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Concurrent Computation

memory

object object
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Objectivism

• What is a concurrent object?

– How do we describe one?

– How do we implement one?

– How do we tell if we’re right?
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– How do we describe one?

– How do we tell if we’re right?



Art of Multiprocessor 

Programming

5

FIFO Queue: Enqueue Method

q.enq( )



Art of Multiprocessor 

Programming

6

FIFO Queue: Dequeue Method

q.deq()/
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Lock-Based Queue

head
tail0
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capacity = 8
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Lock-Based Queue

head
tail0

2

1

5 4

3

capacity = 8

7

6

Fields protected by 

single shared lock

yx



class LockBasedQueue<T> {  

int head, tail;  

T[] items;  

Lock lock;  

public LockBasedQueue(int capacity) {    

head = 0; tail = 0;    

lock = new ReentrantLock();    

items = (T[]) new Object[capacity];  

}
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A Lock-Based Queue



class LockBasedQueue<T> {  

int head, tail;  

T[] items;  

Lock lock;

public LockBasedQueue(int capacity) {    

head = 0; tail = 0;    

lock = new ReentrantLock();    

items = (T[]) new Object[capacity];  

}
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A Lock-Based Queue

Fields protected by 

single shared lock
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Lock-Based Queue

head

tail

0

2
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3

Initially: head = tail
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class LockBasedQueue<T> {  

int head, tail;  

T[] items;  

Lock lock;

public LockBasedQueue(int capacity) {    

head = 0; tail = 0;    

lock = new ReentrantLock();    

items = (T[]) new Object[capacity];

}
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A Lock-Based Queue

Initially head = tail

0 1

capacity-1
2

head tail

y z
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Lock-Based deq()
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tail0
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Acquire Lock

head
tail0

2

5 4

7

36

yx

1

Waiting to 

enqueue… 

My turn … yx



public T deq() throws EmptyException {

lock.lock();             

try {      

if (tail == head)        

throw new EmptyException();      

T x = items[head % items.length];      

head++;      

return x;    

} finally {      

lock.unlock();    

}  

} 
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Implementation: deq()

Acquire lock at 

method start

0 1

capacity-1
2

head tail

y z
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Check if Non-Empty

head
tail

0

2

5 4

7

36

1

yx

Waiting to 

enqueue… 

Not 
equal?



public T deq() throws EmptyException {

lock.lock();             

try {      

if (tail == head)        

throw new EmptyException();      

T x = items[head % items.length];      

head++;      

return x;    

} finally {      

lock.unlock();    

}  

} 
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Implementation: deq()

If queue empty

throw exception

0 1

capacity-1
2

head tail

y z
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Modify the Queue

head
tail0

2

1

5 4

7

36

head

Waiting to 

enqueue… 

yx



public T deq() throws EmptyException {

lock.lock();             

try {      

if (tail == head)        

throw new EmptyException();      

T x = items[head % items.length];      

head++;      

return x;    

} finally {      

lock.unlock();    

}  

} 
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Implementation: deq()

Queue not empty?

Remove item and update head

0 1

capacity-1
2

head tail

y z



public T deq() throws EmptyException {

lock.lock();             

try {      

if (tail == head)        

throw new EmptyException();      

T x = items[head % items.length];      

head++;      

return x;

} finally {      

lock.unlock();    

}  

} 
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Implementation: deq()

Return result

0 1

capacity-1
2

head tail

y z
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Release the Lock

tail0

2
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Release the Lock

tail0

2

1

5 4

7

36

y

x

head

My turn!



public T deq() throws EmptyException {

lock.lock();             

try {      

if (tail == head)        

throw new EmptyException();      

T x = items[head % items.length];      

head++;      

return x;    

} finally {

lock.unlock();    

}  

} 
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Implementation: deq()

Release lock no 

matter what!

0 1

capacity-1
2

head tail

y z



public T deq() throws EmptyException {

lock.lock();             

try {      

if (tail == head)        

throw new EmptyException();      

T x = items[head % items.length];      

head++;      

return x;    

} finally {      

lock.unlock();    

}  

} 
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Implementation: deq()
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Now consider the following 

implementation

• The same thing without mutual exclusion

• For simplicity, only two threads 

– One thread enq only

– The other deq only
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Wait-free 2-Thread Queue

head
tail0

2
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5 4
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36

yx

capacity = 8
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Wait-free 2-Thread Queue

tail0
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enq(z)
deq()

z

head
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Wait-free 2-Thread Queue
head

tail0

2
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queue[tail]
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z

x



Art of Multiprocessor 

Programming

29

Wait-free 2-Thread Queue

tail0

2
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7

36
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tail--
head++ 
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public class WaitFreeQueue {

int head = 0, tail = 0; 

items = (T[]) new Object[capacity];    

public void enq(Item x) {

if (tail-head == capacity) throw 

new FullException();

items[tail % capacity] = x; tail++;

}

public Item deq() {

if (tail == head) throw 

new EmptyException();

Item item = items[head % capacity]; head++;

return item;

}}
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Wait-free 2-Thread Queue

No lock needed   !

0 1

capacity-1
2

head tail

y z



Wait-free 2-Thread Queue
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public T deq() throws EmptyException {

lock.lock();             

try {      

if (tail == head)        

throw new EmptyException();      

T x = items[head % items.length];      

head++;      

return x;    

} finally {      

lock.unlock();    

}  

} 
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What is a Concurrent Queue? 

• Need a way to specify a concurrent 
queue object

• Need a way to prove that an algorithm 
implements the object’s specification

• Lets talk about object specifications …



Correctness and Progress

• In a concurrent setting, we need to specify 

both the safety and the liveness properties 

of an object

• Need a way to define 

– when an implementation is correct

– the conditions under which it guarantees 

progress
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Lets begin with correctness
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Sequential Objects

• Each object has a state

– Usually given by a set of fields

– Queue example: sequence of items

• Each object has a set of methods

– Only way to manipulate state

– Queue example: enq and deq methods
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Sequential Specifications

• If (precondition)

– the object is in such-and-such a state

– before you call the method,

• Then (postcondition)

– the method will return a particular value

– or throw a particular exception.

• and (postcondition, con’t)

– the object will be in some other state

– when the method returns, 
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Pre and PostConditions for 

Dequeue

• Precondition:

– Queue is non-empty

• Postcondition:

– Returns first item in queue

• Postcondition:

– Removes first item in queue
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Pre and PostConditions for 

Dequeue

• Precondition:

– Queue is empty

• Postcondition:

– Throws Empty exception

• Postcondition:

– Queue state unchanged
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Why Sequential Specifications 

Totally Rock

• Interactions among methods captured by side-

effects on object state

– State meaningful between method calls

• Documentation size linear in number of methods

– Each method described in isolation

• Can add new methods

– Without changing descriptions of old methods
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What About Concurrent 

Specifications ?

• Methods? 

• Documentation?

• Adding new methods? 
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Methods Take Time

timetime
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Methods Take Time

time

invocation 
12:00

q.enq(...)

time
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Methods Take Time

time

Method call

invocation 
12:00

time

q.enq(...)



Art of Multiprocessor 

Programming

43

Methods Take Time

time

Method call

invocation 
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q.enq(...)
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Methods Take Time

time

Method call

invocation 
12:00

time

void

response 
12:01

q.enq(...)
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Sequential vs Concurrent

• Sequential

– Methods take time? Who knew?

• Concurrent

– Method call is not an event

– Method call is an interval.
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time

Concurrent Methods Take 

Overlapping Time

time
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time

Concurrent Methods Take 

Overlapping Time

time

Method call



Art of Multiprocessor 

Programming

48

time

Concurrent Methods Take 

Overlapping Time

time

Method call

Method call
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time

Concurrent Methods Take 

Overlapping Time

time

Method call Method call

Method call
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Sequential vs Concurrent

• Sequential:

– Object needs meaningful state only between

method calls

• Concurrent

– Because method calls overlap, object might 

never be between method calls
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Sequential vs Concurrent

• Sequential:

– Each method described in isolation

• Concurrent

– Must characterize all possible interactions 

with concurrent calls 

• What if two enq() calls overlap?

• Two deq() calls? enq() and deq()? …
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Sequential vs Concurrent

• Sequential:

– Can add new methods without affecting older 

methods

• Concurrent:

– Everything can potentially interact with 

everything else
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Sequential vs Concurrent

• Sequential:

– Can add new methods without affecting older 

methods

• Concurrent:

– Everything can potentially interact with 

everything else
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The Big Question

• What does it mean for a concurrent object 
to be correct?

– What is a concurrent FIFO queue?

– FIFO means strict temporal order

– Concurrent means ambiguous temporal order
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Intuitively…

public T deq() throws EmptyException {

lock.lock();             

try {      

if (tail == head)        

throw new EmptyException();      

T x = items[head % items.length];      

head++;      

return x;    

} finally {      

lock.unlock();    

}  

} 
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Intuitively…

public T deq() throws EmptyException {

lock.lock();             

try {      

if (tail == head)        

throw new EmptyException();      

T x = items[head % items.length];      

head++;      

return x;    

} finally {      

lock.unlock();    

}  

} 

All queue modifications 

are mutually exclusive
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time

Intuitively

q.deq

q.enq

enq deq

lock() unlock()

lock() unlock()

Behavior is 

“Sequential”

enq

deq

Lets capture the idea of describing 

the concurrent via the sequential 
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Linearizability

• Each method should

– “take effect”

– Instantaneously

– Between invocation and response events

• Object is correct if this “sequential” 
behavior is correct

• Any such concurrent object is

– Linearizable™
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Is it really about the object?

• Each method should

– “take effect”

– Instantaneously

– Between invocation and response events

• Sounds like a property of an execution…

• A linearizable object: one all of whose 

possible executions are linearizable
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Example

timetime
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Example

time

q.enq(x)

time
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Example

time

q.enq(x)

q.enq(y)

time
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Example

time

q.enq(x)

q.enq(y) q.deq(x)

time
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Example

time

q.enq(x)

q.enq(y) q.deq(x)

q.deq(y)

time
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Example

time

q.enq(x)

q.enq(y) q.deq(x)

q.deq(y)
q.enq(x)

q.enq(y) q.deq(x)

q.deq(y)

time
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Example

time

q.enq(x)

q.enq(y) q.deq(x)

q.deq(y)
q.enq(x)

q.enq(y) q.deq(x)

q.deq(y)

time
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Example

time
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Example

time

q.enq(x)
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Example

time

q.enq(x) q.deq(y)
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Example

time

q.enq(x)

q.enq(y)

q.deq(y)



Art of Multiprocessor 

Programming

71

Example

time

q.enq(x)

q.enq(y)

q.deq(y)q.enq(x)

q.enq(y)
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Example

time

q.enq(x)

q.enq(y)

q.deq(y)q.enq(x)

q.enq(y)
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Example

timetime
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Example

time

q.enq(x)

time
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Example

time

q.enq(x)

q.deq(x)

time
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Example

time

q.enq(x)

q.deq(x)

q.enq(x)

q.deq(x)

time
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Example

time

q.enq(x)

q.deq(x)

q.enq(x)

q.deq(x)

time
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Example

time

q.enq(x)

time
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Example

time

q.enq(x)

q.enq(y)

time
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Example

time

q.enq(x)

q.enq(y)

q.deq(y)

time
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Example

time

q.enq(x)

q.enq(y)

q.deq(y)

q.deq(x)

time
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q.enq(x)

q.enq(y)

q.deq(y)

q.deq(x)

Comme ci Example

time

Comme ça
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Read/Write Register Example

time

read(1)write(0)

write(1)

write(2)

time

read(0)
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Read/Write Register Example

time

read(1)write(0)

write(1)

write(2)

time

read(0)

write(1) already 

happened
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Read/Write Register Example

time

read(1)write(0)

write(1)

write(2)

time

read(0)write(1)

write(1) already 

happened
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Read/Write Register Example

time

read(1)write(0)

write(1)

write(2)

time

read(0)write(1)

write(1) already 

happened
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Read/Write Register Example

time

read(1)write(0)

write(1)

write(2)

time

read(1)

write(1) already 

happened
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Read/Write Register Example

time

read(1)write(0)

write(1)

write(2)

time

read(1)write(1)

write(2)

write(1) already 

happened
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Read/Write Register Example

time

read(1)write(0)

write(1)

write(2)

time

read(1)write(1)

write(2)

write(1) already 

happened
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Read/Write Register Example

time

write(0)

write(1)

write(2)

time

read(1)
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Read/Write Register Example

time

write(0)

write(1)

write(2)

time

read(1)write(1)

write(2)
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Read/Write Register Example

time

write(0)

write(1)

write(2)

time

read(1)write(1)

write(2)
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Talking About Executions

• Why?

– Can’t we specify the linearization point of 

each operation without describing an 

execution?

• Not Always

– In some cases, linearization point depends 

on the execution
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Formal Model of Executions

• Define precisely what we mean

– Ambiguity is bad when intuition is weak

• Allow reasoning

– Formal

– But mostly informal

• In the long run, actually more important

• Ask me why!
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Split Method Calls into Two Events

• Invocation

– method name & args

– q.enq(x)

• Response

– result or exception

– q.enq(x) returns void

– q.deq() returns x

– q.deq() throws  empty
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Invocation Notation

A q.enq(x)
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Invocation Notation

A q.enq(x)

thread
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Invocation Notation

A q.enq(x)

thread method
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Invocation Notation

A q.enq(x)

thread

object

method
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Invocation Notation

A q.enq(x)

thread

object

method

arguments
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Response Notation

A q: void
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Response Notation

A q: void

thread
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Response Notation

A q: void

thread result



Art of Multiprocessor 

Programming

104

Response Notation

A q: void

thread

object

result
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Response Notation

A q: void

thread

object

result
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Response Notation

A q: empty()

thread

object

exception
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History - Describing an Execution

A q.enq(3)

A q:void

A q.enq(5)

B p.enq(4)

B p:void

B q.deq()

B q:3
Sequence of 

invocations and 

responses

H =
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Definition

• Invocation & response match if

A q.enq(3)

A q:void

Thread 

names agree

Object names agree

Method call
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Object Projections

A q.enq(3)

A q:void

B p.enq(4)

B p:void

B q.deq()

B q:3

H =
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Object Projections

A q.enq(3)

A q:void

B p.enq(4)

B p:void

B q.deq()

B q:3

H|q =
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Thread Projections

A q.enq(3)

A q:void

B p.enq(4)

B p:void

B q.deq()

B q:3

H =
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Thread Projections

A q.enq(3)

A q:void

B p.enq(4)

B p:void

B q.deq()

B q:3

H|B =
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Complete Subhistory

A q.enq(3)

A q:void

A q.enq(5)

B p.enq(4)

B p:void

B q.deq()

B q:3
An invocation is 

pending if it has no 

matching respnse

H =
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Complete Subhistory

A q.enq(3)

A q:void

A q.enq(5)

B p.enq(4)

B p:void

B q.deq()

B q:3
May or may not 

have taken effect

H =
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Complete Subhistory

A q.enq(3)

A q:void

A q.enq(5)

B p.enq(4)

B p:void

B q.deq()

B q:3
discard pending 

invocations

H =
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Complete Subhistory

A q.enq(3)

A q:void

B p.enq(4)

B p:void

B q.deq()

B q:3

Complete(H) =
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Sequential Histories

A q.enq(3)

A q:void

B p.enq(4)

B p:void

B q.deq()

B q:3

A q:enq(5)
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Sequential Histories

A q.enq(3)

A q:void

B p.enq(4)

B p:void

B q.deq()

B q:3

A q:enq(5)

match
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Sequential Histories

A q.enq(3)

A q:void

B p.enq(4)

B p:void

B q.deq()

B q:3

A q:enq(5)

match

match
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Sequential Histories

A q.enq(3)

A q:void

B p.enq(4)

B p:void

B q.deq()

B q:3

A q:enq(5)

match

match

match
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Sequential Histories

A q.enq(3)

A q:void

B p.enq(4)

B p:void

B q.deq()

B q:3

A q:enq(5)

match

match

match

Final pending 

invocation OK
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Sequential Histories

A q.enq(3)

A q:void

B p.enq(4)

B p:void

B q.deq()

B q:3

A q:enq(5)

match

match

match

Final pending 

invocation OK
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Well-Formed Histories

H=

A q.enq(3)

B p.enq(4)

B p:void

B q.deq()

A q:void

B q:3
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Well-Formed Histories

H=

A q.enq(3)

B p.enq(4)

B p:void

B q.deq()

A q:void

B q:3

H|B=

B p.enq(4)

B p:void

B q.deq()

B q:3

Per-thread projections 

sequential
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Well-Formed Histories

H=

A q.enq(3)

B p.enq(4)

B p:void

B q.deq()

A q:void

B q:3

H|B=

B p.enq(4)

B p:void

B q.deq()

B q:3

A q.enq(3)

A q:void
H|A=

Per-thread projections 

sequential
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Equivalent Histories

H=

A q.enq(3)

B p.enq(4)

B p:void

B q.deq()

A q:void

B q:3

Threads see the same 

thing in both

A q.enq(3)

A q:void

B p.enq(4)

B p:void

B q.deq()

B q:3

G=

H|A = G|A

H|B = G|B
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Sequential Specifications

• A sequential specification is some way of 

telling whether a

– Single-thread, single-object history

– Is legal

• For example:

– Pre and post-conditions

– But plenty of other techniques exist …
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Legal Histories

• A sequential (multi-object) history H is 

legal if

– For every object x

– H|x is in the sequential spec for x
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Precedence

A q.enq(3)

B p.enq(4)

B p.void

A q:void

B q.deq()

B q:3

A method call precedes

another if response 

event precedes 

invocation event

Method call Method call
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Non-Precedence

A q.enq(3)

B p.enq(4)

B p.void

B q.deq()

A q:void

B q:3

Some method calls 

overlap one another

Method call

Method call
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Notation

• Given 

– History H

– method executions m0 and m1 in H

• We say m0 ➔H m1, if

– m0 precedes m1

• Relation m0 ➔H m1 is a

– Partial order 

– Total order if H is sequential

m0 m1
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Linearizability

• History H is linearizable if it can be 
extended to G by

– Appending zero or more responses to 
pending invocations

– Discarding other pending invocations

• So that G is equivalent to

– Legal sequential history S

– where ➔G ➔S
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Remarks

• Some pending invocations

– Took effect, so keep them

– Discard the rest

• Condition ➔G ➔S

– Means that S respects “real-time order” of G
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Ensuring ➔G ➔S

time

a

b

time ➔S

c➔G

➔G = {a→c,b→c}

➔S = {a→b,a→c,b→c}
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A q.enq(3)

B q.enq(4)

B q:void

B q.deq()

B q:4

B q:enq(6)

Example

time

B q.enq(4)

A q.enq(3)

B q.deq(4) B q.enq(6)
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Example

Complete this 

pending

invocation

time

B q.enq(4) B q.deq(3) B  q.enq(6)

A q.enq(3)

B q.enq(4)

B q:void

B q.deq()

B q:4

B q:enq(6)

A q.enq(3)
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Example

Complete this 

pending

invocation

time

B q.enq(4) B q.deq(4) B q.enq(6)

A q.enq(3)

A q.enq(3)

B q.enq(4)

B q:void

B q.deq()

B q:4

B q:enq(6)

A q:void
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Example

time

B q.enq(4) B q.deq(4) B q.enq(6)

A q.enq(3)

A q.enq(3)

B q.enq(4)

B q:void

B q.deq()

B q:4

B q:enq(6)

A q:void

discard this one
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Example

time

B q.enq(4) B q.deq(4)

A q.enq(3)

A q.enq(3)

B q.enq(4)

B q:void

B q.deq()

B q:4

A q:void

discard this one
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A q.enq(3)

B q.enq(4)

B q:void

B q.deq()

B q:4

A q:void

Example

time

B q.enq(4) B q.deq(4)

A q.enq(3)
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A q.enq(3)

B q.enq(4)

B q:void

B q.deq()

B q:4

A q:void

Example

time

B q.enq(4)

B q:void

A q.enq(3)

A q:void

B q.deq()

B q:4

B q.enq(4) B q.deq(4)

A q.enq(3)
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B q.enq(4) B q.deq(4)

A q.enq(3)

A q.enq(3)

B q.enq(4)

B q:void

B q.deq()

B q:4

A q:void

Example

time

B q.enq(4)

B q:void

A q.enq(3)

A q:void

B q.deq()

B q:4

Equivalent sequential history
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Concurrency

• How much concurrency does linearizability 

allow?

• When must a method invocation block?
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Concurrency

• Focus on total methods

– Defined in every state

• Example:
– deq() that throws Empty exception

– Versus deq() that waits …

• Why?

– Otherwise, blocking unrelated to 
synchronization
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Concurrency

• Question: When does linearizability 

require a method invocation to block?

• Answer: never.

• Linearizability is non-blocking
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Non-Blocking Theorem

If method invocation

A q.inv(…)

is pending in history H, then there exists a 

response

A q:res(…)

such that

H + A q:res(…)

is linearizable
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Proof

• Pick linearization S of H

• If S already contains 

– Invocation A q.inv(…) and response,

– Then we are done.

• Otherwise, pick a response such that

– S + A q.inv(…) + A q:res(…) 

– Possible because object is total.
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Composability Theorem

• History H is linearizable if and only if

– For every object x

– H|x is linearizable

• We care about objects only!

– (Materialism?)
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Why Does Composability Matter?

• Modularity 

• Can prove linearizability of objects in 

isolation

• Can compose independently-implemented 

objects
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Reasoning About  

Linearizability: Locking 
public T deq() throws EmptyException {

lock.lock();             

try {      

if (tail == head)        

throw new EmptyException();      

T x = items[head % items.length];      

head++;      

return x;    

} finally {

lock.unlock();    

}  

} 

0 1

capacity-1
2

head tail

y z
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Reasoning About  

Linearizability: Locking 
public T deq() throws EmptyException {

lock.lock();             

try {      

if (tail == head)        

throw new EmptyException();      

T x = items[head % items.length];      

head++;      

return x;    

} finally {      

lock.unlock();    

}  

} 

Linearization points

are when locks are 

released 

0 1

capacity-1
2

head tail

y z
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More Reasoning: Wait-free

0 1

capacity-1
2

head tail

y z

public class WaitFreeQueue {

int head = 0, tail = 0; 

items = (T[]) new Object[capacity];    

public void enq(Item x) {

if (tail-head == capacity) throw 

new FullException();

items[tail % capacity] = x; tail++;

}

public Item deq() {

if (tail == head) throw 

new EmptyException();

Item item = items[head % capacity]; head++;

return item;

}}

0 1

capacity-1
2

head tail

y z



public class WaitFreeQueue {

int head = 0, tail = 0; 

items = (T[]) new Object[capacity];    

public void enq(Item x) {

if (tail-head == capacity) throw 

new FullException();

items[tail % capacity] = x; tail++;

}

public Item deq() {

if (tail == head) throw 

new EmptyException();

Item item = items[head % capacity]; head++;

return item;

}}
Art of Multiprocessor 

Programming

153

More Reasoning: Wait-free

Linearization order is 

order head and tail 

fields modified
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Strategy

• Identify one atomic step where method 

“happens”

– Critical section

– Machine instruction

• Doesn’t always work

– Might need to define several different steps 

for a given method



Art of Multiprocessor 

Programming

155

Linearizability: Summary

• Powerful specification tool for shared 

objects

• Allows us to capture the notion of objects 

being “atomic”

• Don’t leave home without it
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Alternative: Sequential 

Consistency

• History H is Sequentially Consistent if 
it can be extended to G by

– Appending zero or more responses to 
pending invocations

– Discarding other pending invocations

• So that G is equivalent to a

– Legal sequential history S

– Where ➔G ➔S

Differs from 

linearizability
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Sequential Consistency

• No need to preserve real-time order

– Cannot re-order operations done by the 

same thread

– Can re-order non-overlapping operations 

done by different threads

• Often used to describe multiprocessor 

memory architectures
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Example

time
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Example

time

q.enq(x)
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Example

time

q.enq(x) q.deq(y)
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Example

time

q.enq(x)

q.enq(y)

q.deq(y)
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Example

time

q.enq(x)

q.enq(y)

q.deq(y)q.enq(x)

q.enq(y)



Art of Multiprocessor 

Programming

163

Example

time

q.enq(x)

q.enq(y)

q.deq(y)q.enq(x)

q.enq(y)
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Example

time

q.enq(x)

q.enq(y)

q.deq(y)q.enq(x)

q.enq(y)
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Theorem

Sequential Consistency is not 

composable
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FIFO Queue Example

time

p.enq(x) p.deq(y)q.enq(x)

time
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FIFO Queue Example

time

p.enq(x) p.deq(y)q.enq(x)

q.enq(y) q.deq(x)p.enq(y)

time
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FIFO Queue Example

time

p.enq(x) p.deq(y)q.enq(x)

q.enq(y) q.deq(x)p.enq(y)

History H

time
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H|p Sequentially Consistent

time

p.enq(x) p.deq(y)

p.enq(y)

q.enq(x)

q.enq(y) q.deq(x)

time
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H|q Sequentially Consistent

time

p.enq(x) p.deq(y)q.enq(x)

q.enq(y) q.deq(x)p.enq(y)

time
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Ordering imposed by p

time

p.enq(x) p.deq(y)q.enq(x)

q.enq(y) q.deq(x)p.enq(y)

time
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Ordering imposed by q

time

p.enq(x) p.deq(y)q.enq(x)

q.enq(y) q.deq(x)p.enq(y)

time
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p.enq(x)

Ordering imposed by both

time

q.enq(x)

q.enq(y) q.deq(x)

time

p.deq(y)

p.enq(y)
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p.enq(x)

Combining orders

time

q.enq(x)

q.enq(y) q.deq(x)

time

p.deq(y)

p.enq(y)
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Fact

• Most hardware architectures don’t support 

sequential consistency

• Because they think it’s too strong

• Here’s another story …
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The Flag Example

time

x.write(1) y.read(0)

y.write(1) x.read(0)

time
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The Flag Example

time

x.write(1) y.read(0)

y.write(1) x.read(0)

• Each thread’s view is sequentially 

consistent

– It went first
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The Flag Example

time

x.write(1) y.read(0)

y.write(1) x.read(0)

• Entire history isn’t sequentially 

consistent

– Can’t both go first
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The Flag Example

time

x.write(1) y.read(0)

y.write(1) x.read(0)

• Is this behavior really so wrong?

– We can argue either way …
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Opinion: It’s Wrong

• This pattern

– Write mine, read yours

• Is exactly the flag principle

– Beloved of Alice and Bob

– Heart of mutual exclusion
• Peterson

• Bakery, etc.

• It’s non-negotiable!
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Peterson's Algorithm

public void lock() {

flag[i] = true; 

victim  = i; 

while (flag[j] && victim == i) {};

}

public void unlock() {

flag[i] = false;

}
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Crux of Peterson Proof

(1) writeB(flag[B]=true)➔writeB(victim=B)

(3) writeB(victim=B)➔writeA(victim=A)

(2) writeA(victim=A)➔readA(flag[B])

➔ readA(victim)
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Crux of Peterson Proof

(1) writeB(flag[B]=true)➔writeB(victim=B)

(3) writeB(victim=B)➔writeA(victim=A)

(2) writeA(victim=A)➔readA(flag[B])

➔ readA(victim)

Observation: proof relied on fact that if a 

location is stored, a later load by some thread

will return this or a later stored value.
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Opinion: But It Feels So Right …

• Many hardware architects think that 

sequential consistency is too strong

• Too expensive to implement in modern 

hardware

• OK if flag principle

– violated by default

– Honored by explicit request



Hardware Consistancy

mov 1, a    ;Store

mov b, %ebx ;Load

mov 1, b    ;Store

mov a, %eax ;Load

Initially, a = b = 0.

Processor 0 Processor 1

What are the final possible values of %eax

and %ebx after both processors have 

executed?

Sequential consistency implies that no 

execution ends with %eax= %ebx = 0

Slide used with permission of 

Charles E. Leiserson



Hardware Consistency

∙ No modern-day processor implements 

sequential consistency. 

∙ Hardware actively reorders instructions.

∙ Compilers may reorder instructions, too.

∙ Why?

∙ Because most of performance is derived 

from a single thread’s unsynchronized 

execution of code.

Art of Multiprocessor 

Programming



Instruction Reordering

Q. Why might the hardware or compiler 

decide to reorder these instructions?
A. To obtain higher performance by covering 

load latency — instruction-level 

parallelism.  

mov 1, a    ;Store

mov b, %ebx ;Load

mov b, %ebx ;Load

mov 1, a    ;Store

Program Order Execution Order

Slide used with permission of 

Charles E. Leiserson



Instruction Reordering

Q. When is it safe for the hardware or 

compiler to perform this reordering?

A. When a ≠ b.

A′. And there’s no concurrency.

mov 1, a    ;Store

mov b, %ebx ;Load

mov b, %ebx ;Load

mov 1, a    ;Store

Program Order Execution Order

Slide used with permission of 

Charles E. Leiserson



Hardware Reordering

∙ Processor can issue stores faster than the 

network can handle them ⇒ store buffer.

∙ Loads take priority, bypassing the store buffer.

∙ Except if a load address matches an address in 

the store buffer, the store buffer returns the result.

Memory 

System

Load Bypass

Processor Network

Store Buffer

Slide used with permission of 

Charles E. Leiserson



X86: Memory Consistency

1. Loads are not reordered with loads.

2. Stores are not reordered with stores.

3. Stores are not reordered with prior 

loads.

4. A load may be reordered with a prior 

store to a different location but not

with a prior store to the same 

location.

5. Stores to the same location respect a 

global total order.

Store1

Store2

Load1

Store3

Store4

Load3

Load2

Load4

Load5

Thread’s

Code
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1. Loads are not reordered with loads.

2. Stores are not reordered with stores.

3. Stores are not reordered with prior 

loads.

4. A load may be reordered with a prior 

store to a different location but not

with a prior store to the same 

location.

5. Stores to the same location respect a 

global total order.

X86: Memory Consistency

Store1

Store2

Load1

Store3

Store4

Load3

Load2

Load4

Load5

Thread’s

Code

Total Store Ordering 

(TSO)…weaker than 

sequential consistency

L
O

A

D

S

OK!
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Memory Barriers (Fences)

∙A memory barrier (or memory fence) is a 

hardware action that enforces an ordering 

constraint between the instructions before 

and after the fence.

∙A memory barrier can be issued explicitly 

as an instruction (x86: mfence)

∙The typical cost of a memory fence is 

comparable to that of an L2-cache 

access.
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1. Loads are not reordered with loads.

2. Stores are not reordered with stores.

3. Stores are not reordered with prior 

loads.

4. A load may be reordered with a prior 

store to a different location but not

with a prior store to the same 

location.

5. Stores to the same location respect a 

global total order.

X86: Memory Consistency

Store1

Store2

Load1

Store3

Store4

Load3

Load2

Load4

Load5

Thread’s

Code

Total Store Ordering + 

properly placed memory 

barriers =  sequential 

consistency

Barrier
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Memory Barriers

• Explicit Synchronization 

• Memory barrier will

– Flush write buffer

– Bring caches up to date

• Compilers often do this for you

– Entering and leaving critical sections
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Volatile Variables 

• In Java, can ask compiler to keep a 

variable up-to-date by declaring it 

volatile

• Adds a memory barrier after each store

• Inhibits reordering, removing from 

loops, & other “compiler optimizations”

• Will talk about it in detail in later 

lectures
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Summary: Real-World

• Hardware weaker than sequential 

consistency

• Can get sequential consistency at a price

• Linearizability better fit for high-level 

software
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Linearizability

• Linearizability

– Operation takes effect instantaneously 

between invocation and response

– Uses sequential specification, locality implies 

composablity
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Summary: Correctness

• Sequential Consistency

– Not composable

– Harder to work with

– Good way to think about hardware models

• We will use linearizability as our 

consistency condition in the remainder of 

this course unless stated otherwise



Progress

• We saw an implementation whose 

methods were lock-based (deadlock-free) 

• We saw an implementation whose 

methods did not use locks (lock-free)

• How do they relate?
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Progress Conditions  

• Deadlock-free: some thread trying to acquire the 

lock eventually succeeds.

• Starvation-free: every thread trying to acquire 

the lock eventually succeeds.

• Lock-free: some thread calling a method 

eventually returns.

• Wait-free: every thread calling a method 

eventually returns.

Art of Multiprocessor 

Programming

200



Progress Conditions  

Art of Multiprocessor 
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Wait-free

Lock-free

Starvation-free

Deadlock-free

Everyone

makes 

progress

Non-Blocking Blocking

Someone

makes 

progress
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Summary

• We will look at linearizable blocking and 

non-blocking implementations of objects. 
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