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P and NP

P is the family of decision problems for which a
solution can be computed in polynomial time.
Example: two colouring of a graph

NP is the family of decision problems for which
a solution can be checked in polynomial time.
Example: three colouring, sudoku

P ⊆ NP, but we don’t know if this inclusion is strict or not.



Descriptive complexity

NP is the family of properties that can be expressed in existential
second-order logic (ESO)

On totally ordered structures, P is the family of properties that can
be expressed in first order logic with least fixed point.
(FO(<)+LFP)

Open problems in descriptive complexity

1. we don’t know if the two logics ESO and FO(<)+LFP are
equivalent on ordered structures

2. we don’t know a logic that captures P on all structures



More than P and NP



Outline

1. Turing machines and complexity classes

2. First order logic, second order logic, and finite structures

3. Fagin’s theorem

4. Logics with fixed points



Turing machine : definition

A Turing machine consists of

I a finite set of states K

I a finite set of symbols Σ, including $ and �

I an initial state s0 ∈ K

I disjoint subsets Acc ,Rej of K (accepting and rejecting states)

I a transition function δ that specifies for each state and symbol
a next state, a symbol to overwrite the current symbol, and a
direction for the tape head to move (Left,Right,Stay)

δ : (K × Σ)→ K × Σ× {L,R,S}



Words, configurations, runs

A Σ-word w is a finite sequence of symbols. Σ∗ denotes the set of
words. w [i ] is the symbol at index i of w . Indexes start from 0.
|w | denotes the length of w .

A configuration of a Turing machine M = (K ,Σ, s0,Acc ,Rej , δ)

is a tuple γ = (s, i ,w) ∈ K × N× Σ∗

A run ρ of M is a finite or infinite sequence of configurations.
ρ is accepting if it is finite and the last configuration is (s, i ,w)
with s ∈ Acc .

A rejecting run is defined similarly



Turing machine : example

?$, !$,R

?0, !1,R

?1, !1,R

?0, !0,R

?1, !1,R

?�, !�, L

?�, !�, L

?1, !1, L

?0, !0,S

?$, !$,R

K = { , , , , , }
Σ = {0, 1, $,�}
s0 =

Acc = { }
Rej = { }



Turing machine : example

?$, !$,R

?0, !1,R

?1, !1,R

?0, !0,R

?1, !1,R

?�, !�, L

?�, !�, L

?1, !1, L

?0, !0,S

?$, !$,R

δ( , $) = ($, ,R)
δ( , 0) = (1, ,R)
. . .

Transitions leading to are not drawn.

Example : δ( , 0) = (0, , S)
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One step relation

Small step semantics

(s, i ,w)→M (s ′, i ′,w ′) if and only if

I s ∈ K \ (Acc ∪ Rej)

I δ(s,w [i ]) = (a, s ′,MV )

I i ′ =


i if MV = S
i + 1 if MV = R
i − 1 if MV = L

I either 0 ≤ i ′ < |w | and w ′ is w where w [i ] is replaced with a

I or i ′ = |w |+ 1 and w ′ is w [0] · · ·w [i − 1] · a ·�

Determinism
There is at most one successor (none if i ′ < 0).



Run

The run of M = (K ,Σ, s0,Acc ,Rej , δ) over the input tape w0 is
the maximal sequence

Run(M,w0) = γ0 → γ1 → γ2 → . . .

with γ0 = (s0, 0,w0).



Run of a TM: example

?$, !$,R

?0, !1,R

?1, !1,R

?0, !0,R

?1, !1,R

?�, !�, L

?�, !�, L

?1, !1, L

?0, !0,S

?$, !$,R

$ 0 0 1 0 1 � � · · ·

Reject!
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Language accepted by a Turing machine

L(M) = {w ∈ Σ∗ | Run(M,w) is accepting}

Example: $00101 6∈ L(M0), where M0 is as before.

Question: what is L(M0)?

?$, !$,R

?0, !1,R

?1, !1,R

?0, !0,R

?1, !1,R

?�, !�, L

?�, !�, L

?1, !1, L

?0, !0,S

?$, !$,R



How the machine works

First phase

I it moves to the right until it reaches �

I it swaps between and when it reads a 1

I if it reads a 0 in , it replaces it with a 1

Second phase

I it moves to the left until it reaches either $ or 0

I it accepts if it reaches $



Run(M0, $00110)

?$, !$,R

?0, !1,R

?1, !1,R

?0, !0,R

?1, !1,R

?�, !�, L

?�, !�, L

?1, !1, L

?0, !0, L

?$, !$,R

$ 0 0 1 1 0 � � · · ·

Accept!
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?1, !1,R

?0, !0,R

?1, !1,R

?�, !�, L

?�, !�, L

?1, !1, L

?0, !0, L

?$, !$,R

$ 0 0 1 1 0 � � · · ·

Accept!
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?�, !�, L

?1, !1, L

?0, !0, L

?$, !$,R

$ 1 0 1 1 0 � � · · ·

Accept!
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L(M0)

First phase

I it moves to the right until it reaches �

I it swaps between and when it reads a 1

I if it reads a 0 in , it replaces it with a 1

Second phase

I it moves to the left until it reaches either $ or 0

I it accepts if it reaches $

L(M0) = {w | all blocks of 1s are of even length}
= $(0 + 11)∗�Σ∗



Complexity

The time complexity TIME(M,w) of the run of M on w is the
number n of steps.
In other words, (s0, 0,w0)→n

M (s, i ,w) 6→M

Example

For M0 as before, TIME(M0,w) ≤ 2 · |w |

The space complexity SPACE(M,w) of the run of M on w is
the number m of distinct visited cells.
In other words, for all (s, i ,w) ∈ Run(M,w) , i ≤ n .

Example

for our TM, SPACE(M0,w) = |w |+ 1



Complexity classes

A complexity class is a collection of languages determined by three
things:

I A model of computation
(such as Turing machines, random access machines, circuits,
etc)

I A resource
(such as time, space or number of processors).

I A set of bounds



Time and space for Turing machines

Deterministic time
For any function f : N→ N we say that a language L is in

DTIME(f (n)) if there is a machine M and a constant c
such that

1. L = L(M) , and

2. for every w ∈ L , TIME(M, |w |) ≤ c · f (|w |) .

Deterministic space

Similarly, we define DSPACE(f (n)) to be the class of languages

accepted by a machine which uses O(f (n)) tape cells1 on inputs
of length n.

1In defining space complexity, we assume a machine M, which has a read-only

input tape, and a separate work tape, and we only count cells on the work

tape.



Polynomial time computation

P
def
=
∞⋃
k=1

DTIME(nk)

The class of language decidable in polynomial time.

Why polynomial bounds?

By making the bounds broad enough, we can make our definitions
fairly independent of the model of computation.
The collection of languages recognised in polynomial time is the
same whether we consider Turing machines, random access
machines, or any other deterministic model of computation.
The collection of languages recognised in linear time, on the other
hand, is different on a one-tape and a two-tape Turing machine.



Closure properties

Union and intersection
if L1, L2 are in P, then so do L1 ∩ L2 and L1 ∪ L2

Proof: simulate two runs in one run

Complementation

if L is in P, then Σ∗ \ L is in P

Proof: ensure first that the machine halts on all inputs, then swap

accepting and rejecting states

Erasure of first symbol

if L is in P, then L′ = {w | aw ∈ L for some a ∈ Σ} is in P

Proof: try all possible erased symbol and simulate a run for each of them

erasure: generalize to any fixed number of symbols erased at any
position



Non-deterministic Turing machine

If, in the definition of a Turing machine, we relax the condition on
δ being a function and instead allow an arbitrary relation, we
obtain a nondeterministic Turing machine.

δ ⊆ (K × Σ)× (K × Σ× {L,R,S}

The small step semantics →M
is also no longer functional, and
all runs form a computation tree.

( , 0,w0)

( , 1,w1) ( , 1,w ′1)

( , 2,w2) ...

Acceptance condition

M accepts w in time t and space s if at least one run does.



Nondeterministic Complexity

Nondeterministic time
For any function f : N→ N , we say that a language L is in

NTIME(f (n)) if there is a nondeterministic machine M such

that L = L(M) and for every w ∈ L there is an accepting run of

M on w in time f (|w |) .

Non-deterministic space

Similarly, we define NSPACE(f (n)) to be the languages accepted

by a nondeterministic machine which uses O(f (n)) tape cells on
inputs of length n. As before, we only count work space.



Nondeterministic polynomial time

NP
def
=
∞⋃
k=1

NTIME(nk)

That is, NP is the class of languages accepted by a
nondetermistic machine running in polynomial time

P ⊆ NP

since a deterministic machine is just a nondeterministic machine in
which δ is functional.



Closure properties

Union and intersection
if L1, L2 are in NP, then so do L1 ∩ L2 and L1 ∪ L2

Complementation?

we don’t know if NP is closed under complementation.

Why? if NP is not closed under complementation, then P 6= NP.

Erasure of the first half of symbols

if L is in NP, then
L′ = {w | w ′ · w ∈ L for some w ′ ∈ Σ∗ with |w ′| = |w |} is in NP

Proof The machine “guesses” all erased symbols and then simulates the

run. This strongly relies on non-determinism!

What about the closure of P under this erasure? We don’t know!



Famous problems in NP
We identify a class of graphs with a language (see 2 next slides).

3 colorability

I Input : a finite graph G = (V ,E )

I Question : is there c : V → {1, 2, 3} such that

for all (v1, v2) ∈ E we have c(v1) 6= c(v2) ?

Hamiltonian path

I Input : a finite graph G = (V ,E )

I Question : are there v1, v2, . . . , vn ∈ V such
that

1. (vi , vi+1) ∈ E for all i , and

2. all vi are distinct, and
3. V = {v1, . . . , vn} .



Signature and structure

A signature σ is a finite sequence of relation symbols

σ = (R1, . . . ,Rm)

where every Ri has a fixed arity ki ≥ 0.

A σ-structure is a tuple

A = (A,RA
1 , . . . ,R

A
m)

where A is a set and RA
i ⊆ Aki .

Remarks

I We will always implicitly consider finite structures only.

I An oriented graph is a structure over a signature with a unique relation
symbol of arity 2.

I In general a signature also allows function symbols and a structure has to
provide an interpretation for them.



Coding a structure as a word

Let us fix Σ = {0, 1,�}

If σ = {R1, . . . ,Rp} , and A = (A,RA
1 , . . . ,R

A
p ) is a finite

σ-structure with |A| = n , we define its encoding as the
concatenation of the encodings of relations.

enc(A) = 0n1 · enc(RA
1 ) · enc(RA

2 ) · · · enc(RA
p )

In order to code the relations RA
i , we need to fix an enumeration

a0, . . . , an−1 of A. Once the enumeration is fixed, the k-tuple

t = (ai1 , . . . , aik ) is identified by the number

enc(t) = i1 + n · i2 + n2 · i3 + · · ·+ nk−1 · ik . The encoding of

RA
i of arity ki is the sequence of bits b0b1 . . . bnki−1 such that

bi = 1 iff enc−1(i) ∈ RA
i .



Querying structures

Another way of thinking of a structure : a database

Example : a database with two tables
ETU MARK

1029021 Camille Tozzi
1072902 Moez Zanad

...
...

...

1029021 17
1202131 13

...
...

A = { all students IDs, all names and surnames, all final exam
marks }
σ = {ETU,MARK} with resp. arities 3 and 2

A request defines a new table from the previous ones

Example

the table TAKEN(name, surname) that contains all names and
surnames of the students that took the final exam

(Camille,Tozzi) ∈ TAKENA



First order logic

Let X = {x , y , . . . } be a fixed set of variables.
Formulas of first order logic (FO) are defined by induction

I atomic formulas
if R ∈ σ is a relation symbol of arity n,
then R(x1, x2, . . . , xn) is a formula

I Boolean combinations
if ϕ,ϕ1, ϕ2 are formulas, then ¬ϕ, ϕ1 ∨ ϕ2, ϕ1 ∧ ϕ2 and
ϕ1 ⇒ ϕ2 are formulas

I quantification over elements of the structure if ϕ is a formula,
then ∀xϕ and ∃xϕ are formulas

Example

A formula that defines the query TAKEN(x , y) is

∃z(ETU(z , x , y)) ∧ (∃tGRADE(z , t))



Semantics of FO

A valuation is a function υ : X → A.
A, υ |= ϕ is defined by induction

A, υ |= R(x1, . . . , xn) if
(
υ(x1), . . . , υ(xn)

)
∈ RA

A, υ |= ϕ1 ∨ ϕ2 if A, υ |= ϕ1 or A, υ |= ϕ2

A, υ |= ϕ1 ∧ ϕ2 if A, υ |= ϕ1 and A, υ |= ϕ2

A, υ |= ¬ϕ if A, υ 6|= ϕ
A, υ |= ∃xϕ if there is a ∈ A s.t. A, υ[x 7→ a] |= ϕ
A, υ |= ∀xϕ if for all a ∈ AA, υ[x 7→ a] |= ϕ



Closed formulas, Boolean queries

A formula is closed if every occurence of a variable x is underneath
a ∃x .

Examples

I ∃z(ETU(z , x , y)) ∧ (∃tGRADE(z , t)) is not closed
x and y are not quantified

I ∀x(P(x) ∨ ∃yQ(x , y)) is closed

I ∃y
(
Q(x , y) ∨ ∀xP(x)

)
is not closed

We write A |= ϕ if A, υ |= ϕ for all υ.



Data complexity

Let Mod(ϕ) = {enc(A) | A |= ϕ}

Claim
Let ϕ be a fixed FO formula. Then Mod(ϕ) ∈ P

The straightforward algorithm proceeds recursively on the structure
of ϕ. Each quantifier corresponds to a “for loop”enumerating A.

If |A| = n and ϕ has at most m nested quantifiers, then the
running time of the algorithm is in O(nm).

Space complexity

We need to remember a counter between 0 and n − 1 for each
quantifier, plus a call stack whose depth is bounded by the depth
of the formula (which is a constant), so the space complexity is in
O(m log n).



Inexpressivity results

We just saw that {Mod(ϕ) | ϕ ∈ FO} ⊆ P.

But is the inclusion strict?

The answer is YES:

I connectivity of a graph is in P, but cannot be expressed in FO

I evenness of A is in P, but cannot be expressed in FO.



Second order logic

We extend first-order logic by a set of relational variables

For each m ∈ N there is an infinite collection of variables
Vm = {Vm

1 ,V
,
2 . . . } of arity m.

Second-order logic extends first-order logic by allowing
second-order quatifiers

∃Xϕ for X ∈ Vm

A structure A satisfies ∃Xϕ if there is an m-ary relation R on the
universe of A such that (A,X → R) satisfies ϕ.



Existential second-order logic

Existential second-order logic (ESO) consists of those formulas of
second-order logic of the form

∃X1 . . . ∃Xkϕ



Examples

Evenness
This formula is true in a structure if, and only if, the size of the
domain is even.

∃B∃S ∀x∃yB(x , y) ∧ ∀x∀y∀zB(x , y) ∧ B(x , z)→ y = z (1)
∀x∀y∀zB(x , z) ∧ B(y , z)→ x = y (2)
∀x∀yS(x) ∧ B(x , y)→ ¬S(y) (3)
∀x∀y¬S(x) ∧ B(x , y)→ S(y)

1. B is a functional relation

2. it is injective (therefore a permutation)

3. it maps S to its complement and vice versa



Examples

Transitive closure
This formula is true of a pair (a, b) ∈ A if, and only if, there is an
E -path from a to b is even.

∃P ∀x∀yP(x , y)→ E (x , y)
∃xP(a, x) ∧ ∃xP(x , b) ∧ ¬∃xP(x , a) ∧ ¬∃xP(b, x)
∀x∀yP(x , y)→

(
∀zP(x , z)→ y = z

)
∀x∀yP(x , y)→

(
∀zP(z , y)→ x = z

)
∀x(x 6= a ∧ ∃yP(x , y))→ ∃zP(z , x)
∀x(x 6= b ∧ ∃yP(y , x))→ (5)

P is a partial function that associated with a path π from a to b.
It maps a node of the path to its successor.

It only works for finite structures!



Examples

3-colourability

This formula is true in a graph G = (V ,E ) if, and only if, it is
3-colourable

∃R∃G∃B ∀xR(x) ∨ B(x) ∨ G (x)
∀x¬(R(x) ∧ G (x)) ∧ ¬(R(x) ∧ B(x)) ∧ ¬(G (x) ∧ B(x))
∀x∀yE (x , y)→

(
¬(R(x) ∧ R(y))∧
¬(G (x) ∧ G (y))∧
¬(B(x) ∧ B(y))

)



Fagin’s theorem

Theorem (Fagin)

Let C be class of finite structures. The following two are equivalent

1. C = Mod(ϕ) for some ϕ ∈ ESO

2. {enc(A) | A ∈ C} ∈ NP

In other words,
“ESO = NP”

One direction is easy: given A and ∃P1 . . . ∃Pmϕ, a
nondeterministic Turing machine can guess an interpretation for
P1, . . . ,Pm and then verify ϕ.



Fagin’s theorem

Fix a nondeterministic machine M that accepts enc(C) in time
O(nk)

We construct a first-order formula ϕM,k such that

(A, <,X) |= ϕM,k ⇔ X codes an accepting run of M
of length at most nk on input enc(A, <)

So, A |= ∃ < ∃X order(<) ∧ ϕM,k if, and only if, there is some
total order < on A so that M accepts enc(A, <) in time nk .



Constructing the formula

order(<) is the FO formula

∀x∀y (x 6= y)↔ (x < y ∨ y < x) ∧
∀x∀y∀z (x < y ∧ y < z)→ x < z

the lexicographical order on k-tuples is expressed by the formula∨
i<k

(
(
∨
j<i

xj = yj) ∧ xi < yi

)
a k-tuple x codes a number in {0, . . . , nk − 1} and we can express
some simple arithmetic on individuals and on k-tuples

x = 0 stands for ∀y(x ≤ y)
x = y + 1 stands for ∀z(z ≤ x)→ (z < y)
x < na stands for

∧
i≤k−a xi = 0

. . .



Constructing the formula

Let M = (K ,Σ, s,Acc ,Rej , δ).

The second order variables X appearing in ϕM,k include Ss , Ta,
and H. The formula ϕM,k will enforce that they have the following
meaning:

I Ss(x)
“the state of the machine at time x is s”

I Ta(x, y)
“at time x, the symbol at position y of the tape is a”

I H(x, y)
“at time x, the tape head is pointing at tape cell y”



Constructing the formula

1. initial state is s0 and the head is initially at the beginning of
the tape

(Ss0(0) ∧ H(0, 0)
)

2. the machine is never in two states at once

∀x
∧
s∈K

(
Ss(x)→

∧
s′ 6=s

¬Ss′(x)
)

3. the head is never in two places at once

∀x∀y
(
H(x, y)→ (∀z(y 6= z)→ ¬H(x, z))

)
4. each tape contains only one symbol

∀x∀y
∧
a∈Σ

Ta(x, y)→
∧
b 6=a

¬Tb(x, y)



Constructing the formula

5. the tape does not change except under the head

∀x∀y∀z(y 6= z→ (
∧
a∈Σ

H(x, y) ∧ Ta(x, z)→ Ta(x + 1, z)))

6. each tape is according to δ

∀x∀y
(∧

a∈Σ

∧
s∈K H(x, y) ∧ Ss(x) ∧ Ta(x, y)

)
→
∨

(s′,b,D)∈δ

(
H(x + 1, yD) ∧ Sb(x + 1) ∧ Tb(x + 1, y)

)
7. some accepting state is reached

∃x
∨

s∈Acc
Ss(x)

8. the initial content of the tape is enc(A, <)



Initial tape content

Remember that enc(A) = 0n1 · enc(R1) · · · enc(Rm).
So we can express the property with

∀x x < n→ T0(1, x) ∧ T1(1,n)

x ≤ nk1 →
(
T1(1, x + n + 1)↔ R1(x|k1

)
)

. . .

where x = y + n stands for

x0 = y0∧
∨

0<i<k−1

xi = yi + 1∧
∧

0<j<i

xj = 0∧yj = n−1∧
∧
i<j

xj = yj



The polynomial hierarchy

We can define further classes by allowing other second-order
quantifier prefixes

I Σ1
1 = ESO (∃∗) corresponds to NP

I Π1
1 = USO (∀∗) corresponds to co −NP, the class of

problems that can be accepted by a demoniac
nondeterministic machine

I Σ1
n+1 is the collection of properties definable by a formula of

the form ∃∗Xϕ with ϕ ∈ Π1
n

I Σ1
n+1 is the collection of properties definable by a formula of

the form ∃∗Xϕ with ϕ ∈ Π1
n

I PH =
⋃

i≥1 Σ1
i =

⋃
i≥1 Π1

i is the polynomial hierarchy

Remarks
NP ⊆ PH ⊆ PSPACE
P = NP if, and only if, P = PH



Alternating Turing machines

An alternating Turing machine is a machine with both angelic and
demoniac non-determinism.

M = (K = K∀ ] K∃,Σ, δ, s0,Acc,Rej)

The run Run(M,w) is a two-player game between Ang∃l and
D∀emon; w is accepted by M if Ang∃l has a winning strategy



Standard theorems in computational complexity

Theorem (Chandra, Stockmeyer, Kozen)

for all f (n) ≥ log(n).

ATIME(f (n)) ⊆ DSPACE(f (n))

ASPACE(f (n)) =
⋃

c>0 DTIME(2c·f (n))
NSPACE(f (n)) ⊆

⋃
c>0 ATIME(c · f (n)2)

Theorem (Savitch)

NSPACE(f (n)) ⊆ DSPACE(f (n)2)

L ⊆ NL ⊆ AL = P ⊆ NP ⊆ PH ⊆ AP = PSPACE = NPSPACE



FO + LFP

Let ϕ(x,R) be a formula that is monotone in R, i.e.

R ⊆ R ′ implies ϕ(x,R)→ ϕ(x,R ′)

then by Knaster-Tarski fixed point theorem there is a unique Rω
such that

∀x Rω(x)↔ ϕ(x,Rω)

Moreover, over a finite structure A with |A| = n,

R0 = ⊥ Ri+1(x) = ϕ(x,Ri )

stabilizes after nk steps, where k is the arity of x

We write LFP[x,R]ϕ for Rω.

FO + LFP is the logic that extends FO with LFP



Examples

Reachability

E ∗ = LFP[x , y ,R]
(
x = y ∨ ∃z E (x , z) ∧ R(z , y)

)

Reachability game

Let σ = (Angel,Demon,E ) be the signature of arenas (game
graphs).

LFP[x , y ,R]
(

x = y ∨
Angel(x) ∧ ∃z E (x , z) ∧ R(z , y) ∨
Demon(x) ∧ ∀z R(x , z)→ R(z , y)

)
is true for (x , y) if Angel has a strategy for reaching y starting
from x



Capturing P over ordered structures

Assume σ = {<, . . . }. A structure A is ordered if <A is a total
order on A.

Theorem (Immerman, Vardi)

FO[<] + LFP captures P: for all class C of ordered structures, the
following two are equivalent

1. C = Mod(ϕ) for some ϕ in FO[<] + LFP

2. {enc(A) | A ∈ C} is in P

(1)→ (2) is by finite fixed point iteration
(2)→ (1) : since P = ASPACE(log(n)), we need to encode the
existence of a winning strategy for Angel in an alternating Turing
machine with logarithmic space. Since the machine uses
logarithmic space, a configuration can be coded as a tuple x, and
therefore the game graph can be coded by a FO[<] formula.



NL and FO + TC

the extension of FO with transitive closure is defined by

TC[x, y, ϕ] = LFP[x, y,R]
(
x = y ∨ ∃zϕ(x, z) ∧ R(z, y)

)

Theorem (Immerman, Szelepcsényi)

FO[<] + TC captures NL, and as a corollary, NL = coNL.

Similar encoding of a nondeterministic logspace Turing machine.
Deciding reachability in logspace : the machine guesses a path and
remembers how many nodes it visited.

The difficult point is negation: how to decide non-reachability in
non-deterministic logspace? nice trick there!
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