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Abstract

In this paper, we propose an efficient low complex-
ity geometry compression scheme for densely sampled
irreqular 8D meshes. This scheme is based on 3D mul-
tiresolution analysis (3D Discrete Wavelet Transform,)
and includes a model-based bit allocation process across
the wavelet subbands. Coordinates of 3D wavelet coeffi-
cients are processed separately and statistically modeled
by a generalized Gaussian distribution. This permits
an efficient allocation even at low bitrate with very low
complexity. Moreover, we introduce predictive geome-
try coding of LF subbands by taking in account the cor-
relation of the coarsest level coefficients. Finally, we
use EBCOT coder to efficiently encode the quantized
coefficients.

1 Introduction

Triangular meshes are a powerfool tool for modeling
the shape of complex 3D objects. Because of their sim-
plicity (points and edges), they are easily manipulated
and more and more present in 3D models visualisation
setting. Triangular meshes, resulting from 3D acqui-
sition techniques, are finely detailled and highly sam-
pled. Unfortunately they are very complex (irregular
connectivity) and have tremendous size. Hence, they
are awkward for computation, storage or transmission.
The goal of compression algorithms is to strongly re-
duce the quantity of data to represent an object for
a given global quality. In 2D image compression, the
tools are well developed since decades and algorithms
are now very efficient [12]. However, compression of
3D meshes are relatively new. Generally, they involve
geometry and topology data compression, and the per-
formances of these kind of methods can be found in
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[10]. Our framework is based on multiresolution anal-
ysis theory like in [3, 5] and rate/distortion theory in-
stead of a non progressive compression like [2, 9]. This
paper is organized as follow. Section 2 introduces the
global compression scheme. Section 3 exposes the sta-
tistical distribution of the wavelet coefficients used for
the model-based bit allocation developed in section 4.
Finally, we present simulation results and compare our
algorithm with the PGC method in section 5 and con-
clude in section 6.

2 Proposed geometry coder

The first step of our geometry compression scheme
(see figure 1) is to obtain a semi-regular mesh of the
original irregular mesh. The technique used is MAPS
[4]. Hence, a Discrete Wavelet Transform (DWT) can
be applied on the semi-regular mesh to obtain a mul-
tiresolution representation: N — 1 resolution levels of
wavelet coefficients (HF' coefficients) and a coarsest
level (LF coefficients). These coefficients are tridimen-
sional vectors (x;1 ®;2 x;3), where i stands for the
resolution index. In our work, we choose the Loop
DWT because this transform gives good visual results
in 3D meshes compression [3]. Then, we use an opti-
mal nearly uniform scalar quantizer with non uniform
quantization step as described in [7]. The quantized
wavelet coefficients are entropy coded using EBCOT
coder [11, 6]. This lossless context based coder, in-
cluded in JPEG 2000 [12], creates an embedded bit-
stream. Zerotree coding as SPIHT [8] could also be a
good candidate [3]. However, EBCOT coder has been
shown more efficient for images than SPIHT [12].

3. Wavelet coefficients model

3.1 Correlation of wavelet vectors

Table 1 shows the normalized zero-mean cross-
correlations p{z;1,%; 2}, p{zi1,zis} and p{x;2, %3}
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Figure 1. Proposed geometry compression scheme.
level pf{zig,wio} | p{wia, w3} | p{zio, xia} . _ 1 [T(8/a) _ b
1 (finest) 0.063 20.003 0.093 with b = /77y and a = 5r(77;- The parameter
2 0.040 0.002 -0.006 a is computed using the variance and the fourth-order
3 0.114 0.037 0.045 moment of each subband {z; ;}.
4 0.152 -0.017 -0.036
5 0.299 0.077 0.008 . .
prevp— 0331 0953 0.436 3.3 Rateand distortion models

Table 1. Correlation between coordinates.

between the different coordinates of each resolution
level, computed for the 3D object horse. Typically, we
observe that most of computed coefficients are located
around zero, showing that coordinates present low cor-
relation. By this way, we propose a separate quanti-
zation process for each HF coordinate {z;;}. On the
other hand, LF coefficients are correlated, and cannot
be processed like HF ones (see Section 4.1).

3.2 Wavelet coefficientsdistribution

The only way to allocate the bitrates in the differ-
ent subbands without pre-quantizing each subband is
to perform a model-based bit allocation, depending on
distortion and rate models, and the wavelet coefficients
distributions. In this paper, we focus on the modeling
of the particular distribution of these coefficients. Fig-
ure 2 shows three typical probability density functions
(pdf) with respect to the z axis, for the finer resolu-
tion level and two other resolutions. We can observe
that all HF subband distributions are zero mean and
all informations are concentrated on few coefficients
(very small variances). It can be shown that a good
approximation for each HF coordinate pdf is given by
the generalized Gaussian distribution [1]:

p(z) = ae” 1" (1)

For each coordinate subband {z; ;}, the bitrate R; ;
related to a deadzone scalar quantizer {g; ;, z; ;}, is es-
timated by computing the entropy:
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Furthermore, the related model-based distortion aéi ;
for the 4, jth subband is:
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where z; ; is an original sample and &; ; its correspond-
ing quantization sample. For a generalized Gaussian
distribution, formula (5) can be written as:
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with af’j the variance of subband i,j. See [6, 7] for
more explanations.
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Figure 2. Coefficients distributions

4 Geometry coding
4.1 Predictive coding for LF coefficients

It can be shown that LF coefficients present high
correlation with respect to their 1-neighborhood v (see
table 2). In order to take into account this correlation,
we use a predictive method and propose to model the
differences between two LF coefficients instead of the
LF vectors themselves. Indeed, these difference vectors
present low cross-correlation (see table 2): each coordi-
nate can then be processed separately. Moreover, they
can be modeled by a generalized Gaussian distribution.

Let Xrr = {X;, for all i € [0,#LFvertices]} be
the set of LF vectors, let § be the output set of dif-
ference vectors and I the output set of new-ordered
indices. The pseudo-code is:

1. The first reference vector X is Xo; I = {0}; Xrr
contains all LF vectors excepted Xo;

2. Find X; the closest point of X among Xz by mini-
mizing || X — X;||?;

3. Add i in I and the difference vector (X — X;) in §;

4. Remove X; from Xppr; X < X;;

5. If X1 is not empty, return to step 2 else stop.

The obtained set § represents the three LF subbands
and will be considered by the allocation process like
classical wavelet coefficients (see section 4.2). On the

other hand, the set I must be known by decoder since
the order of § is different of the original list of vectors.

plzi,1,v1(21,1)} | pl{za,2,vi(m1,2)} | pi{w1,3,v1(21,3)}
0.862 0.979 0.978

p{0zi1,0m; 2} p{0x1,1,0x1 3} p{0x1,2,0x1 3}
-0.04 0.07 0.280

Table 2. Correlation of LF difference vectors.

Oldindices 0 2 1 4 357 8 6

NewindicesO0 1 2 3 4 56 7 8

Figure 3. Predictive coding of LF coefficients.

In order to avoid an additionnal binary cost by trans-
mitting I, we adjust at coding step the order of LF
coefficients to one which is given by I (see figure 3: ex-
ample with 9 vertices indexed from 0 to 8. The arrows
show the predicted path found by the algorithm).

4.2 Optimal Bit allocation

This is the crucial step of our compression scheme.
The main idea is to determine the best set of deadzones
and quantization steps {z; j,q;,;} for each subband (in
our case, sets of coordinates {x;;} for ¢ and j fixed)
that minimizes the distortion 0, = at a given rate [7].

By introducing Lagrangian operators, this con-
strained allocation problem can be written as:

3
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where 7; ; and A; ; are optional weights respectively
for taking account of the non-orthogonality of the fil-
ter bank and for frequency selection. The coefficients
a;; depend on the subsampling and correspond to
a;; = size({x;;})/(3 x # semi-regular vertices). D; ;
and R; ; depend only on a and the quotients ;—; and

By differentiating expression (7) with respect to z; ;,
¢i,; and A, and by solving the resulting system, we
obtain the optimal relationships [7]:
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with 252 = g, (2:1) for a given X. h; ; is used in (8)

Ti,j i,j

to simplify the notations.
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Figure 4. Geometry coding: PSNR (on semi-regular mesh) vs Rate for venus, rabbit and horse objects.

This allocation needs three functions depending

on the distribution model: In(—h;;) = fi(Ri;),
R, ;= f2(g—’) and jJ = gm(gi,’j, ). For low complex-

ity purposes, we use pre—computéd tables.

The bit allocation algorithm is the following:

1. Xis given. Compute —Ax——i—— = In(—h;,;) and
4, 74,59 5
read the resulting bitrate R;; from the first pre-
computed tables.
2. While (9) is not verified (below a given threshold),
calculate a new A by dichotomy and return to step 1;

9i,j

3. Compute for each subband using the tabulated

2,7

function R” = fo( L),

9,5

4. Use the table =& = g; ;(Z22) to find 2.

i,j Ti,j

During bit allocation, the convergence is found after
few iterations. Finally, subbands are quantized using
the optimal set {z; ;,¢; ;} and encoded with EBCOT.

5 Experimental results

Our geometry coder is compared with the PGC
method one [3]. The comparison criteria are: the
bitrates (bits/vertex) with respect to the number of
vertices of the semi-regular mesh and the Peak SNR:
PSNR = 20logio(peak/d), with peak the bounding
box diagonal and d the RMSE between original semi-
regular mesh and quantized one. Figures 4 show results
for the 3D objects venus, rabbit and horse. We can
observe the efficiency of the proposed bit allocation:
our results are similar or superior to those obtained by
PGC method for these three objects.

6 Conclusions

In this paper, we proposed a new compression
scheme using model-based geometry coding of 3D

wavelet coefficients. The efficiency of this coder comes
from the bit allocation: bits are dispatched across sub-
bands according to their variance. Moreover, the origi-
nal predictive coding method for LF coefficients permit
a modelisation of LF subbands despite the non partic-
ular statistical distributions. It provides results slighly
better than PGC method [3].

References

[1] M. Antonini, M. Barlaud, P. Mathieu, and
I. Daubechies. Image coding using wavelet trans-

form. IEEE Trans. on IP, April 1992.
[2] M. Deering. Geometry compression.

1995.
[3] A. Khodakvosky, P. Schroder, and W. Sweldens. Pro-

gressive geometry compression. SIGGRAPH, 2000.
[4] A. Lee, W. Sweldens, P. Schroder, P. Cowsar,

and D. Dobkin. MAPS: Multiresolution adaptive

parametrization of surfaces. SIGGRAPH, 1998.
[5] M. Lounsbery, T. DeRose, and J. Warren. Multiresolu-

tion analysis for surfaces of arbitrary topological type.

Trans. on Graphics 16,1, 99, 1997.
[6] C. Parisot, M. Antonini, and M. Barlaud. Model-

based bit allocation for jpeg2000. Proc. of EUSIPCO,

september 2002.
[7] C. Parisot, M. Antonini, and M. Barlaud. Optimal

nearly uniform scalar quantizer design for wavelet cod-

ing. Proc. of SPIE VCIP Conference, january 2002.
[8] A. Said and W. Pearlman. A new and efficient image

codec based on set partitioning in hierarchical trees.

IEEE Trans. on CSVT, 6, june 1992.
[9] G. Taubin and J. Rossignac. Geometric compression

through topological surgery. ACM Trans. on Graphics,

April 1998.
[10] G. Taubin and J. Rossignac. 3D geometry compres-

sion. Course notes No 21, ACM SIGGRAPH 99, 1999.
[11] D. Taubman. High performance scalable image com-

pression with EBCOT. submitted to IEEE Trans. on

IP, August 1999.
[12] 1. J. WG1. Jpeg2000 part 1 final draft international

standard. http://www.jpeg.org.

SIGGRAPH,



