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Asynchronous Communication
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A model

m a network of machines that exchange messages asynchronously

m each machine M has a finite control state

only one buffer for the messages sent by M; to M,

m all buffers are independent of each others

m all buffers are FIFO queues
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Verification Problems

m is there a bound on the size of the queues (for all runs) ?
m is there a run where a message is sent but never received?

m is there a run where a machine receives an unexpected
message?

m is there a reachable configuration where all machines wait for
messages but the queues are empty?

All these questions (and many others) are undecidable
[Brand Zafiropulo, JACM 1983]
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Synchronous Execution
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Send trace
send(7) =
lalbld!c



Finite Transition System

m the transition system of a synchronous system is finite and
effective

m this is also true for an asynchronous system with bounded
buffers

m all previous verification problems become decidable

m but what can we do if the buffers are unbounded?



Slack Elasticity for CSP (1998)

Slack Elasticity in Concurrent Computing

Rajit Manohar and Alain J. Martin

California Institute of Technology, Pasadena CA 91125, USA

Abstract. We present conditions under which we can modify the slack
of a channel in a distributed computation without changing its behav-
ior. These results can be used to modify the degree of pipelining in an
asynchronous system. The generality of the result shows the wide variety
of pipelining alternatives presented to the designer of a concurrent sys-
tem. We give examples of program transformations which can be used
in the design of concurrent systems whose correctness depends on the
conditions presented.

A system is slack elastic if it behaves as if it were synchronous.



Slack Elasticity for MPI (201

Precise Dynamic Analysis for Slack Elasticity:
Adding Buffering without Adding Bugs*

Sarvani Vakkalanka, Anh Vo, Ganesh Gopalakrishnan, and Robert M. Kirby

School of Computing, Univ. of Utah, Salt Lake City, UT 84112, USA

Abstract. Increasing the amount of buffering for MPI sends is an ef-
fective way to improve the performance of MPI programs. However, for
programs containing non-deterministic operations, this can result in new
deadlocks or other safety assertion viclations. Previous work did not pro-
vide any characterization of the space of slack elastic programs: these for
which buffering can be safely added. In this paper, we offer a precise char-
acterization of slack elasticity based on our formulation of MPI's happens
before relation. We show how to efficiently locate potential culprit sends in
such programs: MPI sends for which adding buffering can increase overall
program non-determinism and cause new bugs. We present a procedure



Synchronizability for choreographies (2011)

Choreography Conformance via Synchronizability

Samik Basu
Department of Computer Science
lowa State University
Ames, |A 50011, USA
shasu@cs.iastate.edu

ABSTRACT

Choreography analysis has been a crucial problem in ser-
vice oriented computing. Interactions among services in-
volve message exchanges across organizational boundaries in
a distributed computing environment, and in order to build
such systems in a reliable manner, it is necessary to develop
techniques for analyzing such interactions. Choreography
conformance involves verifying that a set of services behave
according to a given choreography specification that charac-
terizes their interactions, Unfortunately this is an undecid-
able problem when services interact with asynchronous com-
munication. In this paper we present techniques that iden-

Tevfik Bultan
Department of Computer Science
University of California
Santa Barbara, CA 93106, USA
bultan@cs.ucsb.edu

tify if the interaction behavior for a set of services remain the
same when asynchronous communication is replaced with
synchronous communication. This is called the synchroniz-
ability problem and determining the synchronizability of a
set of services has been an open problem for several years.
We solve this problem in this paper. Our results can be used
to identify synchronizable services for which choreography
conformance can be checked efficiently. Our results on syn-
chronizability are applicable to any software infrastructure
that supports message-based interactions.



Synchronizability : definition

Notations
m 7o : set of send traces along any synchronous execution
m 7, : set of send traces along any asynchronous execution

m 7, : set of send traces along any asynchronous execution
with buffers bounded to size k

Observation
LyClhiC, C---C1,

Definition

a system is synchronizable if Zy = Z,,



Example: not synchronizable

!a1—>2

m Iy = {¢}
m 7; = {¢,a,b,ab, ba}




Example: synchronizable

?al—>2 !b2—>1

!b2—>1 ?al—>2

Zo = {¢,a,b,ab,ba} =7,




Why do we care about synchronizability?

a desirable property

m when the message-passing library gives no guarantee on
(a)synchrony or buffer sizes

m when the system should run correctly in different networks

synchronizable systems are easier to verify?
m synchronizable systems are expected to be easy to verify

m it should not be too hard to check whether a system is
synchronizable



Basu-Bultan conjecture

if Zo = 7,1, then Zy = 7,

in particular, synchronizability would be decidable
(note that Zy, Z7 are regular)

several proof attempts
WWW'11, VMCAI'12, POPL'12, TCS'16,. ..

what about verification problems?
synchronizable = LTL model-checking of send traces is decidable
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How to cook a counter-example

| pl—2 l 2023 l

aabce € I, \ Iy : not synchronizable, but Zg = 73



A limitation

actually, this was just a counter-example for the conjecture for
peer-to-peer communications

except in TCS’16, the communication model studied by Basu and
Bultan was mailboxes

difference
m every machine has exactly one mailbox

m all messages from other machines are merged in the mailbox

m mailboxes are still FIFO queues
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problem : now s; is not reachable!
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Adapting the counter-example to mailboxes
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let's dig into that...
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s4 and r3 are visited in a same run < buffer size > 2
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Adapting the counter-example to mailboxes
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Adapting the counter-example to mailboxes
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Our main results (1)

Synchronizability is undecidable

Whether Zg = Z,, for a peer-to-peer system is undecidable.

Construction
extension of the first counter-example, reduction from a tiling
problem.

In particular
3 machines are needed



Our main results (2)

Oriented rings

m each machine receives from Y a \

at most one other machine

m each machine sends to at
most one other machine

m example: a system with two
machines

Synchronizability is decidable for oriented rings

Whether Zy = Z,, for a system with an oriented ring topology is
decidable. Moreover, the set of reachable configurations is channel
recognizable.



Open Problems

m what are the topologies for which Zg = 7, is decidable?

m is synchronizability for mailboxes really decidable?

m what would be a better definition of synchronizability?

m for peer-to-peer, existentially O-bounded seems promising
[Genest et al]

m what about mailboxes?
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