
Linked Lists: Locking, Lock-Free,
and Beyond …

Companion slides for

The Art of Multiprocessor Programming

by Maurice Herlihy & Nir Shavit

Art of Multiprocessor Programming 2

Last Lecture: Spin-Locks

C
S

Resets lock

upon exit

spin

lock

critical

section

...

Art of Multiprocessor Programming 3

Today: Concurrent Objects

• Adding threads should not lower
throughput

– Contention effects

– Mostly fixed by Queue locks

Art of Multiprocessor Programming 4

Today: Concurrent Objects

• Adding threads should not lower
throughput

– Contention effects

– Mostly fixed by Queue locks

• Should increase throughput

– Not possible if inherently sequential

– Surprising things are parallelizable

Art of Multiprocessor Programming 5

Coarse-Grained Synchronization

• Each method locks the object

– Avoid contention using queue locks

Art of Multiprocessor Programming 6

Coarse-Grained Synchronization

• Each method locks the object

– Avoid contention using queue locks

– Easy to reason about

• In simple cases

Art of Multiprocessor Programming 7

Coarse-Grained Synchronization

• Each method locks the object

– Avoid contention using queue locks

– Easy to reason about

• In simple cases

• So, are we done?	

Art of Multiprocessor Programming 8

Coarse-Grained Synchronization

• Sequential bottleneck

– Threads “stand in line”

Art of Multiprocessor Programming 9

Coarse-Grained Synchronization

• Sequential bottleneck

– Threads “stand in line”

• Adding more threads

– Does not improve throughput

– Struggle to keep it from getting worse

Art of Multiprocessor Programming 10

Coarse-Grained Synchronization

• Sequential bottleneck

– Threads “stand in line”

• Adding more threads

– Does not improve throughput

– Struggle to keep it from getting worse

• So why even use a multiprocessor?

– Well, some apps inherently parallel …

Art of Multiprocessor Programming 11

This Lecture

• Introduce four “patterns”

– Bag of tricks …

– Methods that work more than once …

Art of Multiprocessor Programming 12

This Lecture

• Introduce four “patterns”

– Bag of tricks …

– Methods that work more than once …

• For highly-concurrent objects

– Concurrent access

– More threads, more throughput

Art of Multiprocessor Programming 13

First: 
Fine-Grained Synchronization

• Instead of using a single lock …

Art of Multiprocessor Programming 14

First: 
Fine-Grained Synchronization

• Instead of using a single lock …

• Split object into

– Independently-synchronized components

Art of Multiprocessor Programming 15

First: 
Fine-Grained Synchronization

• Instead of using a single lock …

• Split object into

– Independently-synchronized components

• Methods conflict when they access

– The same component …

– At the same time

Art of Multiprocessor Programming 16

Second: 
Optimistic Synchronization

• Search without locking …

Art of Multiprocessor Programming 17

Second: 
Optimistic Synchronization

• Search without locking …

• If you find it, lock and check …

– OK: we are done

– Oops: start over

Art of Multiprocessor Programming 18

Second: 
Optimistic Synchronization

• Search without locking …

• If you find it, lock and check …

– OK: we are done

– Oops: start over

• Evaluation

– Usually cheaper than locking, but

– Mistakes are expensive

Art of Multiprocessor Programming 19

Third: 
Lazy Synchronization

• Postpone hard work

Art of Multiprocessor Programming 20

Third: 
Lazy Synchronization

• Postpone hard work

• Removing components is tricky

Art of Multiprocessor Programming 21

Third: 
Lazy Synchronization

• Postpone hard work

• Removing components is tricky

– Logical removal

• Mark component to be deleted

Art of Multiprocessor Programming 22

Third: 
Lazy Synchronization

• Postpone hard work

• Removing components is tricky

– Logical removal

• Mark component to be deleted

– Physical removal

• Do what needs to be done

Art of Multiprocessor Programming 23

Fourth: 
Lock-Free Synchronization

• Don’t use locks at all

– Use compareAndSet() & relatives …

Art of Multiprocessor Programming 24

Fourth: 
Lock-Free Synchronization

• Don’t use locks at all

– Use compareAndSet() & relatives …

• Advantages

– No Scheduler Assumptions/Support

Art of Multiprocessor Programming 25

Fourth: 
Lock-Free Synchronization

• Don’t use locks at all

– Use compareAndSet() & relatives …

• Advantages

– No Scheduler Assumptions/Support

• Disadvantages

– Complex

– Sometimes high overhead

Art of Multiprocessor Programming 26

Linked List

• Illustrate these patterns …

• Using a list-based Set

– Common application

– Building block for other apps

Art of Multiprocessor Programming 27

Set Interface

• Unordered collection of items

Art of Multiprocessor Programming 28

Set Interface

• Unordered collection of items

• No duplicates

Art of Multiprocessor Programming 29

Set Interface

• Unordered collection of items

• No duplicates

• Methods

– add(x) put x in set

– remove(x) take x out of set

– contains(x) tests if x in set

Art of Multiprocessor Programming 30

List-Based Sets

public interface Set<T> {

 public boolean add(T x);

 public boolean remove(T x);

 public boolean contains(T x);

}

Art of Multiprocessor Programming 31

List-Based Sets

public interface Set<T> {

 public boolean add(T x);

 public boolean remove(T x);

 public boolean contains(T x);

}

Add item to set

Art of Multiprocessor Programming 32

List-Based Sets

public interface Set<T> {

 public boolean add(T x);

 public boolean remove(T x);

 public boolean contains(Tt x);

}

Remove item from set

Art of Multiprocessor Programming 33

List-Based Sets

public interface Set<T> {

 public boolean add(T x);

 public boolean remove(T x);

 public boolean contains(T x);

}

Is item in set?

Art of Multiprocessor Programming 34

List Node

public class Node {

 public T item;

 public int key;

 public volatile Node next;

}

Art of Multiprocessor Programming 35

List Node

public class Node {

 public T item;

 public int key;

 public volatile Node next;

}

item of interest

Art of Multiprocessor Programming 36

List Node

public class Node {

 public T item;

 public int key;

 public volatile Node next;

}

Usually hash code

Art of Multiprocessor Programming 37

List Node

public class Node {

 public T item;

 public int key;

 public volatile Node next;

}

Reference to next node

Art of Multiprocessor Programming 38

The List-Based Set

a b c

Sorted with Sentinel nodes

(min & max possible keys)

-∞

+∞

Art of Multiprocessor Programming 39

Reasoning about Concurrent
Objects

• Invariant

– Property that always holds

Art of Multiprocessor Programming 40

Reasoning about Concurrent
Objects

• Invariant

– Property that always holds

• Established because

– True when object is created

– Truth preserved by each method

• Each step of each method

Art of Multiprocessor Programming 41

Specifically …

• Invariants preserved by

– add()

– remove()

– contains()

Art of Multiprocessor Programming 42

Specifically …

• Invariants preserved by

– add()

– remove()

– contains()

• Most steps are trivial

– Usually one step tricky

– Often linearization point

Art of Multiprocessor Programming 43

Interference

• Invariants make sense only if

– methods considered

– are the only modifiers

Art of Multiprocessor Programming 44

Interference

• Invariants make sense only if

– methods considered

– are the only modifiers

• Language encapsulation helps

– List nodes not visible outside class

Art of Multiprocessor Programming 45

Interference

• Invariants make sense only if

– methods considered

– are the only modifiers

• Language encapsulation helps

– List nodes not visible outside class

Art of Multiprocessor Programming 46

Interference

• Freedom from interference needed even
for removed nodes

– Some algorithms traverse removed nodes

– Careful with malloc()& free()!

• We rely on garbage collection

Art of Multiprocessor Programming 47

Abstract Data Types

• Concrete representation:

• Abstract Type:

 {a, b}

a b

Art of Multiprocessor Programming 48

Abstract Data Types

• Meaning of rep given by abstraction
map

 S() = {a,b}a b

Art of Multiprocessor Programming 49

Rep Invariant

• Which concrete values meaningful?

– Sorted?

– Duplicates?

• Rep invariant

– Characterizes legal concrete reps

– Preserved by methods

– Relied on by methods

Art of Multiprocessor Programming 50

Blame Game

• Rep invariant is a contract

• Suppose

– add()leaves behind 2 copies of x

– remove() removes only 1

• Which is incorrect?

Art of Multiprocessor Programming 51

Blame Game

• Suppose

– add() leaves behind 2 copies of x

– remove() removes only 1

Art of Multiprocessor Programming 52

Blame Game

• Suppose

– add() leaves behind 2 copies of x

– remove() removes only 1

• Which is incorrect?

– If rep invariant says no duplicates

•add() is incorrect

– Otherwise

•remove() is incorrect

Art of Multiprocessor Programming 53

Rep Invariant (partly)

• Sentinel nodes

– tail reachable from head

• Sorted

• No duplicates

Art of Multiprocessor Programming 54

Abstraction Map

• S(head) =

{ x | there exists a such that

• a reachable from head and

• a.item = x

}

Art of Multiprocessor Programming 55

Sequential List Based Set

a c d

a b c

add()

remove()

Art of Multiprocessor Programming 56

Sequential List Based Set

a c d

b

a b c

add()

remove()

Art of Multiprocessor Programming 57

Coarse-Grained Locking

a b d

Art of Multiprocessor Programming 58

Coarse-Grained Locking

a b d

c

Art of Multiprocessor Programming 59

honk!

Coarse-Grained Locking

a b d

c

Simple but hotspot + bottleneck

honk!

Art of Multiprocessor Programming 60

Coarse-Grained Locking

• Easy, same as synchronized methods

– “One lock to rule them all …”

Art of Multiprocessor Programming 61

Coarse-Grained Locking

• Easy, same as synchronized methods

– “One lock to rule them all …”

• Simple, clearly correct

– Deserves respect!

• Works poorly with contention

– Queue locks help

– But bottleneck still an issue

Art of Multiprocessor Programming 62

Fine-grained Locking

• Requires careful thought

– “Do not meddle in the affairs of wizards, for

they are subtle and quick to anger”

Art of Multiprocessor Programming 63

Fine-grained Locking

• Requires careful thought

– “Do not meddle in the affairs of wizards, for

they are subtle and quick to anger”

• Split object into pieces

– Each piece has own lock

– Methods that work on disjoint pieces need

not exclude each other

Art of Multiprocessor Programming 64

Hand-over-Hand locking

a b c

Art of Multiprocessor Programming 65

Hand-over-Hand locking

a b c

Art of Multiprocessor Programming 66

Hand-over-Hand locking

a b c

Art of Multiprocessor Programming 67

Hand-over-Hand locking

a b c

Art of Multiprocessor Programming 68

Hand-over-Hand locking

a b c

Art of Multiprocessor Programming 69

Removing a Node

a b c d

remove(b
)

Art of Multiprocessor Programming 70

Removing a Node

a b c d

remove(b
)

Art of Multiprocessor Programming 71

Removing a Node

a b c d

remove(b
)

Art of Multiprocessor Programming 72

Removing a Node

a b c d

remove(b
)

Art of Multiprocessor Programming 73

Removing a Node

a b c d

remove(b
)

Art of Multiprocessor Programming 74

Removing a Node

a c d

remove(b
)

Why lock victim node?

Art of Multiprocessor Programming 75

Concurrent Removes

a b c d

remove(c)remove(b
)

Art of Multiprocessor Programming 76

Concurrent Removes

a b c d

remove(b
)

remove(c)

Art of Multiprocessor Programming 77

Concurrent Removes

a b c d

remove(b
)

remove(c)

Art of Multiprocessor Programming 78

Concurrent Removes

a b c d

remove(b
)

remove(c)

Art of Multiprocessor Programming 79

Concurrent Removes

a b c d

remove(b
)

remove(c)

Art of Multiprocessor Programming 80

Concurrent Removes

a b c d

remove(b
)

remove(c)

Art of Multiprocessor Programming 81

Concurrent Removes

a b c d

remove(b
)

remove(c)

Art of Multiprocessor Programming 82

Concurrent Removes

a b c d

remove(b
)

remove(c)

Art of Multiprocessor Programming 83

Concurrent Removes

a b c d

remove(b
)

remove(c)

Art of Multiprocessor Programming 84

Concurrent Removes

a b c d

remove(b
)

remove(c)

Art of Multiprocessor Programming 85

Uh, Oh

a c d

remove(b
)

remove(c)

Art of Multiprocessor Programming 86

Uh, Oh

a c d

Bad news, c not removed

remove(b
)

remove(c)

Art of Multiprocessor Programming 87

Problem

• To delete node c

– Swing node b’s next field to d

• Problem is,

– Someone deleting b concurrently could

 direct a pointer

 to c

ba c

ba c

Art of Multiprocessor Programming 88

Insight

• If a node is locked

– No one can delete node’s successor

• If a thread locks

– Node to be deleted

– And its predecessor

– Then it works

Art of Multiprocessor Programming 89

Hand-Over-Hand Again

a b c d

remove(b
)

Art of Multiprocessor Programming 90

Hand-Over-Hand Again

a b c d

remove(b
)

Art of Multiprocessor Programming 91

Hand-Over-Hand Again

a b c d

remove(b
)

Art of Multiprocessor Programming 92

Hand-Over-Hand Again

a b c d

remove(b
)

Found
it!

Art of Multiprocessor Programming 93

Hand-Over-Hand Again

a b c d

remove(b
)

Found
it!

Art of Multiprocessor Programming 94

Hand-Over-Hand Again

a c d

remove(b
)

Art of Multiprocessor Programming 95

Removing a Node

a b c d

remove(b
)

remove(c)

Art of Multiprocessor Programming 96

Removing a Node

a b c d

remove(b
)

remove(c)

Art of Multiprocessor Programming 97

Removing a Node

a b c d

remove(b
)

remove(c)

Art of Multiprocessor Programming 98

Removing a Node

a b c d

remove(b
)

remove(c)

Art of Multiprocessor Programming 99

Removing a Node

a b c d

remove(b
)

remove(c)

Art of Multiprocessor Programming 100

Removing a Node

a b c d

remove(b
)

remove(c)

Art of Multiprocessor Programming 101

Removing a Node

a b c d

remove(b
)

remove(c)

Art of Multiprocessor Programming 102

Removing a Node

a b c d

remove(b
)

remove(c)

Art of Multiprocessor Programming 103

Removing a Node

a b c d

Must
acquire

Lock for

b

remove(c)

Art of Multiprocessor Programming 104

Removing a Node

a b c d

Waiting
to

acquire
lock for b

remove(c)

Art of Multiprocessor Programming 105

Removing a Node

a b c d

Wait!
remove(c)

Art of Multiprocessor Programming 106

Removing a Node

a b d

Proceed
to

remove(b
)

Art of Multiprocessor Programming 107

Removing a Node

a b d

remove(b
)

Art of Multiprocessor Programming 108

Removing a Node

a b d

remove(b
)

Art of Multiprocessor Programming 109

Removing a Node

a d

remove(b
)

Art of Multiprocessor Programming 110

Removing a Node

a d

Art of Multiprocessor Programming 111

Remove method

public boolean remove(T item) {

 int key = item.hashCode();

 Node pred, curr;

 try {

 …

 } finally {

 curr.unlock();

 pred.unlock();

 }}

Art of Multiprocessor Programming 112

Remove method

public boolean remove(T item) {

 int key = item.hashCode();

 Node pred, curr;

 try {

 …

 } finally {

 curr.unlock();

 pred.unlock();

 }}

Key used to order node

Art of Multiprocessor Programming 113

Remove method

public boolean remove(T item) {

 int key = item.hashCode();

 Node pred, curr;

 try {

 …

 } finally {

 currNode.unlock();

 predNode.unlock();

 }}

Predecessor and current nodes

Art of Multiprocessor Programming 114

Remove method

public boolean remove(T item) {

 int key = item.hashCode();

 Node pred, curr;

 try {

 …

 } finally {

 curr.unlock();

 pred.unlock();

 }}

Make sure
locks released

Art of Multiprocessor Programming 115

Remove method

public boolean remove(T item) {

 int key = item.hashCode();

 Node pred, curr;

 try {

 …

 } finally {

 curr.unlock();

 pred.unlock();

 }}

Everything else

Art of Multiprocessor Programming 116

Remove method

try {

 pred = head;

 pred.lock();

 curr = pred.next;

 curr.lock();

 …

} finally { … }

Art of Multiprocessor Programming 117

Remove method

try {

 pred = head;

 pred.lock();

 curr = pred.next;

 curr.lock();

 …

} finally { … }

lock pred == head

Art of Multiprocessor Programming

try {

 pred = head;

 pred.lock();

 curr = pred.next;

 curr.lock();

 …

} finally { … }

118

Remove method

Lock current

Art of Multiprocessor Programming

try {

 pred = head;

 pred.lock();

 curr = pred.next;

 curr.lock();

 …

} finally { … }

119

Remove method

Traversing list

Art of Multiprocessor Programming

while (curr.key <= key) {

 if (item == curr.item) {

 pred.next = curr.next;

 return true;

 }

 pred.unlock();

 pred = curr;

 curr = curr.next;

 curr.lock();

 }

 return false;

120

Remove: searching

Art of Multiprocessor Programming

while (curr.key <= key) {

 if (item == curr.item) {

 pred.next = curr.next;

 return true;

 }

 pred.unlock();

 pred = curr;

 curr = curr.next;

 curr.lock();

 }

 return false;

121

Remove: searching

Search key range

Art of Multiprocessor Programming

while (curr.key <= key) {

 if (item == curr.item) {

 pred.next = curr.next;

 return true;

 }

 pred.unlock();

 pred = curr;

 curr = curr.next;

 curr.lock();

 }

 return false;

At start of each loop:
curr and pred locked

122

Remove: searching

Art of Multiprocessor Programming

while (curr.key <= key) {

 if (item == curr.item) {

 pred.next = curr.next;

 return true;

 }

 pred.unlock();

 pred = curr;

 curr = curr.next;

 curr.lock();

 }

 return false;

123

Remove: searching

If item found, remove node

Art of Multiprocessor Programming

while (curr.key <= key) {

 if (item == curr.item) {

 pred.next = curr.next;

 return true;

 }

 pred.unlock();

 pred = curr;

 curr = curr.next;

 curr.lock();

 }

 return false;

124

Remove: searching
Unlock predecessor

Art of Multiprocessor Programming

while (curr.key <= key) {

 if (item == curr.item) {

 pred.next = curr.next;

 return true;

 }

 pred.unlock();

 pred = curr;

 curr = curr.next;

 curr.lock();

 }

 return false;

125

Remove: searching
Only one node locked!

Art of Multiprocessor Programming

while (curr.key <= key) {

 if (item == curr.item) {

 pred.next = curr.next;

 return true;

 }

 pred.unlock();

 pred = curr;

 curr = curr.next;

 curr.lock();

 }

 return false;

126

Remove: searching

demote current

Art of Multiprocessor Programming

while (curr.key <= key) {

 if (item == curr.item) {

 pred.next = curr.next;

 return true;

 }

 pred.unlock();

 pred = currNode;

 curr = curr.next;

 curr.lock();

 }

 return false;

127

Remove: searching

Find and lock new current

Art of Multiprocessor Programming

while (curr.key <= key) {

 if (item == curr.item) {

 pred.next = curr.next;

 return true;

 }

 pred.unlock();

 pred = currNode;

 curr = curr.next;

 curr.lock();

 }

 return false;

128

Remove: searching

Lock invariant restored

Art of Multiprocessor Programming 129

Remove: searching

while (curr.key <= key) {

 if (item == curr.item) {

 pred.next = curr.next;

 return true;

 }

 pred.unlock();

 pred = curr;

 curr = curr.next;

 curr.lock();

 }

 return false;

Otherwise, not present

Art of Multiprocessor Programming 130

while (curr.key <= key) {

 if (item == curr.item) {

 pred.next = curr.next;

 return true;

 }

 pred.unlock();

 pred = curr;

 curr = curr.next;

 curr.lock();

 }

 return false;

Why remove() is linearizable

•pred reachable from head

•curr is pred.next

•So curr.item is in the set

Art of Multiprocessor Programming 131

while (curr.key <= key) {

 if (item == curr.item) {

 pred.next = curr.next;

 return true;

 }

 pred.unlock();

 pred = curr;

 curr = curr.next;

 curr.lock();

 }

 return false;

Why remove() is linearizable

Linearization point if

item is present

Art of Multiprocessor Programming 132

while (curr.key <= key) {

 if (item == curr.item) {

 pred.next = curr.next;

 return true;

 }

 pred.unlock();

 pred = curr;

 curr = curr.next;

 curr.lock();

 }

 return false;

Why remove() is linearizable

Node locked, so no other
thread can remove it ….

Art of Multiprocessor Programming 133

while (curr.key <= key) {

 if (item == curr.item) {

 pred.next = curr.next;

 return true;

 }

 pred.unlock();

 pred = curr;

 curr = curr.next;

 curr.lock();

 }

 return false;

Why remove() is linearizable

Item not present

Art of Multiprocessor Programming 134

while (curr.key <= key) {

 if (item == curr.item) {

 pred.next = curr.next;

 return true;

 }

 pred.unlock();

 pred = curr;

 curr = curr.next;

 curr.lock();

 }

 return false;

Why remove() is linearizable

•pred reachable from head

•curr is pred.next

•pred.key < key

•key < curr.key

Art of Multiprocessor Programming 135

while (curr.key <= key) {

 if (item == curr.item) {

 pred.next = curr.next;

 return true;

 }

 pred.unlock();

 pred = curr;

 curr = curr.next;

 curr.lock();

 }

 return false;

Why remove() is linearizable

Linearization point

Art of Multiprocessor Programming 136

Adding Nodes

• To add node e

– Must lock predecessor

– Must lock successor

• Neither can be deleted

– (Is successor lock actually required?)

Art of Multiprocessor Programming 137

Same Abstraction Map

• S(head) =

{ x | there exists a such that

• a reachable from head and

• a.item = x

}

Art of Multiprocessor Programming 138

Rep Invariant

• Easy to check that

– tail always reachable from head

– Nodes sorted, no duplicates

Art of Multiprocessor Programming 139

Drawbacks

• Better than coarse-grained lock

– Threads can traverse in parallel

• Still not ideal

– Long chain of acquire/release

– Inefficient

Art of Multiprocessor Programming 140

Optimistic Synchronization

• Find nodes without locking

• Lock nodes

• Check that everything is OK

Art of Multiprocessor Programming 141

Optimistic: Traverse without Locking

b d ea

add(c) Aha!

Art of Multiprocessor Programming 142

Optimistic: Lock and Load

b d ea

add(c)

Art of Multiprocessor Programming 143

Optimistic: Lock and Load

b d ea

add(c)

c

Art of Multiprocessor Programming 144

What could go wrong?

b d ea

add(c) Aha!

Art of Multiprocessor Programming 145

What could go wrong?

b d ea

add(c)

Art of Multiprocessor Programming 146

What could go wrong?

b d ea

remove(b
)

Art of Multiprocessor Programming 147

What could go wrong?

b d ea

remove(b
)

Art of Multiprocessor Programming 148

What could go wrong?

b d ea

add(c)

Art of Multiprocessor Programming 149

What could go wrong?

b d ea

add(c)

c

Art of Multiprocessor Programming 150

What could go wrong?

d ea

add(c) Uh-oh

Art of Multiprocessor Programming 151

Validate – Part 1

b d ea

add(c) Yes, b still
reachable
from head

Art of Multiprocessor Programming 152

What Else Could Go Wrong?

b d ea

add(c) Aha!

Art of Multiprocessor Programming 153

What Else Coould Go Wrong?

b d ea

add(c)
add(b’)

Art of Multiprocessor Programming 154

What Else Coould Go Wrong?

b d ea

add(c)
add(b’)b’

Art of Multiprocessor Programming 155

What Else Could Go Wrong?

b d ea

add(c)

b’

Art of Multiprocessor Programming 156

What Else Could Go Wrong?

b d ea

add(c)

c

Art of Multiprocessor Programming 157

Validate Part 2 
(while holding locks)

b d ea

add(c) Yes, b still
points to d

Art of Multiprocessor Programming 158

Optimistic: Linearization Point

b d ea

add(c)
c

Art of Multiprocessor Programming 159

Same Abstraction Map

• S(head) =

{ x | there exists a such that

• a reachable from head and

• a.item = x

}

Art of Multiprocessor Programming 160

Invariants

• Careful: we may traverse deleted nodes

• But we establish properties by

– Validation

– After we lock target nodes

Art of Multiprocessor Programming 161

Correctness

• If

– Nodes b and c both locked

– Node b still accessible

– Node c still successor to b

• Then

– Neither will be deleted

– OK to delete and return true

Art of Multiprocessor Programming 162

Unsuccessful Remove

a b d e

remove(c)
Aha!

Art of Multiprocessor Programming 163

Validate (1)

a b d e

Yes, b still
reachable
from head

remove(c
)

Art of Multiprocessor Programming 164

Validate (2)

a b d e

remove(c) Yes, b still
points to d

Art of Multiprocessor Programming 165

OK Computer

a b d e

remove(c) return false

Art of Multiprocessor Programming 166

Correctness

• If

– Nodes b and d both locked

– Node b still accessible

– Node d still successor to b

• Then

– Neither will be deleted

– No thread can add c after b

– OK to return false

Art of Multiprocessor Programming 167

Validation
private boolean

 validate(Node pred,

 Node curry) {

 Node node = head;

 while (node.key <= pred.key) {

 if (node == pred)

 return pred.next == curr;

 node = node.next;

 }

 return false;

}

Art of Multiprocessor Programming

private boolean

 validate(Node pred,

 Node curr) {

 Node node = head;

 while (node.key <= pred.key) {

 if (node == pred)

 return pred.next == curr;

 node = node.next;

 }

 return false;

}

168

Validation

Predecessor &
current nodes

Art of Multiprocessor Programming

private boolean

 validate(Node pred,

 Node curr) {

 Node node = head;

 while (node.key <= pred.key) {

 if (node == pred)

 return pred.next == curr;

 node = node.next;

 }

 return false;

}

169

Validation

Begin at the
beginning

Art of Multiprocessor Programming

private boolean

 validate(Node pred,

 Node curr) {

 Node node = head;

 while (node.key <= pred.key) {

 if (node == pred)

 return pred.next == curr;

 node = node.next;

 }

 return false;

}

170

Validation

Search range of keys

Art of Multiprocessor Programming

private boolean

 validate(Node pred,

 Node curr) {

 Node node = head;

 while (node.key <= pred.key) {

 if (node == pred)

 return pred.next == curr;

 node = node.next;

 }

 return false;

}

171

Validation

Predecessor reachable

Art of Multiprocessor Programming 172

private boolean

 validate(Node pred,

 Node curr) {

 Node node = head;

 while (node.key <= pred.key) {

 if (node == pred)

 return pred.next == curr;

 node = node.next;

 }

 return false;

}

Validation

Is current node next?

Art of Multiprocessor Programming 173

private boolean

 validate(Node pred,

 Node curr) {

 Node node = head;

 while (node.key <= pred.key) {

 if (node == pred)

 return pred.next == curr;

 node = node.next;

 }

 return false;

}

Validation
Otherwise move on

Art of Multiprocessor Programming 174

private boolean

 validate(Node pred,

 Node curr) {

 Node node = head;

 while (node.key <= pred.key) {

 if (node == pred)

 return pred.next == curr;

 node = node.next;

 }

 return false;

}

Validation
Predecessor not reachable

Art of Multiprocessor Programming 175

Remove: searching
public boolean remove(T item) {

 int key = item.hashCode();

 retry: while (true) {

 Node pred = head;

 Node curr = pred.next;

 while (curr.key <= key) {

 if (item == curr.item)

 break;

 pred = curr;

 curr = curr.next;

 } …

Art of Multiprocessor Programming 176

public boolean remove(T item) {

 int key = item.hashCode();

 retry: while (true) {

 Node pred = head;

 Node curr = pred.next;

 while (curr.key <= key) {

 if (item == curr.item)

 break;

 pred = curr;

 curr = curr.next;

 } …

Remove: searching

Search key

Art of Multiprocessor Programming 177

public boolean remove(T item) {

 int key = item.hashCode();

 retry: while (true) {

 Node pred = head;

 Node curr = pred.next;

 while (curr.key <= key) {

 if (item == curr.item)

 break;

 pred = curr;

 curr = curr.next;

 } …

Remove: searching

Retry on synchronization conflict

Art of Multiprocessor Programming 178

public boolean remove(T item) {

 int key = item.hashCode();

 retry: while (true) {

 Node pred = head;

 Node curr = pred.next;

 while (curr.key <= key) {

 if (item == curr.item)

 break;

 pred = curr;

 curr = curr.next;

 } …

Remove: searching

Examine predecessor and current nodes

Art of Multiprocessor Programming 179

public boolean remove(T item) {

 int key = item.hashCode();

 retry: while (true) {

 Node pred = head;

 Node curr = pred.next;

 while (curr.key <= key) {

 if (item == curr.item)

 break;

 pred = curr;

 curr = curr.next;

 } …

Remove: searching

Search by key

Art of Multiprocessor Programming 180

public boolean remove(T item) {

 int key = item.hashCode();

 retry: while (true) {

 Node pred = head;

 Node curr = pred.next;

 while (curr.key <= key) {

 if (item == curr.item)

 break;

 pred = curr;

 curr = curr.next;

 } …

Remove: searching

Stop if we find item

Art of Multiprocessor Programming 181

public boolean remove(T item) {

 int key = item.hashCode();

 retry: while (true) {

 Node pred = head;

 Node curr = pred.next;

 while (curr.key <= key) {

 if (item == curr.item)

 break;

 pred = curr;

 curr = curr.next;

 } …

Remove: searching

Move along

Art of Multiprocessor Programming 182

On Exit from Loop

• If item is present

– curr holds item

– pred just before curr

• If item is absent

– curr has first higher key

– pred just before curr

• Assuming no synchronization problems

Art of Multiprocessor Programming 183

Remove Method
try {

 pred.lock(); curr.lock();

 if (validate(pred,curr) {

 if (curr.item == item) {

 pred.next = curr.next;

 return true;

 } else {

 return false;

 }}} finally {

	 pred.unlock();

	 curr.unlock();

 }}}

Art of Multiprocessor Programming 184

try {

 pred.lock(); curr.lock();

 if (validate(pred,curr) {

 if (curr.item == item) {

 pred.next = curr.next;

 return true;

 } else {

 return false;

 }}} finally {

	 pred.unlock();

	 curr.unlock();

 }}}

Remove Method

Always unlock

Art of Multiprocessor Programming 185

try {

 pred.lock(); curr.lock();

 if (validate(pred,curr) {

 if (curr.item == item) {

 pred.next = curr.next;

 return true;

 } else {

 return false;

 }}} finally {

	 pred.unlock();

	 curr.unlock();

 }}}

Remove Method

Lock both nodes

Art of Multiprocessor Programming 186

try {

 pred.lock(); curr.lock();

 if (validate(pred,curr) {

 if (curr.item == item) {

 pred.next = curr.next;

 return true;

 } else {

 return false;

 }}} finally {

	 pred.unlock();

	 curr.unlock();

 }}}

Remove Method

Check for synchronization
conflicts

Art of Multiprocessor Programming 187

try {

 pred.lock(); curr.lock();

 if (validate(pred,curr) {

 if (curr.item == item) {

 pred.next = curr.next;

 return true;

 } else {

 return false;

 }}} finally {

	 pred.unlock();

	 curr.unlock();

 }}}

Remove Method

target found,
remove node

Art of Multiprocessor Programming 188

try {

 pred.lock(); curr.lock();

 if (validate(pred,curr) {

 if (curr.item == item) {

 pred.next = curr.next;

 return true;

 } else {

 return false;

 }}} finally {

	 pred.unlock();

	 curr.unlock();

 }}}

Remove Method

target not found

Art of Multiprocessor Programming 189

Optimistic List

• Limited hot-spots

– Targets of add(), remove(), contains()

– No contention on traversals

• Moreover

– Traversals are wait-free

– Food for thought …

Art of Multiprocessor Programming 190

So Far, So Good

• Much less lock acquisition/release

– Performance

– Concurrency

• Problems

– Need to traverse list twice

– contains() method acquires locks

Art of Multiprocessor Programming 191

Evaluation

• Optimistic is effective if

– cost of scanning twice without locks

is less than

– cost of scanning once with locks

• Drawback

– contains() acquires locks

– 90% of calls in many apps

Art of Multiprocessor Programming 192

Lazy List

• Like optimistic, except

– Scan once

– contains(x) never locks …

• Key insight

– Removing nodes causes trouble

– Do it “lazily”

Art of Multiprocessor Programming 193

Lazy List

• remove()

– Scans list (as before)

– Locks predecessor & current (as before)

• Logical delete

– Marks current node as removed (new!)

• Physical delete

– Redirects predecessor’s next (as before)

Art of Multiprocessor Programming 194

Lazy Removal

aa b c d

Art of Multiprocessor Programming

c

195

Lazy Removal

aa b d

Present in list

c

Art of Multiprocessor Programming 196

Lazy Removal

aa b d

Logically deleted

Art of Multiprocessor Programming 197

Lazy Removal

aa b c d

Physically deleted

Art of Multiprocessor Programming 198

Lazy Removal

aa b d

Physically deleted

Art of Multiprocessor Programming 199

Lazy List

• All Methods

– Scan through locked and marked nodes

– Removing a node doesn’t slow down other

method calls …

• Must still lock pred and curr nodes.

Art of Multiprocessor Programming 200

Validation

• No need to rescan list!

• Check that pred is not marked

• Check that curr is not marked

• Check that pred points to curr

Art of Multiprocessor Programming 201

Business as Usual

a b c

Art of Multiprocessor Programming 202

Business as Usual

a b c

Art of Multiprocessor Programming 203

Business as Usual

a b c

Art of Multiprocessor Programming 204

Business as Usual

a b c

remove(b)

Art of Multiprocessor Programming 205

Business as Usual

a b c

a not
marked

Art of Multiprocessor Programming 206

Business as Usual

a b c

a still
points

to b

Art of Multiprocessor Programming 207

Business as Usual

a b c

Logical
delete

Art of Multiprocessor Programming 208

Business as Usual

a b c

physical
delete

Art of Multiprocessor Programming 209

Business as Usual

a b c

Art of Multiprocessor Programming 210

New Abstraction Map

• S(head) =

{ x | there exists node a such that

• a reachable from head and

• a.item = x and

• a is unmarked

}

Art of Multiprocessor Programming 211

Invariant

• If not marked then item in the set

• and reachable from head

• and if not yet traversed it is reachable

from pred

Art of Multiprocessor Programming 212

Validation
private boolean

 validate(Node pred, Node curr) {

 return

 !pred.marked &&

 !curr.marked &&

 pred.next == curr);

 }

Art of Multiprocessor Programming 213

private boolean

 validate(Node pred, Node curr) {

 return

 !pred.marked &&

 !curr.marked &&

 pred.next == curr);

 }

List Validate Method

Predecessor not

Logically removed

Art of Multiprocessor Programming 214

private boolean

 validate(Node pred, Node curr) {

 return

 !pred.marked &&

 !curr.marked &&

 pred.next == curr);

 }

List Validate Method

Current not

Logically removed

Art of Multiprocessor Programming 215

private boolean

 validate(Node pred, Node curr) {

 return

 !pred.marked &&

 !curr.marked &&

 pred.next == curr);

 }

List Validate Method

Predecessor still

Points to current

Art of Multiprocessor Programming 216

Remove
try {

 pred.lock(); curr.lock();

 if (validate(pred,curr) {

 if (curr.key == key) {

 curr.marked = true;

 pred.next = curr.next;

 return true;

 } else {

 return false;

 }}} finally {

	 pred.unlock();

	 curr.unlock();

 }}}

Art of Multiprocessor Programming 217

Remove
try {

 pred.lock(); curr.lock();

 if (validate(pred,curr) {

 if (curr.key == key) {

 curr.marked = true;

 pred.next = curr.next;

 return true;

 } else {

 return false;

 }}} finally {

	 pred.unlock();

	 curr.unlock();

 }}}

Validate as before

Art of Multiprocessor Programming 218

Remove
try {

 pred.lock(); curr.lock();

 if (validate(pred,curr) {

 if (curr.key == key) {

 curr.marked = true;

 pred.next = curr.next;

 return true;

 } else {

 return false;

 }}} finally {

	 pred.unlock();

	 curr.unlock();

 }}}

Key found

Art of Multiprocessor Programming 219

Remove
try {

 pred.lock(); curr.lock();

 if (validate(pred,curr) {

 if (curr.key == key) {

 curr.marked = true;

 pred.next = curr.next;

 return true;

 } else {

 return false;

 }}} finally {

	 pred.unlock();

	 curr.unlock();

 }}}

Logical remove

Art of Multiprocessor Programming 220

Remove
try {

 pred.lock(); curr.lock();

 if (validate(pred,curr) {

 if (curr.key == key) {

 curr.marked = true;

 pred.next = curr.next;

 return true;

 } else {

 return false;

 }}} finally {

	 pred.unlock();

	 curr.unlock();

 }}}

physical remove

Art of Multiprocessor Programming 221

Contains
public boolean contains(T item) {

 int key = item.hashCode();

 Node curr = head;

 while (curr.key < key) {

 curr = curr.next;

 }

 return curr.key == key && !curr.marked;

}

Art of Multiprocessor Programming 222

Contains
public boolean contains(T item) {

 int key = item.hashCode();

 Node curr = head;

 while (curr.key < key) {

 curr = curr.next;

 }

 return curr.key == key && !curr.marked;

}

Start at the head

Art of Multiprocessor Programming 223

Contains
public boolean contains(T item) {

 int key = item.hashCode();

 Node curr = head;

 while (curr.key < key) {

 curr = curr.next;

 }

 return curr.key == key && !curr.marked;

}

Search key range

Art of Multiprocessor Programming 224

Contains
public boolean contains(T item) {

 int key = item.hashCode();

 Node curr = head;

 while (curr.key < key) {

 curr = curr.next;

 }

 return curr.key == key && !curr.marked;

}

Traverse without locking

(nodes may have been removed)

Art of Multiprocessor Programming 225

Contains
public boolean contains(T item) {

 int key = item.hashCode();

 Node curr = head;

 while (curr.key < key) {

 curr = curr.next;

 }

 return curr.key == key && !curr.marked;

}

Present and undeleted?

Art of Multiprocessor Programming 226

Summary: Wait-free Contains

a 0 0a b c ed

Use Mark bit + list ordering

1. Not marked → in the set

2. Marked or missing → not in the set

Art of Multiprocessor Programming 227

Lazy List

a 0 0 0a b c 0e1d

Lazy add()and remove() + Wait-free contains()

Art of Multiprocessor Programming 228

Evaluation

• Good:

– contains() doesn’t lock

– In fact, its wait-free!

– Good because typically high % contains()

– Uncontended calls don’t re-traverse

• Bad

– Contended add() and remove() calls

must re-traverse

– Traffic jam if one thread delays

Art of Multiprocessor Programming 229

Traffic Jam

• Any concurrent data structure based on
mutual exclusion has a weakness

• If one thread

– Enters critical section

– And “eats the big muffin”

• Cache miss, page fault, descheduled …

– Everyone else using that lock is stuck!

– Need to trust the scheduler….

Art of Multiprocessor Programming 230

Reminder: Lock-Free Data
Structures

• No matter what …

– Guarantees minimal progress in any

execution

– i.e. Some thread will always complete a

method call

– Even if others halt at malicious times

– Implies that implementation can’t use locks

Art of Multiprocessor Programming 231

Lock-free Lists

• Next logical step

– Wait-free contains()

– lock-free add() and remove()

• Use only compareAndSet()

– What could go wrong?

232

public abstract class CASObject {

 private int value;

 public boolean synchronized

 compareAndSet(int expected,

 int update) {

 if (value==expected) {

 value = update; return true;

 }

 return false;

 } … }

compareAndSet

Art of Multiprocessor
Programming

Art of Multiprocessor
Programming

233

public abstract class CASObject {

 private int value;

 public boolean synchronized

 compareAndSet(int expected,

 int update) {

 if (value==expected) {

 value = update; return true;

 }

 return false;

 } … }

compareAndSet

If value is as expected, …

Art of Multiprocessor
Programming

234

public abstract class CASOBJECT{

 private int value;

 public boolean synchronized

 compareAndSet(int expected,

 int update) {

 if (value==expected) {

 value = update; return true;

 }

 return false;

 } … }

compareAndSet

… replace it

Art of Multiprocessor
Programming

235

public abstract class RMWRegister {

 private int value;

 public boolean synchronized

 compareAndSet(int expected,

 int update) {

 if (value==expected) {

 value = update; return true;

 }

 return false;

 } … }

compareAndSet

Report success

Art of Multiprocessor
Programming

236

public abstract class RMWRegister {

 private int value;

 public boolean synchronized

 compareAndSet(int expected,

 int update) {

 if (value==expected) {

 value = update; return true;

 }

 return false;

 } … }

compareAndSet

Otherwise report failure

Art of Multiprocessor Programming 237

a 0 0 0a b c 0e1c

Logical Removal

Physical RemovalUse CAS to verify pointer

is correct

Not enough!

Lock-free Lists

Art of Multiprocessor Programming 238

Problem…

a 0 0 0a b c 0e1c

Logical Removal

Physical Removal
0d

Node added

Art of Multiprocessor Programming 239

The Solution: Combine Bit and
Pointer

a 0 0 0a b c 0e1c

Logical Removal =

Set Mark Bit

Physical

Removal

CAS

0d

Mark-Bit and Pointer

are CASed together

(AtomicMarkableReference)

Fail CAS: Node not

added after logical

Removal

Art of Multiprocessor Programming 240

Solution

• Use AtomicMarkableReference

• Atomically

– Swing reference and

– Update flag

• Remove in two steps

– Set mark bit in next field

– Redirect predecessor’s pointer

Art of Multiprocessor Programming 241

Marking a Node

• AtomicMarkableReference class

– Java.util.concurrent.atomic package

address F

mark bit

Reference

Art of Multiprocessor Programming 242

Extracting Reference & Mark

public Object get(boolean[] marked);

Art of Multiprocessor Programming 243

Extracting Reference & Mark

public Object get(boolean[] marked);

Returns
reference

Returns mark at
array index 0!

Art of Multiprocessor Programming 244

Extracting Mark Only

public boolean isMarked();

Value of
mark

Art of Multiprocessor Programming 245

Changing State

public boolean compareAndSet(

 Object expectedRef,

 Object updateRef,

 boolean expectedMark,

 boolean updateMark);

Art of Multiprocessor Programming 246

Changing State

public boolean compareAndSet(

 Object expectedRef,

 Object updateRef,

 boolean expectedMark,

 boolean updateMark);

If this is the current
reference …

And this is the
current mark …

Art of Multiprocessor Programming 247

Changing State

public boolean compareAndSet(

 Object expectedRef,

 Object updateRef,

 boolean expectedMark,

 boolean updateMark);

…then change to this
new reference …

… and this new
mark

Art of Multiprocessor Programming 248

Changing State

public boolean attemptMark(

 Object expectedRef,

 boolean updateMark);

Art of Multiprocessor Programming 249

Changing State

public boolean attemptMark(

 Object expectedRef,

 boolean updateMark);

If this is the current
reference …

Art of Multiprocessor Programming 250

Changing State

public boolean attemptMark(

 Object expectedRef,

 boolean updateMark);

.. then change to
this new mark.

Art of Multiprocessor Programming

b
CA
S

251

Removing a Node

a c d

remove(c)

Art of Multiprocessor Programming 252

Removing a Node

a b d

remove(b
)

c

failed

CA
S

CA
S

remove(c)

Art of Multiprocessor Programming 253

Removing a Node

a b dc

remove(b
)

remove(c)

Art of Multiprocessor Programming 254

Removing a Node

a d

remove(b
)

remove(c)

Art of Multiprocessor Programming 255

Traversing the List

• Q: what do you do when you find a
“logically” deleted node in your path?

• A: finish the job.

– CAS the predecessor’s next field

– Proceed (repeat as needed)

Art of Multiprocessor Programming 256

Lock-Free Traversal 
(only Add and Remove)

a b c d
CA
S

Uh-oh

pred currpred curr

Art of Multiprocessor Programming 257

The Window Class

class Window {

 public Node pred;

 public Node curr;

 Window(Node pred, Node curr) {

 pred = pred; curr = curr;

 }

}

Art of Multiprocessor Programming 258

The Window Class

class Window {

 public Node pred;

 public Node curr;

 Window(Node pred, Node curr) {

 pred = pred; curr = curr;

 }

}

A container for pred
and current values

Art of Multiprocessor Programming 259

Using the Find Method

 Window window = find(head, key);

 Node pred = window.pred;

 curr = window.curr;

Art of Multiprocessor Programming 260

Using the Find Method

 Window window = find(head, key);

 Node pred = window.pred;

 curr = window.curr;

Find returns window

Art of Multiprocessor Programming 261

Using the Find Method

 Window window = find(head, key);

 Node pred = window.pred;

 curr = window.curr;

Extract pred and curr

Art of Multiprocessor Programming©
Herlihy-Shavit 2007

262

The Find Method

 Window window = find(item);

At some instant,

pred curr succ

item or …

Art of Multiprocessor Programming©
Herlihy-Shavit 2007

263

The Find Method

 Window window = find(item);

At some instant,

pred
curr= null

succ

item not in list

Art of Multiprocessor Programming 264

Remove
public boolean remove(T item) {

Boolean snip;

while (true) {

 Window window = find(head, key);

 Node pred = window.pred, curr = window.curr;

 if (curr.key != key) {

 return false;

 } else {

 Node succ = curr.next.getReference();

 snip = curr.next.compareAndSet(succ, succ, false
true);

 if (!snip) continue;

 pred.next.compareAndSet(curr, succ, false, false);

 return true;

}}}

Art of Multiprocessor Programming 265

Remove
public boolean remove(T item) {

Boolean snip;

while (true) {

 Window window = find(head, key);

 Node pred = window.pred, curr = window.curr;

 if (curr.key != key) {

 return false;

 } else {

 Node succ = curr.next.getReference();

 snip = curr.next.compareAndSet (succ, succ, false,
true);

 if (!snip) continue;

 pred.next.compareAndSet(curr, succ, false, false);

 return true;

}}} Keep trying

Art of Multiprocessor Programming 266

Remove
public boolean remove(T item) {

Boolean snip;

while (true) {

 Window window = find(head, key);

 Node pred = window.pred, curr = window.curr;

 if (curr.key != key) {

 return false;

 } else {

 Node succ = curr.next.getReference();

 snip = curr.next.compareAndSet (succ, succ, false,
true);

 if (!snip) continue;

 pred.next.compareAndSet(curr, succ, false, false);

 return true;

}}} Find neighbors

Art of Multiprocessor Programming 267

Remove
public boolean remove(T item) {

Boolean snip;

while (true) {

 Window window = find(head, key);

 Node pred = window.pred, curr = window.curr;

 if (curr.key != key) {

 return false;

 } else {

 Node succ = curr.next.getReference();

 snip = curr.next.compareAndSet(succ, succ, false,
true);

 if (!snip) continue;

 pred.next.compareAndSet(curr, succ, false, false);

 return true;

}}} Not there …

Art of Multiprocessor Programming 268

Remove
public boolean remove(T item) {

Boolean snip;

while (true) {

 Window window = find(head, key);

 Node pred = window.pred, curr = window.curr;

 if (curr.key != key) {

 return false;

 } else {

 Node succ = curr.next.getReference();

 snip = curr.next.compareAndSet(succ, succ, false,
true);

 if (!snip) continue;

 pred.next.compareAndSet(curr, succ, false, false);

 return true;

}}}

Try to mark node as deleted

Art of Multiprocessor Programming 269

Remove
public boolean remove(T item) {

Boolean snip;

while (true) {

 Window window = find(head, key);

 Node pred = window.pred, curr = window.curr;

 if (curr.key != key) {

 return false;

 } else {

 Node succ = curr.next.getReference();

 snip = curr.next.compareAndSet(succ, succ, false,
true);

 if (!snip) continue;

 pred.next.compareAndSet(curr, succ, false, false);

 return true;

}}}

If it doesn’t work,
just retry, if it

does, job
essentially done

Art of Multiprocessor Programming 270

Remove
public boolean remove(T item) {

Boolean snip;

while (true) {

 Window window = find(head, key);

 Node pred = window.pred, curr = window.curr;

 if (curr.key != key) {

 return false;

 } else {

 Node succ = curr.next.getReference();

 snip = curr.next.compareAndSet(succ, succ, false,
true);

 if (!snip) continue;

 pred.next.compareAndSet(curr, succ, false, false);

 return true;

}}}

Try to advance reference

(if we don’t succeed,

someone else did or will).

a

Art of Multiprocessor Programming 271

Add
public boolean add(T item) {

 boolean splice;

 while (true) {

 Window window = find(head, key);

 Node pred = window.pred, curr = window.curr;

 if (curr.key == key) {

 return false;

 } else {

 Node node = new Node(item);

 node.next = new AtomicMarkableRef(curr, false);

 if (pred.next.compareAndSet(curr, node, false,
false)) {return true;}

}}}

Art of Multiprocessor Programming 272

Add
public boolean add(T item) {

 boolean splice;

 while (true) {

 Window window = find(head, key);

 Node pred = window.pred, curr = window.curr;

 if (curr.key == key) {

 return false;

 } else {

 Node node = new Node(item);

 node.next = new AtomicMarkableRef(curr, false);

 if (pred.next.compareAndSet(curr, node, false,
false)) {return true;}

}}} Item already there

Art of Multiprocessor Programming 273

Add
public boolean add(T item) {

 boolean splice;

 while (true) {

 Window window = find(head, key);

 Node pred = window.pred, curr = window.curr;

 if (curr.key == key) {

 return false;

 } else {

 Node node = new Node(item);

 node.next = new AtomicMarkableRef(curr, false);

 if (pred.next.compareAndSet(curr, node, false,
false)) {return true;}

}}}

create new
node

Art of Multiprocessor Programming 274

Add
public boolean add(T item) {

 boolean splice;

 while (true) {

 Window window = find(head, key);

 Node pred = window.pred, curr = window.curr;

 if (curr.key == key) {

 return false;

 } else {

 Node node = new Node(item);

 node.next = new AtomicMarkableRef(curr, false);

 if (pred.next.compareAndSet(curr, node, false,
false)) {return true;}

}}}

Install new node,
else retry loop

Art of Multiprocessor Programming 275

Wait-free Contains

public boolean contains(T item) {

 boolean marked;

 int key = item.hashCode();

 Node curr = head;

 while (curr.key < key)

 curr = curr.next;

 Node succ = curr.next.get(marked);

 return (curr.key == key && !marked[0])

 }

Art of Multiprocessor Programming 276

Wait-free Contains

public boolean contains(T item) {

 boolean marked;

 int key = item.hashCode();

 Node curr = head;

 while (curr.key < key)

 curr = curr.next;

 Node succ = curr.next.get(marked);

 return (curr.key == key && !marked[0])

 }

Only difference is
that we get and
check marked

Art of Multiprocessor Programming 277

Lock-free Find
public Window find(Node head, int key) {

 Node pred = null, curr = null, succ = null;

 boolean[] marked = {false}; boolean snip;

 retry: while (true) {

 pred = head;

 curr = pred.next.getReference();

 while (true) {

 succ = curr.next.get(marked);

 while (marked[0]) {

 …

 }

 if (curr.key >= key)

 return new Window(pred, curr);

 pred = curr;

 curr = succ;

 }

}}

Art of Multiprocessor Programming 278

Lock-free Find
public Window find(Node head, int key) {

 Node pred = null, curr = null, succ = null;

 boolean[] marked = {false}; boolean snip;

 retry: while (true) {

 pred = head;

 curr = pred.next.getReference();

 while (true) {

 succ = curr.next.get(marked);

 while (marked[0]) {

 …

 }

 if (curr.key >= key)

 return new Window(pred, curr);

 pred = curr;

 curr = succ;

 }

}}

If list changes
while

traversed, start
over

Art of Multiprocessor Programming 279

public Window find(Node head, int key) {

 Node pred = null, curr = null, succ = null;

 boolean[] marked = {false}; boolean snip;

 retry: while (true) {

 pred = head;

 curr = pred.next.getReference();

 while (true) {

 succ = curr.next.get(marked);

 while (marked[0]) {

 …

 }

 if (curr.key >= key)

 return new Window(pred, curr);

 pred = curr;

 curr = succ;

 }

}}

Lock-free Find
Start looking from head

Art of Multiprocessor Programming 280

public Window find(Node head, int key) {

 Node pred = null, curr = null, succ = null;

 boolean[] marked = {false}; boolean snip;

 retry: while (true) {

 pred = head;

 curr = pred.next.getReference();

 while (true) {

 succ = curr.next.get(marked);

 while (marked[0]) {

 …

 }

 if (curr.key >= key)

 return new Window(pred, curr);

 pred = curr;

 curr = succ;

 }

}}

Lock-free Find

Move down the list

Art of Multiprocessor Programming 281

public Window find(Node head, int key) {

 Node pred = null, curr = null, succ = null;

 boolean[] marked = {false}; boolean snip;

 retry: while (true) {

 pred = head;

 curr = pred.next.getReference();

 while (true) {

 succ = curr.next.get(marked);

 while (marked[0]) {

 …

 }

 if (curr.key >= key)

 return new Window(pred, curr);

 pred = curr;

 curr = succ;

 }

}}

Lock-free Find

Get ref to successor and
current deleted bit

Art of Multiprocessor Programming 282

public Window find(Node head, int key) {

 Node pred = null, curr = null, succ = null;

 boolean[] marked = {false}; boolean snip;

 retry: while (true) {

 pred = head;

 curr = pred.next.getReference();

 while (true) {

 succ = curr.next.get(marked);

 while (marked[0]) {

 …

 }

 if (curr.key >= key)

 return new Window(pred, curr);

 pred = curr;

 curr = succ;

 }

}}

Lock-free Find

Try to remove deleted nodes in
path…code details soon

Art of Multiprocessor Programming 283

public Window find(Node head, int key) {

 Node pred = null, curr = null, succ = null;

 boolean[] marked = {false}; boolean snip;

 retry: while (true) {

 pred = head;

 curr = pred.next.getReference();

 while (true) {

 succ = curr.next.get(marked);

 while (marked[0]) {

 …

 }

 if (curr.key >= key)

 return new Window(pred, curr);

 pred = curr;

 curr = succ;

 }

}}

Lock-free Find

If curr key that is greater or
equal, return pred and curr

Art of Multiprocessor Programming 284

public Window find(Node head, int key) {

 Node pred = null, curr = null, succ = null;

 boolean[] marked = {false}; boolean snip;

 retry: while (true) {

 pred = head;

 curr = pred.next.getReference();

 while (true) {

 succ = curr.next.get(marked);

 while (marked[0]) {

 …

 }

 if (curr.key >= key)

 return new Window(pred, curr);

 pred = curr;

 curr = succ;

 }

}}

Lock-free Find

Otherwise advance window and
loop again

Art of Multiprocessor Programming 285

Lock-free Find

retry: while (true) {

 …

 while (marked[0]) {

 snip = pred.next.compareAndSet(curr,

 succ, false, false);

 if (!snip) continue retry;

 curr = succ;

 succ = curr.next.get(marked);

 }

…

Art of Multiprocessor Programming

retry: while (true) {

 …

 while (marked[0]) {

 snip = pred.next.compareAndSet(curr,

 succ, false, false);

 if (!snip) continue retry;

 curr = succ;

 succ = curr.next.get(marked);

 }

…

286

Lock-free Find
Try to snip out node

Art of Multiprocessor Programming

retry: while (true) {

 …

 while (marked[0]) {

 snip = pred.next.compareAndSet(curr,

 succ, false, false);

 if (!snip) continue retry;

 curr = succ;

 succ = curr.next.get(marked);

 }

…

287

Lock-free Find
if predecessor’s next field changed,

retry whole traversal

Art of Multiprocessor Programming 288

Lock-free Find

retry: while (true) {

 …

 while (marked[0]) {

 snip = pred.next.compareAndSet(curr,

 succ, false, false);

 if (!snip) continue retry;

 curr = succ;

 succ = curr.next.get(marked);

 }

…

Otherwise move on to check
if next node deleted

Art of Multiprocessor Programming

Performance

• Different list-based set implementaions

• 16-node machine

• Vary percentage of contains() calls

289

Art of Multiprocessor Programming 290

High Contains Ratio

Lock-free
Lazy list

Coarse Grained
Fine Lock-coupling

Art of Multiprocessor Programming 291

Low Contains Ratio

Lock-free

Lazy list

Coarse Grained
Fine Lock-coupling

Art of Multiprocessor Programming 292

As Contains Ratio Increases

Lock-free
Lazy list

Coarse Grained
Fine Lock-coupling

% Contains()

Art of Multiprocessor Programming 293

Summary

• Coarse-grained locking

• Fine-grained locking

• Optimistic synchronization

• Lazy synchronization

• Lock-free synchronization

Art of Multiprocessor Programming 294

“To Lock or Not to Lock”

• Locking vs. Non-blocking:

– Extremist views on both sides

• The answer: nobler to compromise

– Example: Lazy list combines blocking add()

and remove()and a wait-free contains()

– Remember: Blocking/non-blocking is a property

of a method

Art of Multiprocessor Programming 295

  
This work is licensed under a Creative Commons Attribution-
ShareAlike 2.5 License.

• You are free:
– to Share — to copy, distribute and transmit the work
– to Remix — to adapt the work

• Under the following conditions:
– Attribution. You must attribute the work to “The Art of Multiprocessor

Programming” (but not in any way that suggests that the authors endorse
you or your use of the work).

– Share Alike. If you alter, transform, or build upon this work, you may
distribute the resulting work only under the same, similar or a compatible
license.

• For any reuse or distribution, you must make clear to others the license
terms of this work. The best way to do this is with a link to

– http://creativecommons.org/licenses/by-sa/3.0/.
• Any of the above conditions can be waived if you get permission from

the copyright holder.
• Nothing in this license impairs or restricts the author's moral rights.

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

