class Bakery implements Lock {

…

public void unlock() {

flag[i] = false;

}

}

Art of Multiprocessor

Programming

115

Bakery Algorithm

class Bakery implements Lock {

…

public void unlock() {

flag[i] = false;

}

}

No longer

interested

labels are always increasing

Art of Multiprocessor

Programming

116

No Deadlock

• There is always one thread with earliest

label

• Ties are impossible (why?)

Art of Multiprocessor

Programming

117

First-Come-First-Served

• If DA ➔ DB then

– A's label is smaller

• And:

– writeA(label[A]) ➔

– readB(label[A]) ➔

– writeB(label[B]) ➔ readB(flag[A])

• So B sees

– smaller label for A

– locked out while flag[A] is true

class Bakery implements Lock {

public void lock() {

flag[i] = true;

label[i] = max(label[0],

…,label[n-1])+1;

while ($k flag[k]
&& (label[i],i) >

(label[k],k));

}

Art of Multiprocessor

Programming

118

Mutual Exclusion

• Suppose A and B in

CS together

• Suppose A has

earlier label

• When B entered, it

must have seen

– flag[A] is false, or

– label[A] > label[B]

class Bakery implements Lock {

public void lock() {

flag[i] = true;

label[i] = max(label[0],

…,label[n-1])+1;

while ($k flag[k]
&& (label[i],i) >

(label[k],k));

}

Art of Multiprocessor

Programming

119

Mutual Exclusion

• Labels are strictly increasing so

• B must have seen flag[A] == false

Art of Multiprocessor

Programming

120

Mutual Exclusion

• Labels are strictly increasing so

• B must have seen flag[A] == false

• LabelingB ➔ readB(flag[A]) ➔

writeA(flag[A]) ➔ LabelingA

Art of Multiprocessor

Programming

121

Mutual Exclusion

• Labels are strictly increasing so

• B must have seen flag[A] == false

• LabelingB ➔ readB(flag[A]) ➔

writeA(flag[A]) ➔ LabelingA

• Which contradicts the assumption that A

has an earlier label

Art of Multiprocessor

Programming

122

Bakery Y232K Bug
class Bakery implements Lock {

…

public void lock() {

flag[i] = true;

label[i] = max(label[0], …,label[n-1])+1;

while ($k flag[k]
&& (label[i],i) > (label[k],k));

}

Art of Multiprocessor

Programming

123

Bakery Y232K Bug
class Bakery implements Lock {

…

public void lock() {

flag[i] = true;

label[i] = max(label[0], …,label[n-1])+1;

while ($k flag[k]
&& (label[i],i) > (label[k],k));

}

Mutex breaks if
label[i] overflows

Art of Multiprocessor

Programming

124

Does Overflow Actually Matter?

• Yes

– Y2K

– 18 January 2038 (Unix time_t rollover)

– 16-bit counters

• No

– 64-bit counters

• Maybe

– 32-bit counters

Art of Multiprocessor

Programming

145

Deep Philosophical Question

• The Bakery Algorithm is

– Succinct,

– Elegant, and

– Fair.

• Q: So why isn't it practical?

• A: Well, you have to read N distinct

variables

Art of Multiprocessor

Programming

146

Shared Memory

• Shared read/write memory locations

called Registers (historical reasons)

• Come in different flavors

– Multi-Reader-Single-Writer (flag[])

– Multi-Reader-Multi-Writer (victim[])

– Not that interesting: SRMW and SRSW

Art of Multiprocessor

Programming

147

Theorem

At least N MRSW (multi-reader/single-

writer) registers are needed to solve

deadlock-free mutual exclusion.

N registers such as flag[]…

Art of Multiprocessor

Programming

157

Theorem

Deadlock-free mutual exclusion for 3

threads requires at least 3 multi-reader

multi-writer registers

Art of Multiprocessor

Programming

158

Theorem

Deadlock-free mutual exclusion for n

threads requires at least n multi-reader

multi-writer registers

Art of Multiprocessor

Programming

169

Summary of Lecture

• In the 1960's several incorrect solutions

to starvation-free mutual exclusion

using RW-registers were published…

• Today we know how to solve FIFO N

thread mutual exclusion using 2N RW-

Registers

Art of Multiprocessor

Programming

170

Summary of Lecture

• N RW-Registers inefficient

– Because writes “cover” older writes

• Need stronger hardware operations

– that do not have the “covering problem”

• In next lectures - understand what these

operations are…

Art of Multiprocessor

Programming

171

This work is licensed under a Creative Commons Attribution-

ShareAlike 2.5 License.

• You are free:

– to Share — to copy, distribute and transmit the work

– to Remix — to adapt the work

• Under the following conditions:

– Attribution. You must attribute the work to “The Art of

Multiprocessor Programming” (but not in any way that

suggests that the authors endorse you or your use of the

work).

– Share Alike. If you alter, transform, or build upon this work,

you may distribute the resulting work only under the same,

similar or a compatible license.

• For any reuse or distribution, you must make clear to others the

license terms of this work. The best way to do this is with a link

to

– http://creativecommons.org/licenses/by-sa/3.0/.

• Any of the above conditions can be waived if you get permission

from the copyright holder.

• Nothing in this license impairs or restricts the author's moral

rights.

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

