Synchronizability of Communicating Finite State
Machines is not Decidable

A. Finkel E. Lozes
LSV, ENS Cachan

ICALP'2017 — Warsaw

Shared Memory

Synchronous Communications

€ Skype™ - (e [=0
Spe Contacts Conversaton Appel Afficiage Outis Ade

vdéo

persornalsaton +

‘Qetectuer vabre pvel raitvers n wéphone fe

Asynchronous Communication

friday
O think | found a bug in Lemma 36 l

saturday
10:00
ll don't see how to fix that)
10:01
(Didn't you receive my fix? l
10:02

LDO you know you ruined my week-end?)

A model

m a network of machines that exchange messages asynchronously

m each machine M has a finite control state

only one buffer for the messages sent by M; to M,

m all buffers are independent of each others

m all buffers are FIFO queues

Example

2021 12 »> 21 12
1p1—3 \ / I 42—3
b1—>3
T = ?d2—>3

M3

Example

221 al—2 »> 21 al—2
Ipl—3 \ / 1d2—3
b1—>3
7= la 7d273

M3

Example

?2c2—1 412 ap> c2—1 412
Ipl—3 \ / 1d2—3
b1—>3
7= la 7423

M3

Example

221 al—2 ap> 21 al—2
Ipl—3 \ / 1d2—3
b1—>3
7= la7a 7d2—3

M3

Example

2c2—1 a2 »> 21 512
Ipl—3 \ / 1d2—3
72p1—3
7= la7a 7d2—3

M3

Example

2c2—1 a2 »> 21 512
Ipl—3 \ / 1423
b1—>3
7= la%ald ?2d2—3

M3

Example

2c2—1 a2 »> 21 512
Ipl—3 \ : 1d2—3
b1—>3
Trace
7= la%ald ?2d2—3

M3

Example

2c2—1 a2 »> 21 512
Ipl—3 \ : 1d2—3
b1—>3
Trace
7= la?aldlb ?d%>—3

M3

Example

<<
2c2—1 1312 >> 1c2—1 2312
!b1—>3 %\ 4 !d2—>3
b1—>3
Trace
7= la?ald!lb ?d2_>3

M3

Example

<<
2c2—1 1312 >> 1c2—1 2312
Ipl—3 %\ + 1d2—3
b1—>3
Trace
7= la?ald!b!b ?d2_>3

M3

Example

2c2—1 a2 >> 21 512
Ipl—3 l : 1423
b1—>3
Trace
7= la%ald!blb ?d2_>3

M3

Example

_b1~>3
Trace
7= la?ald!b!b ?d23
b

Example

<<
1312 >> 1c2—1 2312
4
!b1—>3 4 5 !d2—>3
72p1—3
Trace
7= la?aldblb 7d273

b

Example

<<
1312 >> 1c2—1 2312
<4
!b1—>3 4 S !d2—>3
Trace
7= la%ald!b!b 7d%3
?b ?d

Example

<<
1312 »> 21 512
4
Ipl—3 4 1d2—3
Trace
7= la?aldblb 7d273
?b7d

Example

<<
1312 »> 21 al—2
4
Ipl—3 4 1d2—3
Trace
7= la?aldblb 7d273
?b?dlc

Example

<4 C
1312 »> 21 512
4
Ipl—3 4 1d2—3
Trace
7= la?aldblb 7d273
?b?dlc

Example

<4 C
1312 »> 21 512
4
Ipl—3 4 1d2—3
Trace
7= la?aldblb 7d273
?b?d!lc?c

Example

<<
1312 »> 21 512
4
Ipl—3 4 1d2—3
Trace
7= la?aldblb 7d273
?b?d!lc?c

Example

2c2—1 1312 >> 21 512

7R //

b1~>3

w Q0

7= la?ald!blb ?d23
?b?d!c?c?b

M3

Example

2c2—1 a2 »> 21 512

AN //

b1—>3

w Q0

7= la?ald!blb ?d23
?b?d!c?c?b

M3

Example

2c2—1 al—2 >> 21 g1—2
|b1—>3 \ / !d2—)3
'b1—>3
Trace _)ei\/e Send trace
7= la%aldIblb 2d2—3 send(r) =
7b2d e 7¢ 7b laldlblblc

M3

Verification Problems

m is there a bound on the size of the queues (for all runs) ?
m is there a run where a message is sent but never received?

m is there a run where a machine receives an unexpected
message?

m is there a reachable configuration where all machines wait for
messages but the queues are empty?

All these questions (and many others) are undecidable
[Brand Zafiropulo, JACM 1983]

CFSM and Tiling Problems

Set of tiles Solution

CFSM and Tiling Problems

Set of tiles

<

Solution

The machine M guesses
the solution

The other machine
is a forwarder.

CFSM and Tiling Problems

Set of tiles

Sy Guess first row
M and queue it

Solution

The machine M guesses
the solution

The other machine
is a forwarder.

CFSM and Tiling Problems

Set of tiles

Guess tile above

Solution

The machine M guesses
the solution

The other machine
is a forwarder.

CFSM and Tiling Problems

Set of tiles

CESM Guess tile above

» ba
M
and queue it

Solution

The machine M guesses
the solution

The other machine
is a forwarder.

CFSM and Tiling Problems

Set of tiles Solution

CESM Guess tile above The machine M guesses
. the solution
bid
M The other machine

« is a forwarder.

CFSM and Tiling Problems

Set of tiles

CESM Guess tile above

bid .

and queue it

Solution

The machine M guesses
the solution

The other machine
is a forwarder.

CFSM and Tiling Problems

Set of tiles Solution

CESM Guess tile above The machine M guesses
. the solution
bid
M The other machine

« is a forwarder.

CFSM and Tiling Problems

Set of tiles

CESM Guess tile above

and queue it

NA

Solution

The machine M guesses
the solution

The other machine
is a forwarder.

CFSM and Tiling Problems

Set of tiles Solution

CESM Guess tile above The machine M guesses

. the solution

M The other machine
« is a forwarder.

NA

CFSM and Tiling Problems

Set of tiles

CESM Guess tile above

M g
K and queue it

Solution

The machine M guesses
the solution

The other machine
is a forwarder.

CFSM and Tiling Problems

Set of tiles

5 Start again
M with the next row

Solution

The machine M guesses
the solution

The other machine
is a forwarder.

CFSM and Tiling Problems

Set of tiles

Solution

The machine M guesses
the solution

The other machine
is a forwarder.

CFSM and Tiling Problems

Set of tiles

Solution

The machine M guesses
the solution

The other machine
is a forwarder.

CFSM and Tiling Problems

Set of tiles Solution
AN HNNKHNKHA
B X MK N
CESM The machine M guesses
the solution
bid .
M The other machine

« is a forwarder.

CFSM and Tiling Problems

Set of tiles Solution
AN HNNKHNKHA
B X MK N
CESM The machine M guesses
the solution
bid .
M The other machine

« is a forwarder.

CFSM and Tiling Problems

Set of tiles Solution
AN HNNKHNKHA
B X MK N
CESM The machine M guesses
the solution
bid .
M The other machine

« is a forwarder.

CFSM and Tiling Problems

Set of tiles Solution
AN HNNKHNKHA
B X MK N
CESM The machine M guesses
the solution
M > The other machine

« is a forwarder.

CFSM and Tiling Problems

Set of tiles Solution
AN HNNKHNKHA
B X MK N
CESM The machine M guesses
the solution
M > The other machine

« is a forwarder.

CFSM and Tiling Problems

Set of tiles

Solution

The machine M guesses
the solution

The other machine
is a forwarder.

Synchronous Execution

Synchronous

Network

!d2—)3

Synchronous Execution

Synchronous

Network

!b1—>3 !d2—>3

Trace

7= la%a

Synchronous Execution

Synchronous

Network

!b1—>3 !d2—>3

Trace

7= la%a

Synchronous Execution

Synchronous

Network

Trace

7= la?alb?b ?d23

Synchronous Execution

Synchronous

Network

!b1—>3 !d2—>3

Trace

7= la?alb?b ?d23

Synchronous Execution

Synchronous

Network

!b1—>3

Trace

7= la?alb?b 7423
Id 7d

!d2~>3

Synchronous Execution

Synchronous

Network

!b1—>3

Trace

7= la?alb?b ?d23
Id ?d

!d2—)3

Synchronous Execution

!al—>2 !C2~>1 ?al—>2

Synchronous

Network

!b1—>3 !d2—>3

Trace

7= la?alb?b ?d23
Id?d!c?c

Synchronous Execution

Synchronous

Network

!b1—>3

Trace

7= la?alb?b ?d23
Id?d!c?c

!d2—)3

Send trace
send(7) =
lalbld!c

Finite Transition System

m the transition system of a synchronous system is finite and
effective

m this is also true for an asynchronous system with bounded
buffers

m all previous verification problems become decidable

m but what can we do if the buffers are unbounded?

Slack Elasticity for CSP (1998)

Slack Elasticity in Concurrent Computing

Rajit Manohar and Alain J. Martin

California Institute of Technology, Pasadena CA 91125, USA

Abstract. We present conditions under which we can modify the slack
of a channel in a distributed computation without changing its behav-
ior. These results can be used to modify the degree of pipelining in an
asynchronous system. The generality of the result shows the wide variety
of pipelining alternatives presented to the designer of a concurrent sys-
tem. We give examples of program transformations which can be used
in the design of concurrent systems whose correctness depends on the
conditions presented.

A system is slack elastic if it behaves as if it were synchronous.

Slack Elasticity for MPI (201

Precise Dynamic Analysis for Slack Elasticity:
Adding Buffering without Adding Bugs*

Sarvani Vakkalanka, Anh Vo, Ganesh Gopalakrishnan, and Robert M. Kirby

School of Computing, Univ. of Utah, Salt Lake City, UT 84112, USA

Abstract. Increasing the amount of buffering for MPI sends is an ef-
fective way to improve the performance of MPI programs. However, for
programs containing non-deterministic operations, this can result in new
deadlocks or other safety assertion viclations. Previous work did not pro-
vide any characterization of the space of slack elastic programs: these for
which buffering can be safely added. In this paper, we offer a precise char-
acterization of slack elasticity based on our formulation of MPI's happens
before relation. We show how to efficiently locate potential culprit sends in
such programs: MPI sends for which adding buffering can increase overall
program non-determinism and cause new bugs. We present a procedure

Synchronizability for choreographies (2011)

Choreography Conformance via Synchronizability

Samik Basu
Department of Computer Science
lowa State University
Ames, |A 50011, USA
shasu@cs.iastate.edu

ABSTRACT

Choreography analysis has been a crucial problem in ser-
vice oriented computing. Interactions among services in-
volve message exchanges across organizational boundaries in
a distributed computing environment, and in order to build
such systems in a reliable manner, it is necessary to develop
techniques for analyzing such interactions. Choreography
conformance involves verifying that a set of services behave
according to a given choreography specification that charac-
terizes their interactions, Unfortunately this is an undecid-
able problem when services interact with asynchronous com-
munication. In this paper we present techniques that iden-

Tevfik Bultan
Department of Computer Science
University of California
Santa Barbara, CA 93106, USA
bultan@cs.ucsb.edu

tify if the interaction behavior for a set of services remain the
same when asynchronous communication is replaced with
synchronous communication. This is called the synchroniz-
ability problem and determining the synchronizability of a
set of services has been an open problem for several years.
We solve this problem in this paper. Our results can be used
to identify synchronizable services for which choreography
conformance can be checked efficiently. Our results on syn-
chronizability are applicable to any software infrastructure
that supports message-based interactions.

Synchronizability : definition

Notations
m 7o : set of send traces along any synchronous execution
m 7, : set of send traces along any asynchronous execution

m 7, : set of send traces along any asynchronous execution
with buffers bounded to size k

Observation
LyClhiC, C---C1,

Definition

a system is synchronizable if Zy = Z,,

Example: not synchronizable

!a1—>2

m Iy = {¢}
m 7; = {¢,a,b,ab, ba}

Example: synchronizable

?al—>2 !b2—>1

!b2—>1 ?al—>2

Zo = {¢,a,b,ab,ba} =7,

Why do we care about synchronizability?

a desirable property

m when the message-passing library gives no guarantee on
(a)synchrony or buffer sizes

m when the system should run correctly in different networks

synchronizable systems are easier to verify?
m synchronizable systems are expected to be easy to verify

m it should not be too hard to check whether a system is
synchronizable

Basu-Bultan conjecture

if Zo = 7,1, then Zy = 7,

in particular, synchronizability would be decidable
(note that Zy, Z7 are regular)

several proof attempts
WWW'11, VMCAI'12, POPL'12, TCS'16,. ..

what about verification problems?
synchronizable = LTL model-checking of send traces is decidable

How to cook a counter-example

How to cook a counter-example

M1 — M3 Ml

| 9

M, @

1—>3l

o
1

|b1—>

if buffer size > 2 then ?b before 7a is possible

How to cook a counter-example

How to cook a counter-example

M —— M3 M, M

U B

M, @

1—>3l 123

o
1

QW%

|b1—>

if buffer size > 2 then ?c before 7a in M3 is possible

How to cook a counter-example

How to cook a counter-example

M —— M;j My Mo Ms

U B

M, @

1—>31 123

o
1

QW%
O

|b1—>

sp reachable iff buffer size > 2

How to cook a counter-example

M —— M;j My Mo Ms

U B

M, @

1—>31 123

o
1

QW%
O

|b1—>

let's ensure 7o = 74

How to cook a counter-example

How to cook a counter-example

How to cook a counter-example

How to cook a counter-example

M —— M;j My Mo Ms

| L9 .9
Z 9 .M? 9 o
o o

|b1—>

let's ensure Zy # 1o

How to cook a counter-example

How to cook a counter-example

| pl—2 l 2023 l

aabce € I, \ Iy : not synchronizable, but Zg = 73

A limitation

actually, this was just a counter-example for the conjecture for
peer-to-peer communications

except in TCS’16, the communication model studied by Basu and
Bultan was mailboxes

difference
m every machine has exactly one mailbox

m all messages from other machines are merged in the mailbox

m mailboxes are still FIFO queues

Example

My

?C2—>1 !al—>2 !C2—>1 ?a1—>2 ?b1—>3

!b1—>3 !d2—>3

>>
>>
>>

Example

My

?C2—>1 !al~>2 !C2—>1 ?a1—>2 ?b1—>3

!b1—>3 !d2—>3

>>
>>
>>

Example

My

1—-3
?C2—>1 !al—>2 !C2—>1 ?a1—>2 7p1—
!b1—>3 !d2—>3
N A N

Example

My

1—-3
?C2—>1 !al—>2 !C2—>1 ?31%2 7p1—
!b1—>3 !d2—>3
N A N

Example

My

?C2—>1 !al—>2 !C2—>1 ?a1—>2 ?b1—>3

!b1—>3 !d2—>3

>>
>>
>>

Example

My

?C2—>1 !al—>2 !C2—>1 ?a1—>2 ?b1—>3

!b1a3 !d2—>3

>>
>>
>>

Example

My

1—-3
?C2—>1 !al—>2 !C2—>1 ?a1—>2 7p1—
!b1—>3 !d2—>3
N A N

Example

My

?C2—>1 !al—>2 !C2—>1 ?a1—>2 ?b1—>3
!b1a3 !d2—>3
N A N

Example

My

?C2—>1 !al—>2 !C2—>1 ?a1—>2 ?b1_>3

1pl—3 1423

>>
>>

o | T [

Example

My

?C2—>1 !al—>2 !C2—>1 ?a1—>2 ?b1_>3

!b1—>3 !d2~>3

>>
>>

o | T [

Example

My

1—-3
?C2—>1 !al—>2 !C2—>1 ?a1—>2 7p1—
!b1—>3 !d2—>3
N A

Q| T | T P>

Example

My

1-3
?C2—>1 !al—>2 !C2—>1 ?a1—>2 7p1—
!b1—>3 !d2—>3
N A

Q| T | T P>

Example

My

1—-3
?C2—>1 !al—>2 !C2—>1 ?a1—>2 7p1—
!b1—>3 !d2—>3
N A N

Example

My

1—-3
?C2—>1 !al—>2 !C2—>1 ?a1—>2 7p1—
!b1—>3 !d2—>3
N A N

Example

My

?C2—>1 !al—>2 !C2—>1 ?a1—>2 ?b1—>3
!b1—>3 !d2—>3
N A N

A

blocked

Back to the counter-example

M —— M;j My Mo M;

Back to the counter-example

"0 o
| pl—2 l 2023 l
® o

problem : now s; is not reachable!

Adapting the counter-example to mailboxes

Adapting the counter-example to mailboxes

M1 — M3 Ml

| e Ha?

M, @

13 l

o
l

|b1—>

let's make M3 compete with M;

Adapting the counter-example to mailboxes

Adapting the counter-example to mailboxes

M1 E— M3 M1 M3

b‘ / 1_’3? ?c3_’2

M, @

13 l

o
l

|b1—>

let's also prepare for Zo = 73

Adapting the counter-example to mailboxes

Adapting the counter-example to mailboxes

M1 E— M3 M1 M3

b‘ / 1_}3? ?al—>3/e\!c3—>2

Mo @ 73 lc

13 l

o
l

|b1—>

M, can receive b and c in any order

Adapting the counter-example to mailboxes

M1 E— M3 M1 M3

b‘ / 1_}3? ?al—>3/e\!c3—>2

Mo @ 73 lc

13 l

o
l

|b1—>

let's dig into that...

Adapting the counter-example to mailboxes

Adapting the counter-example to mailboxes

s4 and r3 are visited in a same run < buffer size > 2

Adapting the counter-example to mailboxes

C3—>2

-~
o
P
(0}
~
mn—-
5
0.0 }

L

Adapting the counter-example to mailboxes

My BN M3 My Mo M3

bJ / ? ?bf\?c 725173 132
!31%3

d
M>
!al_ﬁ? ?C? ?7[) ?a/ Ic
o

|b1—>2? ?d2—>
® @

~J
5]

~J)
5]

let's ensure Zyp = 13...

Adapting the counter-example to mailboxes

bJ / ? ?bﬂ?c 725173 132
!31%3

S
Q.
oy
L
—@
N
—@Q—0.
—~ @
o
~
N
a
i@mt@

L

0o
o
t@g@

Adapting the counter-example to mailboxes

My BN M3 My Mo M3

bJ / ; 1%3? ?b/o\?c 22 132

d
M>
!al_ﬁ? ?C? ??b ?a/ lc

0

~J
5]

~
Q.

Io = Il 75 Ig. Done!

Our main results (1)

Synchronizability is undecidable

Whether Zg = Z,, for a peer-to-peer system is undecidable.

Construction
extension of the first counter-example, reduction from a tiling
problem.

In particular
3 machines are needed

Our main results (2)

Oriented rings

m each machine receives from Y a \

at most one other machine

m each machine sends to at
most one other machine

m example: a system with two
machines

Synchronizability is decidable for oriented rings

Whether Zy = Z,, for a system with an oriented ring topology is
decidable. Moreover, the set of reachable configurations is channel
recognizable.

Open Problems

m what are the topologies for which Zg = 7, is decidable?

m is synchronizability for mailboxes really decidable?

m what would be a better definition of synchronizability?

m for peer-to-peer, existentially O-bounded seems promising
[Genest et al]

m what about mailboxes?

	Synchronizability
	Mailboxes
	Main Results

