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Abstract

We propose a new wavelet compression algorithm based on the rate-distortion optimization for densely
triangular meshes. Exploiting thenormal remesherof Guskov et al., the proposed algorithm includes a wav
transform and an original bit allocation optimizing the quantization of the wavelet coefficients. The allo
process minimizes the reconstruction error for a given bit budget. As distortion measure, we use the mea
error of the normal mesh quantization, expressed according to the quantization error of each subband. We
this metric is a suitable criterion to evaluate the reconstruction error, i.e., the geometric distance between
mesh and the quantizednormalone. Moreover, to design a fast bit allocation, we propose a model-based app
depending on distribution of the wavelet coefficients. Compared to the state-of-the-art methods for normal
our algorithm provides improvements in coding performance, up to+2.5 dB compared to the original zerotre
coder.
 2005 Elsevier B.V. All rights reserved.

Keywords:Shape compression; Geometry coding; Normal meshes; Model-based bit allocation; Wavelet transform;
Rate-distortion optimization; Multiresolution analysis

1. Introduction

Today triangular meshes can be defined by several millions of vertices, and more (Levoy, 1999)
ple representation of these highly detailed meshes is consequently huge. The compression is a
solution to allow a compact storage or a fast transmission in bandwidth-limited applications of thes
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Currently, more and more works consider the original mesh to be just one instance of the surfac
etry. In that case, we talk aboutshape compressioninstead ofmesh compression(Alliez and Gotsman
2003). Theshape compressionconsiders the geometry to be the most important component of a m
Therefore this kind of algorithm generally tends to reduce the connectivity information to the min
by remeshing the irregular input mesh with asemi-regular remesher(Lee et al., 1998; Guskov et al., 200
Gu et al., 2002; Lee et al., 2000).

Among the existing schemes of semi-regular remeshing, thenormal meshes(Guskov et al., 2000) ar
attractive for wavelet coding, particularly with theunlifted butterflywavelet transform (Khodakovsky an
Guskov, 2002). When the coefficients are expressed according to a system of local frames depe
the coarser mesh, the majority of coefficients have indeed no tangential component, and cons
almost all the geometry information lies in the normal components (Khodakovsky and Guskov,
Hence, most of coefficients can be represented by a single scalar, instead of a three-dimensio
tor like in (Khodakovsky et al., 2000) for instance. Therefore several wavelet coders exploit the n
meshes combined with theunlifted butterflywavelet transform. Let us cite for example the coder NM
proposed by Khodakovsky and Guskov (2002). This coder is based on a zerotree coder deve
(Khodakovsky et al., 2000). The wavelet coefficients are first organized in a multiscale quadtree
ture. Then, a zerotree coder (followed by an entropy coding) is applied on each component of the
coefficients separately. Sim et al. (2002) proposed a progressive compression and an interactive
sion algorithm for normal meshes based on rate-distortion optimization. We can also cite the w
Lavu et al. (2003). The resulting compression algorithm EQMC is based on anEstimation-Quantization
framework initially developed for 2D images (Lopresto et al., 1997). This algorithm exploits the s
and inter-scale correlations of the normal meshes. The authors propose to find the best quantizer
normal component depending on the normal components previously encoded, in the local neighb
This allows to optimize locally the trade-off between the bitrate and the quantization error, pro
0.5–1 dB improvement in coding performance compared to NMC (Khodakovsky and Guskov, 20
the same way, we proposed in previous works (2003) a bit allocation controlling the quantizatio
energy to dispatch the bits across wavelet subbands (Payan and Antonini, 2003a, 2003b).

The basic idea of these works is to optimize the trade-off between the bitrate and the quality
reconstructed mesh either by minimizing the losses due to the geometry coding, or by reducing
budget. This principle calledbit allocation, allows to improve the coding performances when a multi
olution analysis is performed.1

In order to improve the coding performances compared to the state-of-the-art coders for normal
at a specific bitrate, we propose in this paper a bit allocation process that optimizes the quantiza
thenormal meshwavelet coefficients at a given bitrateRtarget. We focus on the normal meshes becaus
its simple and multiscale representation, allowing an efficient multiresolution analysis and adapt
playing according to the level-of-detail requirements or hardware capabilities (Khodakovsky and G
2002; Khodakovsky et al., 2000; Sim et al., 2002; Lavu et al., 2003). Precisely, we aim to find th
quantizer for each component subband such that the reconstruction error is minimized for th

1 Note that bit allocation is not only used in case of wavelet coding. Let us cite for instance Chow (1997) or Li et al.
who proposed a coder allowing different regions of a mesh to be compressed with different precision in function on
of details. King and Rossignac (1999) focused on the problem of balancing two forms of lossy mesh compression: r
of the number of vertices by simplification techniques, and reduction of the bitrate per vertex coordinate. More recent
and Gotsman (2000) proposed to truncate spectral coefficients according to a maximum RMS value given as input pa
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bitrateRtarget. A distortion measure is consequently needed to evaluate the reconstruction error
quantized mesh.

Several distortion measures have been exploited for compression of irregular meshes (K
Rossignac, 1999; Karni and Gotsman, 2000; Sorkine et al., 2003; Luebcke and Halle, 2001).
stance, Karni and Gotsman (2000) introduce a metric which captures the visual difference betw
original mesh and its approximation. Their criterion depends on the geometric distance and thelapla-
cian differencebetween models. Unfortunately, we cannot use such avertex-to-vertexmeasure since th
proposed coder includes a remeshing technique modifying the topology of the input mesh. In th
the widely used metric is the symmetric root mean square error between two surfaces (Cignon
1998), because it does not depend on the mesh sampling, or its connectivity. We refer to this
the surface-to-surface(S2S) distance. A real computation of the S2S distance is a computationally
tensive process. To overcome this problem, we argue that the mean square error relative to the
mesh quantization, expressed according to the quantization error of each subband, is a suitable
to evaluate the reconstruction error between the input mesh and the quantized normal one. Furt
this criterion allows to use theoretical models for the bitrate and the distortion of each wavelet su
involving a fast model-based algorithm of low computational complexity.

We finally design a wavelet coder that includes a bit allocation dispatching a given bit budget
the wavelet subbands according to their influence on the reconstructed mesh quality. Compare
state-of-the-art coders for normal meshes (Khodakovsky and Guskov, 2002; Lavu et al., 2003), o
pression algorithm provides performance gains, up to+2.5 dB compared to the original zerotree code

This paper is organized as follows. In Section 2, we introduce some background and notat
triangular meshes and briefly describe the normal meshes. In Section 3, we present our framew
the proposed compression algorithm. Then, we deal with a suitable distortion criterion to evalu
reconstruction error of normal meshes in Section 4, and across a wavelet coder in Section 5. In S
we introduce the proposed bit allocation and develop the model-based algorithm in Section 7.
we give some experimental results in Section 8, and conclude in Section 9.

2. Background and notations

Triangular mesh. Let us denote a triangular meshM as a pair(V,T ), whereV is a set of vertices
defined byV = {vi = (vx

i , v
y

i , v
z
i ) ∈ R

3 | 1 � i � |V|} with |V| the number of vertices, andT a set of
triangular faces.

Semi-regular mesh. A semi-regular triangular meshMsr is a multiscale mesh, built by repeated regu
subdivision of a base meshM0 = (V0,T0) (a coarse version of the original irregular mesh obtai
by a simplification technique (Gotsman et al., 2002)), providing several meshesMi (M1 = (V1,T1),
M2 = (V2,T2), . . .) until the finest semi-regular meshMsr = (Vsr,Tsr). These meshes have the nota
property:

V0 ⊂ V1 ⊂ · · · ⊂ Vsr.

Fig. 1 shows an example of a semi-regular mesh at different resolution levels. The vertices added t
a finer mesh can be defined by a set of three-dimensional detail vectorsDi = {di,j = (dx

i,j , d
y

i,j , d
z
i,j ) ∈ R

3 |
1� j � |Di |}, with |Di | the number of details at the resolution leveli. The set of detailsDi describes the
deformations between the meshM andM . The details are mostly computed in a local frame (Zo
i−1 i
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Fig. 1. Multiresolution semi-regular version of SKULL at different levels of resolution, from level 2 (64 triangles) to leve
(finest mesh with 262144 triangles). (a) Level 2; (b) level 4; (c) level 6; (d) finest mesh.

(a) (b)

Fig. 2. Anormal meshMsr is obtained by successive connectivity subdivision of a coarse meshM0. The detail vectors depen
on the normals at the surface. (a) A finer meshM1 is obtained from the coarse meshM0 and a detaild1,0. (b) The finest mesh
Msr is obtained fromM1 and the detailsd2,0 andd2,1.

et al., 1997) induced by the tangent plane and the normal direction at the surface defined by the
lower resolution (Khodakovsky et al., 2000). This means that we can distinguish the so-calledtangential
componentsfrom thenormal componentsof detail vectorsdi,j :

• thetangential componentsare the coordinatesdx
i,j andd

y

i,j of detail vectors;
• thenormal componentsare the coordinatesdz

i,j of detail vectors.

Normal mesh. The normal meshes are attractive because majority of the details may be repre
with a single number instead of a three-dimensional vector like in (Lee et al., 1998). These m
olution meshes have the property that the details almost always lie in a known normal directio
Fig. 2) (Guskov et al., 2000). This means that the tangential components tends to be equal to ze
is currently the most compact representation of semi-regular meshes.

Quantized mesh. Let us denote aquantized normal mesĥMsr as a pairM̂sr = (V̂sr,Tsr). V̂sr represents
the set of quantized vertices defined byV̂sr = {v̂i ∈ R

3 | 1 � i � |V̂sr|}, wherev̂i = Q(vi). Q(.) is called
the quantization operator associated to a quantization stepq.
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Fig. 3. Proposed geometry coder.

Fig. 4. Proposed geometry decoder.

3. Overview of the proposed approach

Figs. 3 and 4 present the global scheme of the proposed coder/decoder. The algorithm prin
described hereinafter. The normal remesher provides a semi-regular meshMsr, from the irregular in-
put oneMir . A N -level unlifted butterfly wavelet transform (Sweldens, 1998; Schröder and Swe
1995) is then applied to obtainN subbands of three-dimensional wavelet coefficients. Using this wa
transform ensures that wavelet coefficients remain in the normal direction (Khodakovsky and G
2002).

The tangentialandnormal sets(see Section 2) of wavelet coefficients are then encoded sepa
using uniform scalar quantizersSQ depending on the optimal quantization steps computed durin
allocation process. An entropy coder adapted to the multiresolution semi-regular mesh (Payan
tonini, 2003b) is finally applied. In parallel, the connectivity of the coarse mesh can be encoded w
topological coder. In this paper, we choose the efficient coder of Touma and Gotsman (1998). Fin
two bitstreams are merged for transmission.

The goal of this paper is to propose a coder/decoder including a bit allocation process that op
the quality of thequantized normal mesh. A suitable distortion measureDT is thus needed to evalua
the reconstruction error during the geometry encoding. In the next section, we deal with the choic
distortion measure.
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4. Choice of the distortion measure

4.1. The S2S distance as quality criterion

Several distortion measures have been exploited by single-rate mesh coders (King and Ro
1999; Karni and Gotsman, 2000; Sorkine et al., 2003; Luebcke and Halle, 2001). In this paper, we
as reconstruction error the symmetric root mean square error between two surfaces (Cignoni et a
also called the S2S distance. We choose this distance because it is generally used to evaluate
formances of coders based on remeshing (Khodakovsky et al., 2000; Khodakovsky and Gusko
Sim et al., 2002; Lavu et al., 2003). Indeed, this distance does not depend on the mesh sam
connectivity.

The distortion measureDT is defined as the energy of the S2S distance between the irregular
meshMir and thequantized normal mesĥMsr:

DT = dS(Mir ,M̂sr)
2, (1)

wheredS(., .) represents the S2S distance.

4.2. Definition of the S2S distance

The S2S distance between the two meshesMir andM̂sr (Cignoni et al., 1998) is defined by

dS(Mir ,M̂sr) = max
[
d̄(Mir ,M̂sr); d̄(M̂sr,Mir )

]
, (2)

whered̄(M,M′) is theunilateral distancebetween two meshes (Cignoni et al., 1998), given by

d̄(M,M′) =
(

1

|M|
∫ ∫

p∈M
d(p,M′)2 dM

)1/2

. (3)

|M| represents the area ofM, andd(p,M′) represents the distance between a pointp belonging to a
surface represented by a meshM and the surface represented by a meshM′. This distance is defined b

d(p,M′) = min
p′∈M′ ‖p − p′‖2 = ∥∥p − ProjM′(p)

∥∥
2, (4)

with ‖.‖2 theL2-norm, and ProjM′(p) the orthogonal projection ofp overM′.
A real computation of the S2S distance is a computationally intensive process. Moreover, this d

would be hard to optimize during the allocation process. To overcome this problem, we propose
a simpler but suitable criterion to evaluate the reconstruction error. To this purpose, we make
assumptions.

4.3. First assumption: an optimal remeshing

Notice that the normal remesher provides anormal meshMsr very close to the original irregular mes
Mir . Table 1 shows that the S2S distance between these two meshes is negligible (lower than 0.016% of
the bounding box diagonal).

Eq. (1) can then be approximated by

DT � dS(Msr,M̂sr)
2 = max

[
d̄(Msr,M̂sr)

2; d̄(M̂sr,Msr)
2
]
. (5)
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Table 1
Remeshing error between the irregular mesh and the normal mesh (S2S distance relative to the bounding box diagon
represents the number of triangles of the base mesh

Model |Vir | |Tir | Base Refinement level |Tsr| Remeshing error (%

HORSE 48485 96966 220 6 901120 0.0036
RABBIT 67039 134073 76 6 311296 0.0042
VENUS 50002 100000 80 6 327680 0.0058
FELINE 49919 99732 504 4 129024 0.0131
SKULL 20002 40000 4 8 262144 0.0157

Table 2
Mean differences between̄d(Msr,M̂sr) andd̄(M̂sr,Msr) according to the bitrate per irregular vertex (bits/iv), computed
5 typical models (HORSE, RABBIT , VENUS, SKULL and FELINE)

Bitrate (bits/iv) < 1 1–2 2–6 6–10 > 10

d̄(Msr,M̂sr) 1.07e–1 1.30e–2 5.34e–3 1.72e–3 1.43
d̄(M̂sr,Msr) 1.02e–1 1.28e–2 5.34e–3 1.72e–3 1.43
Difference (%) 3.680 1.890 0.291 0.261 0.074

4.4. Second assumption: densely sampled meshes

Let us study the difference of “symmetry” between the distancesd̄(Msr,M̂sr) andd̄(M̂sr,Msr). Ta-
ble 2 presents a mean of the relative errors between these two distances, computed on 5 typica
(HORSE, RABBIT , VENUS, SKULL and FELINE), and according to different bitrate ranges. The diff
ence being very low (< 4%) for each bitrate range, we can assume thatd̄(Msr,M̂sr) � d̄(M̂sr,Msr),
and we can simplify the computation ofDT by using only one of the unilateral distances:

DT � d̄(M̂sr,Msr)
2, (6)

or equivalently,

DT � 1

|M̂sr|
∫ ∫

p∈M̂sr

d(p,Msr)
2 dM̂sr. (7)

DT should be computed analytically in each pointp ∈ M̂sr. However, since anormal meshis densely
sampled, the number of vertices is large. Thus, we can assume a uniform distribution of the v
on the surface. Consequently, the integral in (7) can be numerically approximated by a discre
(Gersho, 1979). Moreover, the area of triangles being very small relative to global surface, the d
point-surfaced(p,Msr) can be computed only from the vertices (Aspert et al., 2002):

DT � 1

|V̂sr|
∑
v̂∈V̂sr

d(v̂,Msr)
2, (8)

with v̂ = Q(v) the quantized version of the vertexv, and|V̂sr| the number of vertices of̂Msr (or equiva-
lently Msr).

Now, we have to deal withd(v̂,M ) = ‖v̂ − Proj (v̂)‖ .
sr Msr 2
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4.5. Third assumption: an optimal bitrate coding

Let us introduce the quantization error vectorε(v) = v − v̂, between a vertexv and its quantized ver
sion v̂. Under the assumption of an optimal bitrate coding and in the considered bitrate range,
assume that the quantization of the coarser levels does not modify consequently the computatio
local coordinate systems in which the details of finer levels are expressed. This introduces further
tial components, but these components remain small compared to normal components. As a re
since we use a normal remesher, most of error vectorsε(v) lie in the normal direction at the surfaceMsr

in v. Therefore, during the computation ofd(v̂,Msr) = ‖v̂ − ProjMsr
(v̂)‖2, the orthogonal projection o

v̂ overMsr remains very close tov:

ProjMsr
(v̂) � v.

Finally, we can state that

d(v̂,Msr) = ∥∥v̂ − ProjMsr
(v̂)

∥∥
2 � ‖v̂ − v‖2 = ∥∥Q(v) − v

∥∥
2. (9)

Using Eq. (9), Eq. (8) can be written as

DT � 1

|Vsr|
∑
v∈Vsr

∥∥Q(v) − v
∥∥2

2. (10)

We notice that the right-hand side of (10) corresponds to the quantization error of the normal mesh
etry, i.e., the MSE denoted byσ 2

Qsr. Thus, in case of densely sampled meshes and under the assump
an optimal bitrate coding, the MSE of the geometry quantization should be a suitable distortion c
to evaluate the reconstruction error between the irregular input mesh and the quantized one. Fin
can write

DT � σ 2
Qsr. (11)

This formulation is computed in the euclidean space, and depends on the vertices of the mesh. N
proposed bit allocation is processed on the wavelet coefficient subbands. Thus, we have to exp
MSE of quantization of thenormal meshgeometry according to the quantized coefficients.

5. MSE across a wavelet coder

We have shown in Section 4 that the MSE of normal mesh quantization is a suitable crite
evaluate the reconstruction error between the irregular input mesh and the quantized normal on
proposed coder, the unlifted butterfly wavelet transform is applied on the normal meshMsr. Hence, we
obtain the coarse base meshM0, andN three-dimensional wavelet coefficient subbands. The geom
V0 of the coarse meshM0 is called thelow frequencysubband. The setsDi defined in Section 2 are no
thehigh frequencyor wavelet coefficients subbands, withi the resolution level.

In (Usevitch, 1996; Payan and Antonini, 2005), it is shown that the MSE of a multidimensional
encoded across a wavelet coder using aN -level decomposition is equivalent to a weighted sum of
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MSEσ 2
Qi introduced by the quantization of each wavelet coefficient subbandi. Therefore, the MSEσ 2

Qsr
between a normal mesh and its quantized version can be written as

σ 2
Qsr =

N∑
i=0

wiσ
2
Qi, (12)

whereσ 2
Qi is the MSE due to the quantization of the wavelet coefficient subbandi, and {wi} are the

weights due to the biorthogonality of the wavelet transform. The weights relative to the unlifted bu
wavelet transform are computed in (Payan and Antonini, 2005). They are given by

wi = |Di |
|Vsr|

(
169

256

)N−i

, (13)

where|Di | is the number of coefficients of the subbandDi , and|Vsr| the number of semi-regular vertice
Recall that in our framework each subband of high frequency wavelet coefficients is splitted

scalar sets, thetangentialandnormal sets(see Section 2). Consequently, the MSEσ 2
Qi of the ith high

frequency subband (∀i �= 0) is the sum of the MSEσ 2
Qi,1 andσ 2

Qi,2 due to the quantization of the tangent
and normal sets:

σ 2
Qi =

∑
j∈Ji

σ 2
Qi,j ∀i �= 0, (14)

whereJi is a set of indices defined byJi = {1,2},∀i �= 0.
On the other hand, the low frequency subband does not present specific properties, since it re

a coarse version of the input mesh. Therefore, the low frequency subband will be splitted in thre
sets, and the MSEσ 2

Q0 of the low frequency subband is the sum of the three MSEσ 2
Q0,j due to the

quantization on each coordinate set:

σQ0 =
∑
j∈J0

σ 2
Q0,j , (15)

whereJ0 is a set of coordinate indices defined byJ0 = {1,2,3}.
Finally, by merging (14) and (15) in (12), the MSEσ 2

Qsr relative to the geometry of a semi-regu
mesh encoded with a wavelet coder is given by

σ 2
Qsr =

N∑
i=0

wi

∑
j∈Ji

σ 2
Qi,j (16)

with wi given by (13). The formulation (16) is finally used as distortion measure during the bit alloc
process to evaluate the distortion introduced on the reconstructed mesh by the geometry quantiz

6. Optimal bit allocation

6.1. General purpose

The general purpose of the proposed bit allocation is to optimize the trade-off between the
bitrate and the quality of the reconstructed mesh by controlling and minimizing the losses due
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geometry quantization at a given bitrate. Compared to the algorithm proposed in (Lavu et al.,
that optimizeslocally the trade-off between the bitrate and the quantization error of the coefficient
proposed bit allocation process aims todetermine the best set of quantization steps{qi,j } used to quantize
the subbands, that minimizes the global reconstruction errorDT of the decoded mesh at a given targ
bitrate Rtarget. The quantityRtarget corresponds to the aimed bitrate for the compressed mesh, exp
here in bits per semi-regular vertex. It can be fixed by either the user, or automatically by the com
depending on the applications or the bandwidth limitations. The principle is the following. The w
bitrate is given, and then the reconstruction error is minimized for this specific bitrate. Once the allo
processed and the quantization steps computed for this bitrate, the encoding is performed.

The optimization problem can be formulated as follows:

(P)

{
minimize DT ({qi,j })
with constraint RT ({qi,j }) = Rtarget,

(17)

whereRT is the given total bitrate. By using a lagrangian operator, this constrained allocation pr
can be defined by a lagrangian criterion:

Jλ

({qi,j }
) = DT

({qi,j }
) + λ

(
RT

({qi,j }
) − Rtarget

)
, (18)

with λ the lagrangian operator. By merging the distortion measure (16) proposed in Section 5 wit
the lagrangian criterion can be developed in:

Jλ

({qi,j }
) =

N∑
i=0

wi

∑
j∈Ji

σ 2
Qi,j (qi,j ) + λ

(
N∑

i=0

∑
j∈Ji

ai,jRi,j (qi,j ) − Rtarget

)
, (19)

whereσ 2
Qi,j (qi,j ) andRi,j are respectively the MSE and the bitrate relative to the(i, j)th component

set. The coefficientsai,j depend on the subsampling and correspond to the ratio between the size
(i, j)th component set and the total number of components (3× |Vsr|).

6.2. Optimal solution

The solution of this constrained allocation problem can be obtained by differentiating Eq. (19
respect to the quantization steps{qi,j } andλ (first order conditions), or equivalently by solving the fo
lowing system:

∂Jλ({qi,j })
∂qi,j

= 0,

∂Jλ({qi,j })
∂λ

= 0.
(20)

This system can be developed in

wi

∂σ 2
Qi,j (qi,j )

∂qi,j

+ λai,j

∂Ri,j (qi,j )

∂qi,j

= 0, (21a)

N∑
i=0

∑
j∈Ji

ai,jRi,j (qi,j ) = Rtarget. (21b)

Finally, we have to solve the following system of(2N + 4) equations with(2N + 4) unknowns (the se
{q } andλ):
i,j



476 F. Payan, M. Antonini / Computer Aided Geometric Design 22 (2005) 466–486

nately,
terative

he

rent
proach

et sub-
troduce
ons of

coeffi-

fficients
ntial

fficients
∂σ2
Qi,j (qi,j )

∂qi,j

∂Ri,j (qi,j )

∂qi,j

= −λ
ai,j

wi

, (22a)

N∑
i=0

∑
j∈Ji

ai,jRi,j (qi,j ) = Rtarget. (22b)

In order to obtain the optimal quantization steps analytically, (22a) requires to be inverted. Unfortu
this stage is impossible due to the complexity of the equations. To overcome this problem, an i
algorithm depending onλ is generally proposed.

6.3. Overall algorithm

The optimal solutions of system (22) for the given bitrateRtarget are then computed thanks to t
following overall algorithm:

(1) λ is given. For each set(i, j), computeqi,j that verifies (22a);
(2) while (22b) is not verified, calculate a newλ by dichotomy and return to step 1;
(3) stop.

The computation of the quantization steps{qi,j } as solutions of (22a) can be done according to diffe
methods. In the following Section 7, we propose to process this algorithm with an efficient ap
thanks to theoretical models for the bitrate and the MSE (Parisot et al., 2003).

7. Model-based approach

The only way to compute the bitrate and the MSE of the different component sets of the wavel
bands without real pre-quantizations is to perform a model-based bit allocation. Therefore, we in
theoretical models for the distortion and the bitrate, depending on the probability density functi
each data set. Let us focus now on the estimation of these density functions.

7.1. Wavelet coefficients distribution

Fig. 5 shows typical probability density functions of the tangential and normal sets of wavelet
cients of normal meshes obtained by the unlifted butterfly wavelet transform.

We observe that distributions are zero mean and all informations are concentrated on few coe
(very small variances). By using aχ2-test, we observe each probability density function of the tange
and normal sets can be modeled by aGeneralized Gaussian Distribution(GGD).2

2 For instance, theχ2-test applied on the two probability density functions shown in Fig. 5 providesχ2 = 1.5621 for the
tangential set, andχ2 = 0.1286 for the normal set when 26 quantization cells are used, meaning that than 99% of the coe
are well modeled by a GGD.



F. Payan, M. Antonini / Computer Aided Geometric Design 22 (2005) 466–486 477

eal
vel 2).

odel the

r distri-
s, since
odel and
mselves
odeled
to re-
g the
(a) (b)

Fig. 5. Typical probability density functions of tangential and normal sets (modelVenus). The dash-dot lines represent the r
density functions, and the solid lines represent the corresponding GGD. (a) Tangential set (level 2). (b) Normal set (le

The formulation of a GGD is given by

pσ,α(x) = ae−|bx|α (23)

with b = 1
σ

√
�(3/α)/�(1/α) anda = bα

2�(1/α)
. The parameterα is computed using the varianceσ 2 and

the fourth-order moment of each set (Kasner et al., 1999). Fig. 5 also shows the GGD used to m
real distribution (solid lines).

7.2. Processing of the low frequency subband

On the other hand, the three subsets of the low frequency subband do not have any particula
bution and cannot be modeled by an unimodal function like the high frequency component set
they represent a coarse version of the original mesh. To overcome this problem, we choose to m
encode the differences between two low frequency components, instead of the components the
(differential coding) (Payan and Antonini, 2002). We observe that these differences can also be m
by a GGD. However, this method is interesting if no side information is required by the decoder
construct the good connectivity. This is possible if the differential coding is processed by followin
ordered list of low frequency vertices given by the topological coder.

7.3. Theoretical models for the distortion and the bitrate

The theoretical model to compute the MSEσ 2
Q of a uniform scalar quantizer is given by:

σ 2
Q =

+ q
2∫

q

pσ,α(x)dx + 2
+∞∑
m=1

q
2 +(|m|−1)q∫
q

(x − x̂)2pσ,α(x)dx, (24)
− 2 2 +|m|q
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wherex is an original sample and̂x its decoding value. Furthermore, since an entropy coder is used
the quantization, we suppose that the bitrateR after encoding is equal to the entropy of the quanti
components of each set:

R = −
+∞∑

m=−∞
Pr(m) log2 Pr(m). (25)

Pr(m) is the probability of a quantization levelm:

Pr(m) =
q
2 +(|m|−1)q∫
q
2 +|m|q

pσ,α(x)dx and Pr(0) =
+ q

2∫
− q

2

pσ,α(x)dx, (26)

wherepσ,α(x) is the probability density function of a subset.
Moreover, the authors of (Parisot et al., 2003) show that for an uniform scalar quantization us

center of the cells as decoding value, the MSE (24) for a GGDpσ,α(x) can be rewritten as

σ 2
Q = σ 2D(q̃,α), (27)

with σ 2 the variance of the set, and̃q = q

σ
. D(q̃,α) is a simple function given by

D(q̃,α) = 1+ 2
+∞∑
m=1

(mq̃)2f0,m(q̃, α) − 4
+∞∑
m=1

mq̃f1,m(q̃, α), (28)

where functionsfn,m are defined by

fn,m(q̃, α) =
1
2 q̃+mq̃∫

1
2 q̃+(m−1)q̃

xnp1,α(x)dx, (29)

and by

fn,0(q̃, α) =
1
2 q̃∫

− 1
2 q̃

xnp1,α(x)dx. (30)

By the same way, the bitrateR associated to a GGD can be rewritten as (Parisot et al., 2003)

R(q̃,α) = −f0,0(q̃, α) log2 f0,0(q̃, α) − 2
+∞∑
m=1

f0,m(q̃, α) log2 f0,m(q̃, α). (31)

According to the theoretical model (28) for the MSE, and the theoretical model (31) for the bitra
component set, the system (22a) becomes

hα(q̃i,j ) =
∂D(q̃i,j ,α)

∂q̃i,j

∂Ri,j (q̃i,j ,α)

∂q̃i,j

= −λ
ai,j

wiσ
2
i,j

, (32a)

N∑∑
ai,jRi,j (q̃i,j , α) = Rtarget, (32b)
i=0 j∈Ji
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Fig. 6. First LUT used to solve the system (32a): ln(−hα) according to ln(q̃), for differentα.

wherehα(q̃i,j ) can be developed in

hα(q̃i,j )

=
∑+∞

m=1 m
[
2f1,m(α, q̃i,j ) − 2mq̃i,jf0,m(α, q̃i,j ) − mq̃2

i,j

df0,m

dq̃i,j
(α, q̃i,j ) + 2q̃i,j

df1,m

dq̃i,j
(α, q̃i,j )

]
p1,α(q̃i,j /2)

2 [lnf0,0(α, q̃i,j ) + 1] + ∑+∞
m=1

df0,m

dq̃i,j
(α, q̃i,j )[lnf0,m(α, q̃i,j ) + 1]

ln 2.

(33)

7.4. Model-based algorithm

In order to speed the allocation process up, Parisot et al. (2003) propose to use some offline c
Look-Up Tables (LUT) to solve the system (32). They propose to exploit two parametric curves:

• [ln(q̃); ln(−hα)]: this LUT allows to compute the quantization stepq corresponding to a specifi
hα(q̃i,j ). Fig. 6 shows the parametric curves corresponding to this LUT. This allows to compu
quantization steps verifying (32a).

• [R; ln(−hα)]: this LUT allows to compute the bitrateR corresponding to a specifichα(q̃i,j ). Fig. 7
shows the parametric curves corresponding to this LUT. This permits to verify the constraint
bitrate (32b);

In that case, the algorithm given in Section 6.3 becomes:

(1) compute the varianceσ 2
i,j and the parameterαi,j for each set(i, j);

(2) a value ofλ is given. For each set(i, j), computehα(q̃i,j ) thanks to the right-hand side of (32a
Then, use the LUT of[R; ln(−h )] to compute the corresponding bitrateR ;
α i,j
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Fig. 7. Second LUT used to solve the system (32a): ln(−hα) according toR, for differentα.

(3) while (32b) is not verified, calculate a newλ by dichotomy and return to step 2;
(4) At this step, the optimalλ is known. Thus, for each set(i, j), use the LUT of[ln(q̃); ln(−hα)] to

compute the optimal quantization stepqi,j corresponding to the value ofhα(q̃i,j ) found in step 2.
(5) stop.

7.5. Complexity

In this section, we evaluate the complexity of the model-based algorithm to show the interes
proposed approach.

Step 1 of the algorithm permits the computation of the varianceσ 2 and of the parameterα. The
parameterα is computed from the variance and the fourth-order moment for each component set (
et al., 1999). This step can be done in 4 operations per component.

At step 2, after the computation of ln(−hα) usingλ, σ 2 and Eq. (32a), the set of{Ri,j } is computed a
low cost by addressing the LUT associated to[R; ln(−hα)].

Step 3 consists in computing a simple weighted sum of the bitrates estimated at step 2 (2 ar
operations per component set) to verify the constraint on the global bitrate. The computation of aλ

is done by a simple dichotomy.
At step 4, the set of quantization steps{qi,j } is computed at low cost by addressing the LUT associ

to [ln(q̃); ln(−hα)].
The convergence of the algorithm is reached after few iterations (lower than 5). Finally, the

represents the highest computational cost of this algorithm, with 4 operations per sample, h
computational complexity of approximately 12 operations per semi-regular vertex. This involves
allocation process with a very low computational complexity, taking less than 0.4 second on a Pentium
III 1 GHz, 512 Mbytes RAM.
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8. Experimental results

This section presents some experimental results of the proposed coder, and we compare it
mances to some state-of-the-art coders. These coders are:

• The zerotree coder of normal meshes (NMC) (Khodakovsky and Guskov, 2002);
• The EQ mesh coder (EQMC) for normal meshes (Lavu et al., 2003);
• The original Zerotree Coder (PGC) (Khodakovsky et al., 2000) for semi-regular meshes, inc

the remeshing technique MAPS (Lee et al., 1998);

The coders NMC and EQMC are currently the most efficient geometry coders. In order to enc
connectivity of the base mesh, we use the topology coder of Touma and Gotsman (Touma an
man, 1998) as in the three state-of-the-art coders previously denoted. This permits to compare
performances of the different geometry coders.

Recall that the main objective of our algorithm (but also of EQMC) is to improve the coding
formances by optimizing the rate-distortion trade-off,for one specific target bitrate. Thus, to confirm
that the proposed algorithm achieves performance gains compared to the state-of-the-art coder
given bitrate, Figs. 8, 9, and 10 show the PSNR curves according to different given bitrates (pe
ular vertex), for the models HORSE, RABBIT , and VENUS. The curves are constructed as follows. F
our algorithm, they depend on several values ofRtarget, each dot corresponding to a mesh coded
decoded at its finest resolution. For EQMC, they depend on several values ofλ (Lavu et al., 2003)
For NMC and PGC, they depend on several given bitstream sizes (Khodakovsky and Guskov
Khodakovsky et al., 2000).

The PSNR is given by

PSNR= 20 log10(bb/ds),

where bb is the bounding box diagonal andds is the surface-to-surface distance between the irreg
input mesh and the reconstructed semi-regular one (computed with MESH (Aspert et al., 2002)).

Fig. 8. Bitrate-PSNR curve for HORSEat its finest resolution (901120 triangles).
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Fig. 9. Bitrate-PSNR curve for RABBIT at its finest resolution (311296 triangles).

Fig. 10. Bitrate-PSNR curve for VENUS at its finest resolution (327680 triangles).

We observe that, for any target bitrate, the proposed coder provides performance gains comp
state-of-the-art coders NMC and EQMC (excepted one bitrate for the object VENUS where EQMC is
slightly better). We obtain similar results with the models FELINE, SKULL and MOLECULE. This is re-
markable since theoretically the MSE should be a suitable criterion only in case of optimal rate
(high bitrates). Finally, we find experimentally that the MSE is always a suitable criterion, for any b
range.

Table 3 gives the PSNR values relative to the proposed coder and to the coder NMC accordin
ferent given bitrates for all the models (at their finest resolution). We observe the proposed bit all
improves the coding performances up to+2.5 dB. In addition, Fig. 11 provides some visual benefits
ative to the use of the proposed coder. This figure shows the distribution of the reconstruction erro
object FELINE, quantized with the proposed coder (Fig. 11(a)) and with NMC (Fig. 11(b)). The c
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Table 3
Proposed coder versus the state-of-the-art NMC: PSNR improvement (in dB) for 6 typical models, at their finest resol

RABBIT (155650 vertices, 311296 triangles)

Bitrate (bits/iv) 0.14 0.26 0.38 0.92 2.48 3.61 6.20 9.03
Proposed coder 64.35 70.15 73.26 79.20 83.50 84.61 85.35 85.50
NMC 63.38 69.04 72.09 77.99 82.74 84.08 85.05 85.42
Improvement 0.97 1.11 1.17 1.21 0.76 0.53 0.30 0.07

HORSE(450562 vertices, 901120 triangles)

Bitrate (bits/iv) 0.26 0.87 1.24 1.97 2.88 3.85 5.84 11.51
Proposed coder 64.39 74.47 76.97 79.51 81.18 82.22 83.52 84.79
NMC 62.75 73.51 76.06 78.63 80.50 81.43 82.80 84.36
Improvement 1.64 0.96 0.91 0.88 0.68 0.79 0.72 0.43

VENUS (163842 vertices, 327680 triangles)

Bitrate (bits/iv) 0.20 0.34 0.92 1.60 3.42 5.20 6.74 9.06
Proposed coder 61.75 65.64 72.56 76.14 79.82 81.21 81.73 82.02
NMC 60.71 64.59 71.63 75.29 78.95 81.31 81.77 80.69
Improvement 1.03 1.05 1.02 0.86 0.87 0.52 0.41 0.25

FELINE (64510 vertices, 129024 triangles)

Bitrate (bits/iv) 0.39 0.71 1.00 1.30 2.22 3.28 4.37 5.05
Proposed coder 59.34 65.35 68.10 70.60 73.72 74.84 75.14 75.22
NMC 57.03 62.86 66.57 68.99 72.99 74.47 74.96 75.11
Improvement 2.32 2.49 1.53 1.62 0.75 0.36 0.18 0.11

SKULL (131074 vertices, 262144 triangles)

Bitrate (bits/iv) 0.21 0.53 0.82 1.52 2.25 4.08 5.08 7.90
Proposed coder 54.60 61.19 64.70 68.38 70.65 72.96 73.38 73.58
NMC 53.75 60.98 63.96 67.73 70.27 72.60 73.19 73.54
Improvement 0.85 0.21 0.74 0.66 0.39 0.36 0.19 0.04

MOLECULE (54272 vertices, 108544 triangles)

Bitrate (bits/iv) 0.43 0.89 1.69 2.25 3.10 6.08 7.60 10.79
Proposed coder 44.69 52.00 57.55 59.53 61.54 64.30 65.38 66.15
NMC 43.57 50.93 56.30 58.48 60.73 63.43 64.59 65.59
Improvement 1.12 1.07 1.24 1.05 0.81 0.87 0.79 0.55

corresponds to the magnitude of the distance point-surface normalized by the bounding box d
between the input irregular mesh and the quantized one (computed with MESH (Aspert et al.,
(for colours see the web version of this article). One can argue that NMC leads to more local erro
the proposed algorithm. Moreover, Fig. 12 shows renderings of VENUS, compressed at different give
bitrates. This demonstrates that even at low bitrates the meshes quantized with the proposed alg
not so far from the original irregular one.

9. Conclusions

In this paper, we design an original wavelet coder based on the rate-distortion optimization, for d
sampled triangular meshes. Exploiting thenormal remesherof Guskov et al. (2000), our coder includ
an original model-based bit allocation that optimizes the quantization of the wavelet coefficients
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Fig. 11. Distribution of the reconstruction error on the object FELINE at its finest resolution. The total bitrate is equal to 0.71
bits/irregular vertex. (a) Proposed method. PSNR= 65.35 dB. (b) NMC. PSNR= 62.86 dB.

given bitrate. By assuming that the quantization of the coarser levels does not modify significan
computation of the local coordinate systems, we argue that the weighted sum of the MSE relativ
quantization of each wavelet component set is a suitable distortion criterion to evaluate the recons
error between the irregular input mesh and the reconstructed normal one during the bit allocat
minimizing this MSE for a given target bitrate, the allocation process dispatches the bit budget ac
wavelet subbands according to their influence on the quality of the reconstructed mesh for this
bitrate. Moreover, the use of theoretical models for the distortion and the bitrate of each compon
involves a very fast computation of the optimal quantization steps. Experimental results demonstr
for any given bitrate, the proposed approach provides improvements in coding performance co
to the two state-of-the-art normal mesh coders (Khodakovsky and Guskov, 2002; Lavu et al., 20
to +2.5 dB compared to the original zerotree coder), for a very low computational complexity. In
works, we could improve this algorithm to allow a strictly progressive compression, since our me
at moment only scale-wise progressive.
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Fig. 12. Renderings of VENUSat its finest resolution, compressed at different target bitrates. (a) Input mesh. (b) 2.6 bits/ir
vertex (bitstream size= 16340 bytes). (c) 0.7 bits/irregular vertex (bitstream size= 4677 bytes). (d) 0.3 bits/irregular verte
(bitstream size= 1842 bytes).
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