
Concurrent Objects

Companion slides for

The Art of Multiprocessor Programming

by Maurice Herlihy & Nir Shavit

Art of Multiprocessor

Programming

2

Concurrent Computation

memory

object object

Art of Multiprocessor

Programming

3

Objectivism

• What is a concurrent object?

– How do we describe one?

– How do we implement one?

– How do we tell if we’re right?

Art of Multiprocessor

Programming

4

Objectivism

• What is a concurrent object?

– How do we describe one?

– How do we tell if we’re right?

Art of Multiprocessor

Programming

5

FIFO Queue: Enqueue Method

q.enq()

Art of Multiprocessor

Programming

6

FIFO Queue: Dequeue Method

q.deq()/

Art of Multiprocessor

Programming

7

Lock-Based Queue

head
tail0

2

1

5 4

3

yx

capacity = 8

7

6

Art of Multiprocessor

Programming

8

Lock-Based Queue

head
tail0

2

1

5 4

3

capacity = 8

7

6

Fields protected by

single shared lock

yx

class LockBasedQueue<T> {

int head, tail;

T[] items;

Lock lock;

public LockBasedQueue(int capacity) {

head = 0; tail = 0;

lock = new ReentrantLock();

items = (T[]) new Object[capacity];

}

Art of Multiprocessor

Programming

9

A Lock-Based Queue

class LockBasedQueue<T> {

int head, tail;

T[] items;

Lock lock;

public LockBasedQueue(int capacity) {

head = 0; tail = 0;

lock = new ReentrantLock();

items = (T[]) new Object[capacity];

}

Art of Multiprocessor

Programming

10

A Lock-Based Queue

Fields protected by

single shared lock

0 1

capacity-1
2

head tail

y z

Art of Multiprocessor

Programming

11

Lock-Based Queue

head

tail

0

2

1

5 4

3

Initially: head = tail

7

6

class LockBasedQueue<T> {

int head, tail;

T[] items;

Lock lock;

public LockBasedQueue(int capacity) {

head = 0; tail = 0;

lock = new ReentrantLock();

items = (T[]) new Object[capacity];

}

Art of Multiprocessor

Programming

12

A Lock-Based Queue

Initially head = tail

0 1

capacity-1
2

head tail

y z

Art of Multiprocessor

Programming

13

Lock-Based deq()

head
tail0

2

5 4

7

36

1

yx

Art of Multiprocessor

Programming

14

Acquire Lock

head
tail0

2

5 4

7

36

yx

1

Waiting to

enqueue…

My turn … yx

public T deq() throws EmptyException {

lock.lock();

try {

if (tail == head)

throw new EmptyException();

T x = items[head % items.length];

head++;

return x;

} finally {

lock.unlock();

}

}

Art of Multiprocessor

Programming

15

Implementation: deq()

Acquire lock at

method start

0 1

capacity-1
2

head tail

y z

Art of Multiprocessor

Programming

16

Check if Non-Empty

head
tail

0

2

5 4

7

36

1

yx

Waiting to

enqueue…

Not
equal?

public T deq() throws EmptyException {

lock.lock();

try {

if (tail == head)

throw new EmptyException();

T x = items[head % items.length];

head++;

return x;

} finally {

lock.unlock();

}

}

Art of Multiprocessor

Programming

17

Implementation: deq()

If queue empty

throw exception

0 1

capacity-1
2

head tail

y z

Art of Multiprocessor

Programming

18

Modify the Queue

head
tail0

2

1

5 4

7

36

head

Waiting to

enqueue…

yx

public T deq() throws EmptyException {

lock.lock();

try {

if (tail == head)

throw new EmptyException();

T x = items[head % items.length];

head++;

return x;

} finally {

lock.unlock();

}

}

Art of Multiprocessor

Programming

19

Implementation: deq()

Queue not empty?

Remove item and update head

0 1

capacity-1
2

head tail

y z

public T deq() throws EmptyException {

lock.lock();

try {

if (tail == head)

throw new EmptyException();

T x = items[head % items.length];

head++;

return x;

} finally {

lock.unlock();

}

}

Art of Multiprocessor

Programming

20

Implementation: deq()

Return result

0 1

capacity-1
2

head tail

y z

Art of Multiprocessor

Programming

21

Release the Lock

tail0

2

1

5 4

7

36

y

x

head

Waiting…

Art of Multiprocessor

Programming

22

Release the Lock

tail0

2

1

5 4

7

36

y

x

head

My turn!

public T deq() throws EmptyException {

lock.lock();

try {

if (tail == head)

throw new EmptyException();

T x = items[head % items.length];

head++;

return x;

} finally {

lock.unlock();

}

}

Art of Multiprocessor

Programming

23

Implementation: deq()

Release lock no

matter what!

0 1

capacity-1
2

head tail

y z

public T deq() throws EmptyException {

lock.lock();

try {

if (tail == head)

throw new EmptyException();

T x = items[head % items.length];

head++;

return x;

} finally {

lock.unlock();

}

}

Art of Multiprocessor

Programming

24

Implementation: deq()

Art of Multiprocessor

Programming

25

Now consider the following

implementation

• The same thing without mutual exclusion

• For simplicity, only two threads

– One thread enq only

– The other deq only

Art of Multiprocessor

Programming

26

Wait-free 2-Thread Queue

head
tail0

2

1

5 4

7

36

yx

capacity = 8

Art of Multiprocessor

Programming

27

Wait-free 2-Thread Queue

tail0

2

5 4

7

36

yx

1

enq(z)
deq()

z

head

Art of Multiprocessor

Programming

28

Wait-free 2-Thread Queue
head

tail0

2

5 4

7

36

y

1

queue[tail]

= z

result = x

z

x

Art of Multiprocessor

Programming

29

Wait-free 2-Thread Queue

tail0

2

5 4

7

36

y

1

tail--
head++

z

head

x

public class WaitFreeQueue {

int head = 0, tail = 0;

items = (T[]) new Object[capacity];

public void enq(Item x) {

if (tail-head == capacity) throw

new FullException();

items[tail % capacity] = x; tail++;

}

public Item deq() {

if (tail == head) throw

new EmptyException();

Item item = items[head % capacity]; head++;

return item;

}}
Art of Multiprocessor

Programming

30

Wait-free 2-Thread Queue

No lock needed !

0 1

capacity-1
2

head tail

y z

Wait-free 2-Thread Queue

Art of Multiprocessor

Programming

31

public T deq() throws EmptyException {

lock.lock();

try {

if (tail == head)

throw new EmptyException();

T x = items[head % items.length];

head++;

return x;

} finally {

lock.unlock();

}

}

Art of Multiprocessor

Programming

32

What is a Concurrent Queue?

• Need a way to specify a concurrent
queue object

• Need a way to prove that an algorithm
implements the object’s specification

• Lets talk about object specifications …

Correctness and Progress

• In a concurrent setting, we need to specify

both the safety and the liveness properties

of an object

• Need a way to define

– when an implementation is correct

– the conditions under which it guarantees

progress

Art of Multiprocessor

Programming

33

Lets begin with correctness

Art of Multiprocessor

Programming

34

Sequential Objects

• Each object has a state

– Usually given by a set of fields

– Queue example: sequence of items

• Each object has a set of methods

– Only way to manipulate state

– Queue example: enq and deq methods

Art of Multiprocessor

Programming

35

Sequential Specifications

• If (precondition)

– the object is in such-and-such a state

– before you call the method,

• Then (postcondition)

– the method will return a particular value

– or throw a particular exception.

• and (postcondition, con’t)

– the object will be in some other state

– when the method returns,

Art of Multiprocessor

Programming

36

Pre and PostConditions for

Dequeue

• Precondition:

– Queue is non-empty

• Postcondition:

– Returns first item in queue

• Postcondition:

– Removes first item in queue

Art of Multiprocessor

Programming

37

Pre and PostConditions for

Dequeue

• Precondition:

– Queue is empty

• Postcondition:

– Throws Empty exception

• Postcondition:

– Queue state unchanged

Art of Multiprocessor

Programming

38

Why Sequential Specifications

Totally Rock

• Interactions among methods captured by side-

effects on object state

– State meaningful between method calls

• Documentation size linear in number of methods

– Each method described in isolation

• Can add new methods

– Without changing descriptions of old methods

Art of Multiprocessor

Programming

39

What About Concurrent

Specifications ?

• Methods?

• Documentation?

• Adding new methods?

Art of Multiprocessor

Programming

40

Methods Take Time

timetime

Art of Multiprocessor

Programming

41

Methods Take Time

time

invocation
12:00

q.enq(...)

time

Art of Multiprocessor

Programming

42

Methods Take Time

time

Method call

invocation
12:00

time

q.enq(...)

Art of Multiprocessor

Programming

43

Methods Take Time

time

Method call

invocation
12:00

time

q.enq(...)

Art of Multiprocessor

Programming

44

Methods Take Time

time

Method call

invocation
12:00

time

void

response
12:01

q.enq(...)

Art of Multiprocessor

Programming

45

Sequential vs Concurrent

• Sequential

– Methods take time? Who knew?

• Concurrent

– Method call is not an event

– Method call is an interval.

Art of Multiprocessor

Programming

46

time

Concurrent Methods Take

Overlapping Time

time

Art of Multiprocessor

Programming

47

time

Concurrent Methods Take

Overlapping Time

time

Method call

Art of Multiprocessor

Programming

48

time

Concurrent Methods Take

Overlapping Time

time

Method call

Method call

Art of Multiprocessor

Programming

49

time

Concurrent Methods Take

Overlapping Time

time

Method call Method call

Method call

Art of Multiprocessor

Programming

50

Sequential vs Concurrent

• Sequential:

– Object needs meaningful state only between

method calls

• Concurrent

– Because method calls overlap, object might

never be between method calls

Art of Multiprocessor

Programming

51

Sequential vs Concurrent

• Sequential:

– Each method described in isolation

• Concurrent

– Must characterize all possible interactions

with concurrent calls

• What if two enq() calls overlap?

• Two deq() calls? enq() and deq()? …

Art of Multiprocessor

Programming

52

Sequential vs Concurrent

• Sequential:

– Can add new methods without affecting older

methods

• Concurrent:

– Everything can potentially interact with

everything else

Art of Multiprocessor

Programming

53

Sequential vs Concurrent

• Sequential:

– Can add new methods without affecting older

methods

• Concurrent:

– Everything can potentially interact with

everything else

Art of Multiprocessor

Programming

54

The Big Question

• What does it mean for a concurrent object
to be correct?

– What is a concurrent FIFO queue?

– FIFO means strict temporal order

– Concurrent means ambiguous temporal order

Art of Multiprocessor

Programming

55

Intuitively…

public T deq() throws EmptyException {

lock.lock();

try {

if (tail == head)

throw new EmptyException();

T x = items[head % items.length];

head++;

return x;

} finally {

lock.unlock();

}

}

Art of Multiprocessor

Programming

56

Intuitively…

public T deq() throws EmptyException {

lock.lock();

try {

if (tail == head)

throw new EmptyException();

T x = items[head % items.length];

head++;

return x;

} finally {

lock.unlock();

}

}

All queue modifications

are mutually exclusive

Art of Multiprocessor

Programming

57

time

Intuitively

q.deq

q.enq

enq deq

lock() unlock()

lock() unlock()

Behavior is

“Sequential”

enq

deq

Lets capture the idea of describing

the concurrent via the sequential

Art of Multiprocessor

Programming

58

Linearizability

• Each method should

– “take effect”

– Instantaneously

– Between invocation and response events

• Object is correct if this “sequential”
behavior is correct

• Any such concurrent object is

– Linearizable™

Art of Multiprocessor

Programming

59

Is it really about the object?

• Each method should

– “take effect”

– Instantaneously

– Between invocation and response events

• Sounds like a property of an execution…

• A linearizable object: one all of whose

possible executions are linearizable

Art of Multiprocessor

Programming

60

Example

timetime

Art of Multiprocessor

Programming

61

Example

time

q.enq(x)

time

Art of Multiprocessor

Programming

62

Example

time

q.enq(x)

q.enq(y)

time

Art of Multiprocessor

Programming

63

Example

time

q.enq(x)

q.enq(y) q.deq(x)

time

Art of Multiprocessor

Programming

64

Example

time

q.enq(x)

q.enq(y) q.deq(x)

q.deq(y)

time

Art of Multiprocessor

Programming

65

Example

time

q.enq(x)

q.enq(y) q.deq(x)

q.deq(y)
q.enq(x)

q.enq(y) q.deq(x)

q.deq(y)

time

Art of Multiprocessor

Programming

66

Example

time

q.enq(x)

q.enq(y) q.deq(x)

q.deq(y)
q.enq(x)

q.enq(y) q.deq(x)

q.deq(y)

time

Art of Multiprocessor

Programming

67

Example

time

Art of Multiprocessor

Programming

68

Example

time

q.enq(x)

Art of Multiprocessor

Programming

69

Example

time

q.enq(x) q.deq(y)

Art of Multiprocessor

Programming

70

Example

time

q.enq(x)

q.enq(y)

q.deq(y)

Art of Multiprocessor

Programming

71

Example

time

q.enq(x)

q.enq(y)

q.deq(y)q.enq(x)

q.enq(y)

Art of Multiprocessor

Programming

72

Example

time

q.enq(x)

q.enq(y)

q.deq(y)q.enq(x)

q.enq(y)

Art of Multiprocessor

Programming

73

Example

timetime

Art of Multiprocessor

Programming

74

Example

time

q.enq(x)

time

Art of Multiprocessor

Programming

75

Example

time

q.enq(x)

q.deq(x)

time

Art of Multiprocessor

Programming

76

Example

time

q.enq(x)

q.deq(x)

q.enq(x)

q.deq(x)

time

Art of Multiprocessor

Programming

77

Example

time

q.enq(x)

q.deq(x)

q.enq(x)

q.deq(x)

time

Art of Multiprocessor

Programming

78

Example

time

q.enq(x)

time

Art of Multiprocessor

Programming

79

Example

time

q.enq(x)

q.enq(y)

time

Art of Multiprocessor

Programming

80

Example

time

q.enq(x)

q.enq(y)

q.deq(y)

time

Art of Multiprocessor

Programming

81

Example

time

q.enq(x)

q.enq(y)

q.deq(y)

q.deq(x)

time

Art of Multiprocessor

Programming

82

q.enq(x)

q.enq(y)

q.deq(y)

q.deq(x)

Comme ci Example

time

Comme ça

Art of Multiprocessor

Programming

83

Read/Write Register Example

time

read(1)write(0)

write(1)

write(2)

time

read(0)

Art of Multiprocessor

Programming

84

Read/Write Register Example

time

read(1)write(0)

write(1)

write(2)

time

read(0)

write(1) already

happened

Art of Multiprocessor

Programming

85

Read/Write Register Example

time

read(1)write(0)

write(1)

write(2)

time

read(0)write(1)

write(1) already

happened

Art of Multiprocessor

Programming

86

Read/Write Register Example

time

read(1)write(0)

write(1)

write(2)

time

read(0)write(1)

write(1) already

happened

Art of Multiprocessor

Programming

87

Read/Write Register Example

time

read(1)write(0)

write(1)

write(2)

time

read(1)

write(1) already

happened

Art of Multiprocessor

Programming

88

Read/Write Register Example

time

read(1)write(0)

write(1)

write(2)

time

read(1)write(1)

write(2)

write(1) already

happened

Art of Multiprocessor

Programming

89

Read/Write Register Example

time

read(1)write(0)

write(1)

write(2)

time

read(1)write(1)

write(2)

write(1) already

happened

Art of Multiprocessor

Programming

90

Read/Write Register Example

time

write(0)

write(1)

write(2)

time

read(1)

Art of Multiprocessor

Programming

91

Read/Write Register Example

time

write(0)

write(1)

write(2)

time

read(1)write(1)

write(2)

Art of Multiprocessor

Programming

92

Read/Write Register Example

time

write(0)

write(1)

write(2)

time

read(1)write(1)

write(2)

Art of Multiprocessor

Programming

93

Talking About Executions

• Why?

– Can’t we specify the linearization point of

each operation without describing an

execution?

• Not Always

– In some cases, linearization point depends

on the execution

Art of Multiprocessor

Programming

94

Formal Model of Executions

• Define precisely what we mean

– Ambiguity is bad when intuition is weak

• Allow reasoning

– Formal

– But mostly informal

• In the long run, actually more important

• Ask me why!

Art of Multiprocessor

Programming

95

Split Method Calls into Two Events

• Invocation

– method name & args

– q.enq(x)

• Response

– result or exception

– q.enq(x) returns void

– q.deq() returns x

– q.deq() throws empty

Art of Multiprocessor

Programming

96

Invocation Notation

A q.enq(x)

Art of Multiprocessor

Programming

97

Invocation Notation

A q.enq(x)

thread

Art of Multiprocessor

Programming

98

Invocation Notation

A q.enq(x)

thread method

Art of Multiprocessor

Programming

99

Invocation Notation

A q.enq(x)

thread

object

method

Art of Multiprocessor

Programming

100

Invocation Notation

A q.enq(x)

thread

object

method

arguments

Art of Multiprocessor

Programming

101

Response Notation

A q: void

Art of Multiprocessor

Programming

102

Response Notation

A q: void

thread

Art of Multiprocessor

Programming

103

Response Notation

A q: void

thread result

Art of Multiprocessor

Programming

104

Response Notation

A q: void

thread

object

result

Art of Multiprocessor

Programming

105

Response Notation

A q: void

thread

object

result

Art of Multiprocessor

Programming

106

Response Notation

A q: empty()

thread

object

exception

Art of Multiprocessor

Programming

107

History - Describing an Execution

A q.enq(3)

A q:void

A q.enq(5)

B p.enq(4)

B p:void

B q.deq()

B q:3
Sequence of

invocations and

responses

H =

Art of Multiprocessor

Programming

108

Definition

• Invocation & response match if

A q.enq(3)

A q:void

Thread

names agree

Object names agree

Method call

Art of Multiprocessor

Programming

109

Object Projections

A q.enq(3)

A q:void

B p.enq(4)

B p:void

B q.deq()

B q:3

H =

Art of Multiprocessor

Programming

110

Object Projections

A q.enq(3)

A q:void

B p.enq(4)

B p:void

B q.deq()

B q:3

H|q =

Art of Multiprocessor

Programming

111

Thread Projections

A q.enq(3)

A q:void

B p.enq(4)

B p:void

B q.deq()

B q:3

H =

Art of Multiprocessor

Programming

112

Thread Projections

A q.enq(3)

A q:void

B p.enq(4)

B p:void

B q.deq()

B q:3

H|B =

Art of Multiprocessor

Programming

113

Complete Subhistory

A q.enq(3)

A q:void

A q.enq(5)

B p.enq(4)

B p:void

B q.deq()

B q:3
An invocation is

pending if it has no

matching respnse

H =

Art of Multiprocessor

Programming

114

Complete Subhistory

A q.enq(3)

A q:void

A q.enq(5)

B p.enq(4)

B p:void

B q.deq()

B q:3
May or may not

have taken effect

H =

Art of Multiprocessor

Programming

115

Complete Subhistory

A q.enq(3)

A q:void

A q.enq(5)

B p.enq(4)

B p:void

B q.deq()

B q:3
discard pending

invocations

H =

Art of Multiprocessor

Programming

116

Complete Subhistory

A q.enq(3)

A q:void

B p.enq(4)

B p:void

B q.deq()

B q:3

Complete(H) =

Art of Multiprocessor

Programming

117

Sequential Histories

A q.enq(3)

A q:void

B p.enq(4)

B p:void

B q.deq()

B q:3

A q:enq(5)

Art of Multiprocessor

Programming

118

Sequential Histories

A q.enq(3)

A q:void

B p.enq(4)

B p:void

B q.deq()

B q:3

A q:enq(5)

match

Art of Multiprocessor

Programming

119

Sequential Histories

A q.enq(3)

A q:void

B p.enq(4)

B p:void

B q.deq()

B q:3

A q:enq(5)

match

match

Art of Multiprocessor

Programming

120

Sequential Histories

A q.enq(3)

A q:void

B p.enq(4)

B p:void

B q.deq()

B q:3

A q:enq(5)

match

match

match

Art of Multiprocessor

Programming

121

Sequential Histories

A q.enq(3)

A q:void

B p.enq(4)

B p:void

B q.deq()

B q:3

A q:enq(5)

match

match

match

Final pending

invocation OK

Art of Multiprocessor

Programming

122

Sequential Histories

A q.enq(3)

A q:void

B p.enq(4)

B p:void

B q.deq()

B q:3

A q:enq(5)

match

match

match

Final pending

invocation OK

Art of Multiprocessor

Programming

123

Well-Formed Histories

H=

A q.enq(3)

B p.enq(4)

B p:void

B q.deq()

A q:void

B q:3

Art of Multiprocessor

Programming

124

Well-Formed Histories

H=

A q.enq(3)

B p.enq(4)

B p:void

B q.deq()

A q:void

B q:3

H|B=

B p.enq(4)

B p:void

B q.deq()

B q:3

Per-thread projections

sequential

Art of Multiprocessor

Programming

125

Well-Formed Histories

H=

A q.enq(3)

B p.enq(4)

B p:void

B q.deq()

A q:void

B q:3

H|B=

B p.enq(4)

B p:void

B q.deq()

B q:3

A q.enq(3)

A q:void
H|A=

Per-thread projections

sequential

Art of Multiprocessor

Programming

126

Equivalent Histories

H=

A q.enq(3)

B p.enq(4)

B p:void

B q.deq()

A q:void

B q:3

Threads see the same

thing in both

A q.enq(3)

A q:void

B p.enq(4)

B p:void

B q.deq()

B q:3

G=

H|A = G|A

H|B = G|B

Art of Multiprocessor

Programming

127

Sequential Specifications

• A sequential specification is some way of

telling whether a

– Single-thread, single-object history

– Is legal

• For example:

– Pre and post-conditions

– But plenty of other techniques exist …

Art of Multiprocessor

Programming

128

Legal Histories

• A sequential (multi-object) history H is

legal if

– For every object x

– H|x is in the sequential spec for x

Art of Multiprocessor

Programming

129

Precedence

A q.enq(3)

B p.enq(4)

B p.void

A q:void

B q.deq()

B q:3

A method call precedes

another if response

event precedes

invocation event

Method call Method call

Art of Multiprocessor

Programming

130

Non-Precedence

A q.enq(3)

B p.enq(4)

B p.void

B q.deq()

A q:void

B q:3

Some method calls

overlap one another

Method call

Method call

Art of Multiprocessor

Programming

131

Notation

• Given

– History H

– method executions m0 and m1 in H

• We say m0 ➔H m1, if

– m0 precedes m1

• Relation m0 ➔H m1 is a

– Partial order

– Total order if H is sequential

m0 m1

Art of Multiprocessor

Programming

132

Linearizability

• History H is linearizable if it can be
extended to G by

– Appending zero or more responses to
pending invocations

– Discarding other pending invocations

• So that G is equivalent to

– Legal sequential history S

– where ➔G ➔S

Art of Multiprocessor

Programming

133

Remarks

• Some pending invocations

– Took effect, so keep them

– Discard the rest

• Condition ➔G ➔S

– Means that S respects “real-time order” of G

Art of Multiprocessor

Programming

134

Ensuring ➔G ➔S

time

a

b

time ➔S

c➔G

➔G = {a→c,b→c}

➔S = {a→b,a→c,b→c}

Art of Multiprocessor

Programming

135

A q.enq(3)

B q.enq(4)

B q:void

B q.deq()

B q:4

B q:enq(6)

Example

time

B q.enq(4)

A q.enq(3)

B q.deq(4) B q.enq(6)

Art of Multiprocessor

Programming

136

Example

Complete this

pending

invocation

time

B q.enq(4) B q.deq(3) B q.enq(6)

A q.enq(3)

B q.enq(4)

B q:void

B q.deq()

B q:4

B q:enq(6)

A q.enq(3)

Art of Multiprocessor

Programming

137

Example

Complete this

pending

invocation

time

B q.enq(4) B q.deq(4) B q.enq(6)

A q.enq(3)

A q.enq(3)

B q.enq(4)

B q:void

B q.deq()

B q:4

B q:enq(6)

A q:void

Art of Multiprocessor

Programming

138

Example

time

B q.enq(4) B q.deq(4) B q.enq(6)

A q.enq(3)

A q.enq(3)

B q.enq(4)

B q:void

B q.deq()

B q:4

B q:enq(6)

A q:void

discard this one

Art of Multiprocessor

Programming

139

Example

time

B q.enq(4) B q.deq(4)

A q.enq(3)

A q.enq(3)

B q.enq(4)

B q:void

B q.deq()

B q:4

A q:void

discard this one

Art of Multiprocessor

Programming

140

A q.enq(3)

B q.enq(4)

B q:void

B q.deq()

B q:4

A q:void

Example

time

B q.enq(4) B q.deq(4)

A q.enq(3)

Art of Multiprocessor

Programming

141

A q.enq(3)

B q.enq(4)

B q:void

B q.deq()

B q:4

A q:void

Example

time

B q.enq(4)

B q:void

A q.enq(3)

A q:void

B q.deq()

B q:4

B q.enq(4) B q.deq(4)

A q.enq(3)

Art of Multiprocessor

Programming

142

B q.enq(4) B q.deq(4)

A q.enq(3)

A q.enq(3)

B q.enq(4)

B q:void

B q.deq()

B q:4

A q:void

Example

time

B q.enq(4)

B q:void

A q.enq(3)

A q:void

B q.deq()

B q:4

Equivalent sequential history

Art of Multiprocessor

Programming

143

Concurrency

• How much concurrency does linearizability

allow?

• When must a method invocation block?

Art of Multiprocessor

Programming

144

Concurrency

• Focus on total methods

– Defined in every state

• Example:
– deq() that throws Empty exception

– Versus deq() that waits …

• Why?

– Otherwise, blocking unrelated to
synchronization

Art of Multiprocessor

Programming

145

Concurrency

• Question: When does linearizability

require a method invocation to block?

• Answer: never.

• Linearizability is non-blocking

Art of Multiprocessor

Programming

146

Non-Blocking Theorem

If method invocation

A q.inv(…)

is pending in history H, then there exists a

response

A q:res(…)

such that

H + A q:res(…)

is linearizable

Art of Multiprocessor

Programming

147

Proof

• Pick linearization S of H

• If S already contains

– Invocation A q.inv(…) and response,

– Then we are done.

• Otherwise, pick a response such that

– S + A q.inv(…) + A q:res(…)

– Possible because object is total.

Art of Multiprocessor

Programming

148

Composability Theorem

• History H is linearizable if and only if

– For every object x

– H|x is linearizable

• We care about objects only!

– (Materialism?)

Art of Multiprocessor

Programming

149

Why Does Composability Matter?

• Modularity

• Can prove linearizability of objects in

isolation

• Can compose independently-implemented

objects

Art of Multiprocessor

Programming

150

Reasoning About

Linearizability: Locking
public T deq() throws EmptyException {

lock.lock();

try {

if (tail == head)

throw new EmptyException();

T x = items[head % items.length];

head++;

return x;

} finally {

lock.unlock();

}

}

0 1

capacity-1
2

head tail

y z

Art of Multiprocessor

Programming

151

Reasoning About

Linearizability: Locking
public T deq() throws EmptyException {

lock.lock();

try {

if (tail == head)

throw new EmptyException();

T x = items[head % items.length];

head++;

return x;

} finally {

lock.unlock();

}

}

Linearization points

are when locks are

released

0 1

capacity-1
2

head tail

y z

Art of Multiprocessor

Programming

152

More Reasoning: Wait-free

0 1

capacity-1
2

head tail

y z

public class WaitFreeQueue {

int head = 0, tail = 0;

items = (T[]) new Object[capacity];

public void enq(Item x) {

if (tail-head == capacity) throw

new FullException();

items[tail % capacity] = x; tail++;

}

public Item deq() {

if (tail == head) throw

new EmptyException();

Item item = items[head % capacity]; head++;

return item;

}}

0 1

capacity-1
2

head tail

y z

public class WaitFreeQueue {

int head = 0, tail = 0;

items = (T[]) new Object[capacity];

public void enq(Item x) {

if (tail-head == capacity) throw

new FullException();

items[tail % capacity] = x; tail++;

}

public Item deq() {

if (tail == head) throw

new EmptyException();

Item item = items[head % capacity]; head++;

return item;

}}
Art of Multiprocessor

Programming

153

More Reasoning: Wait-free

Linearization order is

order head and tail

fields modified

Art of Multiprocessor

Programming

154

Strategy

• Identify one atomic step where method

“happens”

– Critical section

– Machine instruction

• Doesn’t always work

– Might need to define several different steps

for a given method

Art of Multiprocessor

Programming

155

Linearizability: Summary

• Powerful specification tool for shared

objects

• Allows us to capture the notion of objects

being “atomic”

• Don’t leave home without it

Art of Multiprocessor

Programming

156

Alternative: Sequential

Consistency

• History H is Sequentially Consistent if
it can be extended to G by

– Appending zero or more responses to
pending invocations

– Discarding other pending invocations

• So that G is equivalent to a

– Legal sequential history S

– Where ➔G ➔S

Differs from

linearizability

Art of Multiprocessor

Programming

157

Sequential Consistency

• No need to preserve real-time order

– Cannot re-order operations done by the

same thread

– Can re-order non-overlapping operations

done by different threads

• Often used to describe multiprocessor

memory architectures

Art of Multiprocessor

Programming

158

Example

time

Art of Multiprocessor

Programming

159

Example

time

q.enq(x)

Art of Multiprocessor

Programming

160

Example

time

q.enq(x) q.deq(y)

Art of Multiprocessor

Programming

161

Example

time

q.enq(x)

q.enq(y)

q.deq(y)

Art of Multiprocessor

Programming

162

Example

time

q.enq(x)

q.enq(y)

q.deq(y)q.enq(x)

q.enq(y)

Art of Multiprocessor

Programming

163

Example

time

q.enq(x)

q.enq(y)

q.deq(y)q.enq(x)

q.enq(y)

Art of Multiprocessor

Programming

164

Example

time

q.enq(x)

q.enq(y)

q.deq(y)q.enq(x)

q.enq(y)

Art of Multiprocessor

Programming

165

Theorem

Sequential Consistency is not

composable

Art of Multiprocessor

Programming

166

FIFO Queue Example

time

p.enq(x) p.deq(y)q.enq(x)

time

Art of Multiprocessor

Programming

167

FIFO Queue Example

time

p.enq(x) p.deq(y)q.enq(x)

q.enq(y) q.deq(x)p.enq(y)

time

Art of Multiprocessor

Programming

168

FIFO Queue Example

time

p.enq(x) p.deq(y)q.enq(x)

q.enq(y) q.deq(x)p.enq(y)

History H

time

Art of Multiprocessor

Programming

169

H|p Sequentially Consistent

time

p.enq(x) p.deq(y)

p.enq(y)

q.enq(x)

q.enq(y) q.deq(x)

time

Art of Multiprocessor

Programming

170

H|q Sequentially Consistent

time

p.enq(x) p.deq(y)q.enq(x)

q.enq(y) q.deq(x)p.enq(y)

time

Art of Multiprocessor

Programming

171

Ordering imposed by p

time

p.enq(x) p.deq(y)q.enq(x)

q.enq(y) q.deq(x)p.enq(y)

time

Art of Multiprocessor

Programming

172

Ordering imposed by q

time

p.enq(x) p.deq(y)q.enq(x)

q.enq(y) q.deq(x)p.enq(y)

time

Art of Multiprocessor

Programming

173

p.enq(x)

Ordering imposed by both

time

q.enq(x)

q.enq(y) q.deq(x)

time

p.deq(y)

p.enq(y)

Art of Multiprocessor

Programming

174

p.enq(x)

Combining orders

time

q.enq(x)

q.enq(y) q.deq(x)

time

p.deq(y)

p.enq(y)

Art of Multiprocessor

Programming

175

Fact

• Most hardware architectures don’t support

sequential consistency

• Because they think it’s too strong

• Here’s another story …

Art of Multiprocessor

Programming

176

The Flag Example

time

x.write(1) y.read(0)

y.write(1) x.read(0)

time

Art of Multiprocessor

Programming

177

The Flag Example

time

x.write(1) y.read(0)

y.write(1) x.read(0)

• Each thread’s view is sequentially

consistent

– It went first

Art of Multiprocessor

Programming

178

The Flag Example

time

x.write(1) y.read(0)

y.write(1) x.read(0)

• Entire history isn’t sequentially

consistent

– Can’t both go first

Art of Multiprocessor

Programming

179

The Flag Example

time

x.write(1) y.read(0)

y.write(1) x.read(0)

• Is this behavior really so wrong?

– We can argue either way …

Art of Multiprocessor

Programming

180

Opinion: It’s Wrong

• This pattern

– Write mine, read yours

• Is exactly the flag principle

– Beloved of Alice and Bob

– Heart of mutual exclusion
• Peterson

• Bakery, etc.

• It’s non-negotiable!

Art of Multiprocessor

Programming

181

Peterson's Algorithm

public void lock() {

flag[i] = true;

victim = i;

while (flag[j] && victim == i) {};

}

public void unlock() {

flag[i] = false;

}

Art of Multiprocessor

Programming

182

Crux of Peterson Proof

(1) writeB(flag[B]=true)➔writeB(victim=B)

(3) writeB(victim=B)➔writeA(victim=A)

(2) writeA(victim=A)➔readA(flag[B])

➔ readA(victim)

Art of Multiprocessor

Programming

183

Crux of Peterson Proof

(1) writeB(flag[B]=true)➔writeB(victim=B)

(3) writeB(victim=B)➔writeA(victim=A)

(2) writeA(victim=A)➔readA(flag[B])

➔ readA(victim)

Observation: proof relied on fact that if a

location is stored, a later load by some thread

will return this or a later stored value.

Art of Multiprocessor

Programming

184

Opinion: But It Feels So Right …

• Many hardware architects think that

sequential consistency is too strong

• Too expensive to implement in modern

hardware

• OK if flag principle

– violated by default

– Honored by explicit request

Hardware Consistancy

mov 1, a ;Store

mov b, %ebx ;Load

mov 1, b ;Store

mov a, %eax ;Load

Initially, a = b = 0.

Processor 0 Processor 1

What are the final possible values of %eax

and %ebx after both processors have

executed?

Sequential consistency implies that no

execution ends with %eax= %ebx = 0

Slide used with permission of

Charles E. Leiserson

Hardware Consistency

∙ No modern-day processor implements

sequential consistency.

∙ Hardware actively reorders instructions.

∙ Compilers may reorder instructions, too.

∙ Why?

∙ Because most of performance is derived

from a single thread’s unsynchronized

execution of code.

Art of Multiprocessor

Programming

Instruction Reordering

Q. Why might the hardware or compiler

decide to reorder these instructions?
A. To obtain higher performance by covering

load latency — instruction-level

parallelism.

mov 1, a ;Store

mov b, %ebx ;Load

mov b, %ebx ;Load

mov 1, a ;Store

Program Order Execution Order

Slide used with permission of

Charles E. Leiserson

Instruction Reordering

Q. When is it safe for the hardware or

compiler to perform this reordering?

A. When a ≠ b.

A′. And there’s no concurrency.

mov 1, a ;Store

mov b, %ebx ;Load

mov b, %ebx ;Load

mov 1, a ;Store

Program Order Execution Order

Slide used with permission of

Charles E. Leiserson

Hardware Reordering

∙ Processor can issue stores faster than the

network can handle them ⇒ store buffer.

∙ Loads take priority, bypassing the store buffer.

∙ Except if a load address matches an address in

the store buffer, the store buffer returns the result.

Memory

System

Load Bypass

Processor Network

Store Buffer

Slide used with permission of

Charles E. Leiserson

X86: Memory Consistency

1. Loads are not reordered with loads.

2. Stores are not reordered with stores.

3. Stores are not reordered with prior

loads.

4. A load may be reordered with a prior

store to a different location but not

with a prior store to the same

location.

5. Stores to the same location respect a

global total order.

Store1

Store2

Load1

Store3

Store4

Load3

Load2

Load4

Load5

Thread’s

Code

Art of Multiprocessor

Programming

1. Loads are not reordered with loads.

2. Stores are not reordered with stores.

3. Stores are not reordered with prior

loads.

4. A load may be reordered with a prior

store to a different location but not

with a prior store to the same

location.

5. Stores to the same location respect a

global total order.

X86: Memory Consistency

Store1

Store2

Load1

Store3

Store4

Load3

Load2

Load4

Load5

Thread’s

Code

Total Store Ordering

(TSO)…weaker than

sequential consistency

L
O

A

D

S

OK!

Art of Multiprocessor

Programming

Memory Barriers (Fences)

∙A memory barrier (or memory fence) is a

hardware action that enforces an ordering

constraint between the instructions before

and after the fence.

∙A memory barrier can be issued explicitly

as an instruction (x86: mfence)

∙The typical cost of a memory fence is

comparable to that of an L2-cache

access.

Art of Multiprocessor

Programming

1. Loads are not reordered with loads.

2. Stores are not reordered with stores.

3. Stores are not reordered with prior

loads.

4. A load may be reordered with a prior

store to a different location but not

with a prior store to the same

location.

5. Stores to the same location respect a

global total order.

X86: Memory Consistency

Store1

Store2

Load1

Store3

Store4

Load3

Load2

Load4

Load5

Thread’s

Code

Total Store Ordering +

properly placed memory

barriers = sequential

consistency

Barrier

Art of Multiprocessor

Programming

194

Memory Barriers

• Explicit Synchronization

• Memory barrier will

– Flush write buffer

– Bring caches up to date

• Compilers often do this for you

– Entering and leaving critical sections

Art of Multiprocessor

Programming

195

Volatile Variables

• In Java, can ask compiler to keep a

variable up-to-date by declaring it

volatile

• Adds a memory barrier after each store

• Inhibits reordering, removing from

loops, & other “compiler optimizations”

• Will talk about it in detail in later

lectures

Art of Multiprocessor

Programming

196

Summary: Real-World

• Hardware weaker than sequential

consistency

• Can get sequential consistency at a price

• Linearizability better fit for high-level

software

Art of Multiprocessor

Programming

197

Linearizability

• Linearizability

– Operation takes effect instantaneously

between invocation and response

– Uses sequential specification, locality implies

composablity

Art of Multiprocessor

Programming

198

Summary: Correctness

• Sequential Consistency

– Not composable

– Harder to work with

– Good way to think about hardware models

• We will use linearizability as our

consistency condition in the remainder of

this course unless stated otherwise

Progress

• We saw an implementation whose

methods were lock-based (deadlock-free)

• We saw an implementation whose

methods did not use locks (lock-free)

• How do they relate?

Art of Multiprocessor

Programming

199

Progress Conditions

• Deadlock-free: some thread trying to acquire the

lock eventually succeeds.

• Starvation-free: every thread trying to acquire

the lock eventually succeeds.

• Lock-free: some thread calling a method

eventually returns.

• Wait-free: every thread calling a method

eventually returns.

Art of Multiprocessor

Programming

200

Progress Conditions

Art of Multiprocessor

Programming
201

Wait-free

Lock-free

Starvation-free

Deadlock-free

Everyone

makes

progress

Non-Blocking Blocking

Someone

makes

progress

Art of Multiprocessor

Programming

202

Summary

• We will look at linearizable blocking and

non-blocking implementations of objects.

Art of Multiprocessor

Programming

203

This work is licensed under a Creative Commons Attribution-

ShareAlike 2.5 License.

• You are free:

– to Share — to copy, distribute and transmit the work

– to Remix — to adapt the work

• Under the following conditions:

– Attribution. You must attribute the work to “The Art of

Multiprocessor Programming” (but not in any way that suggests that

the authors endorse you or your use of the work).

– Share Alike. If you alter, transform, or build upon this work, you

may distribute the resulting work only under the same, similar or a

compatible license.

• For any reuse or distribution, you must make clear to others the license

terms of this work. The best way to do this is with a link to

– http://creativecommons.org/licenses/by-sa/3.0/.

• Any of the above conditions can be waived if you get permission from

the copyright holder.

• Nothing in this license impairs or restricts the author's moral rights.

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

