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Abstract

We propose a new wavelet compression algorithm based on the rate-distortion optimization for densely sampled
triangular meshes. Exploiting theormal remeshenf Guskov et al., the proposed algorithm includes a wavelet
transform and an original bit allocation optimizing the quantization of the wavelet coefficients. The allocation
process minimizes the reconstruction error for a given bit budget. As distortion measure, we use the mean square
error of the normal mesh quantization, expressed according to the quantization error of each subband. We show tha
this metric is a suitable criterion to evaluate the reconstruction error, i.e., the geometric distance between the input
mesh and the quantizedrmalone. Moreover, to design a fast bit allocation, we propose a model-based approach,
depending on distribution of the wavelet coefficients. Compared to the state-of-the-art methods for normal meshes,
our algorithm provides improvements in coding performance, up2d dB compared to the original zerotree
coder.
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1. Introduction

Today triangular meshes can be defined by several millions of vertices, and more (Levoy, 1999). A sim-
ple representation of these highly detailed meshes is consequently huge. The compression is a relevan
solution to allow a compact storage or a fast transmission in bandwidth-limited applications of these data.
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Currently, more and more works consider the original mesh to be just one instance of the surface geom-
etry. In that case, we talk aboslhape compressionstead ofmesh compressiofflliez and Gotsman,

2003). Theshape compressiatonsiders the geometry to be the most important component of a mesh.
Therefore this kind of algorithm generally tends to reduce the connectivity information to the minimum
by remeshing the irregular input mesh witheami-regular remeshét.ee et al., 1998; Guskov et al., 2000;

Gu et al., 2002; Lee et al., 2000).

Among the existing schemes of semi-regular remeshing)dmal meshefGuskov et al., 2000) are
attractive for wavelet coding, particularly with thelifted butterflywavelet transform (Khodakovsky and
Guskov, 2002). When the coefficients are expressed according to a system of local frames depending or
the coarser mesh, the majority of coefficients have indeed no tangential component, and consequently
almost all the geometry information lies in the normal components (Khodakovsky and Guskov, 2002).
Hence, most of coefficients can be represented by a single scalar, instead of a three-dimensional vec:
tor like in (Khodakovsky et al., 2000) for instance. Therefore several wavelet coders exploit the normal
meshes combined with thenlifted butterflywavelet transform. Let us cite for example the coder NMC
proposed by Khodakovsky and Guskov (2002). This coder is based on a zerotree coder developed in
(Khodakovsky et al., 2000). The wavelet coefficients are first organized in a multiscale quadtree struc-
ture. Then, a zerotree coder (followed by an entropy coding) is applied on each component of the wavelet
coefficients separately. Sim et al. (2002) proposed a progressive compression and an interactive transmis
sion algorithm for normal meshes based on rate-distortion optimization. We can also cite the works of
Lavu et al. (2003). The resulting compression algorithm EQMC is based Bstanation-Quantization
framework initially developed for 2D images (Lopresto et al., 1997). This algorithm exploits the spatial
and inter-scale correlations of the normal meshes. The authors propose to find the best quantizer for eact
normal component depending on the normal components previously encoded, in the local neighborhood.
This allows to optimize locally the trade-off between the bitrate and the quantization error, providing
0.5-1 dB improvement in coding performance compared to NMC (Khodakovsky and Guskov, 2002). In
the same way, we proposed in previous works (2003) a bit allocation controlling the quantization error
energy to dispatch the bits across wavelet subbands (Payan and Antonini, 2003a, 2003b).

The basic idea of these works is to optimize the trade-off between the bitrate and the quality of the
reconstructed mesh either by minimizing the losses due to the geometry coding, or by reducing the bit
budget. This principle calleblit allocation allows to improve the coding performances when a multires-
olution analysis is performet.

In order to improve the coding performances compared to the state-of-the-art coders for normal meshes
at a specific bitratewe propose in this paper a bit allocation process that optimizes the quantization of
thenormal meshwavelet coefficients at a given bitraik,4e: We focus on the normal meshes because of
its simple and multiscale representation, allowing an efficient multiresolution analysis and adaptive dis-
playing according to the level-of-detail requirements or hardware capabilities (Khodakovsky and Guskov,
2002; Khodakovsky et al., 2000; Sim et al., 2002; Lavu et al., 2003). Precisely, we aim to find the best
quantizer for each component subband such that the reconstruction error is minimized for the given

1 Note that bit allocation is not only used in case of wavelet coding. Let us cite for instance Chow (1997) or Li et al. (1997)
who proposed a coder allowing different regions of a mesh to be compressed with different precision in function on the level
of details. King and Rossignac (1999) focused on the problem of balancing two forms of lossy mesh compression: reduction
of the number of vertices by simplification techniques, and reduction of the bitrate per vertex coordinate. More recently, Karni
and Gotsman (2000) proposed to truncate spectral coefficients according to a maximum RMS value given as input parameter.
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bitrate Riarger A distortion measure is consequently needed to evaluate the reconstruction error of the
guantized mesh.

Several distortion measures have been exploited for compression of irregular meshes (King and
Rossignac, 1999; Karni and Gotsman, 2000; Sorkine et al., 2003; Luebcke and Halle, 2001). For in-
stance, Karni and Gotsman (2000) introduce a metric which captures the visual difference between the
original mesh and its approximation. Their criterion depends on the geometric distance daylahe
cian differencebetween models. Unfortunately, we cannot use sugdrigx-to-vertexneasure since the
proposed coder includes a remeshing technique modifying the topology of the input mesh. In that case,
the widely used metric is the symmetric root mean square error between two surfaces (Cignoni et al.,
1998), because it does not depend on the mesh sampling, or its connectivity. We refer to this error as
the surface-to-surfac€S2S distance A real computation of the S2S distance is a computationally in-
tensive process. To overcome this problem, we argue that the mean square error relative to the normal
mesh quantization, expressed according to the quantization error of each subband, is a suitable criterior
to evaluate the reconstruction error between the input mesh and the quantized normal one. Furthermore
this criterion allows to use theoretical models for the bitrate and the distortion of each wavelet subband,
involving a fast model-based algorithm of low computational complexity.

We finally design a wavelet coder that includes a bit allocation dispatching a given bit budget across
the wavelet subbands according to their influence on the reconstructed mesh quality. Compared to the
state-of-the-art coders for normal meshes (Khodakovsky and Guskov, 2002; Lavu et al., 2003), our com-
pression algorithm provides performance gains, up2db dB compared to the original zerotree coder.

This paper is organized as follows. In Section 2, we introduce some background and notations on
triangular meshes and briefly describe the normal meshes. In Section 3, we present our framework and
the proposed compression algorithm. Then, we deal with a suitable distortion criterion to evaluate the
reconstruction error of normal meshes in Section 4, and across a wavelet coder in Section 5. In Section 6
we introduce the proposed bit allocation and develop the model-based algorithm in Section 7. Finally,
we give some experimental results in Section 8, and conclude in Section 9.

2. Background and notations

Triangular meshLet us denote a triangular meg¥ as a pair(), 7), whereV is a set of vertices
defined byV = {v; = (v!,v], v}) € R3 | 1 <i < |V|} with |V| the number of vertices, arfl a set of
triangular faces.

Semi-regular meskA semi-regular triangular mesht,, is a multiscale mesh, built by repeated regular
subdivision of a base mesiWy = (Vp, 7o) (a coarse version of the original irregular mesh obtained
by a simplification technique (Gotsman et al., 2002)), providing several meshes\, = V1, 71),

My = Vs, T3),...) until the finest semi-regular mestts; = (Vyr, Zsr). These meshes have the notable
property:
VoCV1C--- C Vs

Fig. 1 shows an example of a semi-regular mesh at different resolution levels. The vertices added to obtain
afiner mesh can be defined by a set of three-dimensional detail végter$d; ; = d;;, dl‘] df,j) eR3|
1< j < |D;}, with | D; | the number of details at the resolution lewelhe set of detail®; describes the

deformations between the mesh; ; and M;. The details are mostly computed in a local frame (Zorin
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@ (b) (© (d)

Fig. 1. Multiresolution semi-regular version okSLL at different levels of resolution, from level 2 (64 triangles) to level 8
(finest mesh with 262144 triangles). (a) Level 2; (b) level 4; (c) level 6; (d) finest mesh.

(b)

Fig. 2. Anormal meshM; is obtained by successive connectivity subdivision of a coarse riéghrhe detail vectors depend
on the normals at the surface. (a) A finer meighy is obtained from the coarse meshg and a detaill; g. (b) The finest mesh
Megr is obtained fromM and the detailg g anddp 1.

et al., 1997) induced by the tangent plane and the normal direction at the surface defined by the mesh of
lower resolution (Khodakovsky et al., 2000). This means that we can distinguish the sotaadiedtial
componentérom thenormal componentsf detail vectorsy; ;:

e thetangential componentre the coordinates’, andd; . ; ; of detail vectors;
e thenormal componentare the coordinateg ; Of detail vectors,

Normal meshThe normal meshes are attractive because majority of the details may be represented
with a single number instead of a three-dimensional vector like in (Lee et al., 1998). These multires-
olution meshes have the property that the details almost always lie in a known normal direction (see
Fig. 2) (Guskov et al., 2000). This means that the tangential components tends to be equal to zero. This
is currently the most compact representation of semi-regular meshes.

Quantized mesh.et us denote quantlzed normal meshg, asa palr/\/lsr = (Vsr, Tar). Vs, represents
the set of quantized vertices deflned]by_ {(0; eR31<i < |Vsr|} wherev; = Q(v;). Q(.) is called
the quantization operator associated to a quantizatiorgstep
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Fig. 4. Proposed geometry decoder.

3. Overview of the proposed approach

Figs. 3 and 4 present the global scheme of the proposed coder/decoder. The algorithm principle is
described hereinafter. The normal remesher provides a semi-regularmigslfrom the irregular in-
put oneM;,. A N-level unlifted butterfly wavelet transform (Sweldens, 1998; Schréder and Sweldens,
1995) is then applied to obta subbands of three-dimensional wavelet coefficients. Using this wavelet
transform ensures that wavelet coefficients remain in the normal direction (Khodakovsky and Guskov,
2002).

The tangentialand normal setg(see Section 2) of wavelet coefficients are then encoded separately
using uniform scalar quantizes) depending on the optimal quantization steps computed during the
allocation process. An entropy coder adapted to the multiresolution semi-regular mesh (Payan and An-
tonini, 2003Db) is finally applied. In parallel, the connectivity of the coarse mesh can be encoded with any
topological coder. In this paper, we choose the efficient coder of Touma and Gotsman (1998). Finally, the
two bitstreams are merged for transmission.

The goal of this paper is to propose a coder/decoder including a bit allocation process that optimizes
the quality of thequantized normal mesk suitable distortion measur®r is thus needed to evaluate
the reconstruction error during the geometry encoding. In the next section, we deal with the choice of the
distortion measure.
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4. Choice of thedistortion measure
4.1. The S2S distance as quality criterion

Several distortion measures have been exploited by single-rate mesh coders (King and Rossignac
1999; Karni and Gotsman, 2000; Sorkine et al., 2003; Luebcke and Halle, 2001). In this paper, we choose
as reconstruction error the symmetric root mean square error between two surfaces (Cignoni et al., 1998)
also called the S2S distance. We choose this distance because it is generally used to evaluate the pe
formances of coders based on remeshing (Khodakovsky et al., 2000; Khodakovsky and Guskov, 2002;
Sim et al., 2002; Lavu et al., 2003). Indeed, this distance does not depend on the mesh sampling, or
connectivity.

The distortion measur®r is defined as the energy of the S2S distance between the irregular input
meshM;; and thequantized normal mesh;:

Dr =dS(Mir7M\sr)2, (1)
whereds(., .) represents the S2S distance.

4.2. Definition of the S2S distance

The S2S distance between the two meshés and Mg, (Cignoni et al., 1998) is defined by

ds(M, M\sr) = ma){d_(Mir» /\//Tsr)§ Ci(ﬂ/l\sr, Mir)], (2)
whered (M, M) is theunilateral distancebetween two meshes (Cignoni et al., 1998), given by
B 1 1/2
o= [ o seva)”
peM

| M| represents the area @#t, andd(p, M’) represents the distance between a ppitielonging to a
surface represented by a meshand the surface represented by a mégh This distance is defined by

d(p, M")= min |]p —p'llz= | p — Projy(p)| ,, (4)
peM

with |.||2 the L,-norm, and Proj, (p) the orthogonal projection gf over M'.

A real computation of the S2S distance is a computationally intensive process. Moreover, this distance
would be hard to optimize during the allocation process. To overcome this problem, we propose to use
a simpler but suitable criterion to evaluate the reconstruction error. To this purpose, we make several
assumptions.

4.3. First assumption: an optimal remeshing

Notice that the normal remesher providesoamal meshM,, very close to the original irregular mesh
M. Table 1 shows that the S2S distance between these two meshes is negligible (lowed168m &F
the bounding box diagonal).

Eqg. (1) can then be approximated by

Dr =~ ds(Msr, Msr)? = max{d(Mer, M) d(Msr, Msp)?]. (5)
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Table 1
Remeshing error between the irregular mesh and the normal mesh (S2S distance relative to the bounding box diagonal). “Base”
represents the number of triangles of the base mesh

Model Vir| | Zir | Base Refinement level | Zsr| Remeshing error (%)
HORSE 48485 96966 220 6 901120 .aD36

RABBIT 67039 134073 76 6 311296 .an42

VENUS 50002 100000 80 6 327680 .aD58

FELINE 49919 99732 504 4 129024 .a131

SKULL 20002 40000 4 8 262144 @57

Table 2

Mean differences betweel( My, ﬂsr) andc?(ﬂsr, Msr) according to the bitrate per irregular vertex (bits/iv), computed on
5 typical models (MRSE RABBIT, VENUS, SKULL and FELINE)

Bitrate (bits/iv) <1 1-2 2-6 6-10 > 10

cz (Msr, Msr) 1.07e-1 1.30e-2 5.34e-3 1.72e-3 1.43e-3
d(Msr, Msr) 1.02e-1 1.28e-2 5.34e-3 1.72e-3 1.43e-3
Difference (%) 3.680 1.890 0.291 0.261 0.074

4.4. Second assumption: densely sampled meshes

Let us study the difference of “symmetry” between the distancas!s,, ﬂsr) andd (ﬂsr, Msg). Ta-
ble 2 presents a mean of the relative errors between these two distances, computed on 5 typical model
(HoRsE RABBIT, VENUS, SKULL and FELINE), and according to different bitrate ranges. The differ-
ence being very low< 4%) for each bitrate range, we can assume dtiatl, /\/lsr) ~ d(Msr, Mgp),
and we can simplify the computation B, by using only one of the unilateral distances:
Dr ~d(Ms, Msr)za (6)

or equivalently,

DTZ

// d(P,Msr)zd/\//Tsr- (7)

Msrl S J
pEMsr

D7 should be computed analytically in each paging Ms,. However, since mormal meshs densely
sampled, the number of vertices is large. Thus, we can assume a uniform distribution of the vertices
on the surface. Consequently, the integral in (7) can be numerically approximated by a discrete sum
(Gersho, 1979). Moreover, the area of triangles being very small relative to global surface, the distance
point-surface:l(p, M) can be computed only from the vertices (Aspert et al., 2002):

Z d(v, Msr) (8)

EVsr

IVsr

with 0 = Q(v) the quantized version of the vertexand|9s,| the number of vertices oﬂs, (or equiva-
lently Msg;).
Now, we have to deal witl (0, M) = [|0 — Proj,_ (V) ||2.
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4.5. Third assumption: an optimal bitrate coding

Let us introduce the quantization error vector) = v — 0, between a vertex and its quantized ver-
sion v. Under the assumption of an optimal bitrate coding and in the considered bitrate range, we can
assume that the quantization of the coarser levels does not modify consequently the computation of the
local coordinate systems in which the details of finer levels are expressed. This introduces further tangen-
tial components, but these components remain small compared to normal components. As a result, anc
since we use a normal remesher, most of error veetarslie in the normal direction at the surfagé ;
in v. Therefore, during the computation @fv, Ms;) = || — Projy,_ (9) |12, the orthogonal projection of
v over Mg remains very close to:

Projy, (V) = v.

Finally, we can state that

d(D, Msr) = |6 = Projy, )], = 8 = vll2 =] Q@) — v ,. 9
Using Eq. (9), Eq. (8) can be written as
1
Dr~——>"|ow -] (10)
Vel /5

We notice that the right-hand side of (10) corresponds to the quantization error of the normal mesh geom-
etry, i.e., the MSE denoted Imésr. Thus, in case of densely sampled meshes and under the assumption of
an optimal bitrate coding, the MSE of the geometry quantization should be a suitable distortion criterion
to evaluate the reconstruction error between the irregular input mesh and the quantized one. Finally, we
can write

Dr ~ o}, (11)

This formulation is computed in the euclidean space, and depends on the vertices of the mesh. Now, the
proposed bit allocation is processed on the wavelet coefficient subbands. Thus, we have to express the
MSE of quantization of theormal meslgeometry according to the quantized coefficients.

5. M SE across a wavelet coder

We have shown in Section 4 that the MSE of normal mesh quantization is a suitable criterion to
evaluate the reconstruction error between the irregular input mesh and the quantized normal one. In the
proposed coder, the unlifted butterfly wavelet transform is applied on the normaliigsiience, we
obtain the coarse base mesity, andN three-dimensional wavelet coefficient subbands. The geometry
V, of the coarse mesi is called thdow frequencysubband. The sefB; defined in Section 2 are now
thehigh frequencyr wavelet coefficients subbands, witthe resolution level.

In (Usevitch, 1996; Payan and Antonini, 2005), it is shown that the MSE of a multidimensional signal
encoded across a wavelet coder usiny-#evel decomposition is equivalent to a weighted sum of the
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MSE oéi introduced by the quantization of each wavelet coefficient subbahaerefore, the MSIEréSr
between a normal mesh and its quantized version can be written as

N
2 2
OHsr = Z Wio 5 (12)
i=0

whereaéi is the MSE due to the quantization of the wavelet coefficient subbaadd {w;} are the
weights due to the biorthogonality of the wavelet transform. The weights relative to the unlifted butterfly
wavelet transform are computed in (Payan and Antonini, 2005). They are given by

|D; | (169>N_i
= =% 13
Y= )41\ 256 (13)

where|D;| is the number of coefficients of the subband and|Vs| the number of semi-regular vertices.

Recall that in our framework each subband of high frequency wavelet coefficients is splitted in two
scalar sets, theangentialandnormal setgsee Section 2). Consequently, the M&sg of the ith high
frequency subband/( £ 0) is the sum of the MSEEL1 andoéi’2 due to the quantization of the tangential
and normal sets:

ohi=> 05, Vi#0, (14)
Jj€li

whereJ; is a set of indices defined by = {1, 2}, Vi #0.

On the other hand, the low frequency subband does not present specific properties, since it represent
a coarse version of the input mesh. Therefore, the low frequency subband will be splitted in three scalar

sets, and the MSEéo of the low frequency subband is the sum of the three M%gj due to the
guantization on each coordinate set:

o00=Y 050, (15)
J€Jo
whereJy is a set of coordinate indices defined Jy= {1, 2, 3}.

Finally, by merging (14) and (15) in (12), the ME‘»:%sr relative to the geometry of a semi-regular
mesh encoded with a wavelet coder is given by

N

OG5 = Z Wi Z i) (16)

i=0  jeJ;

with w; given by (13). The formulation (16) is finally used as distortion measure during the bit allocation
process to evaluate the distortion introduced on the reconstructed mesh by the geometry quantization.
6. Optimal bit allocation

6.1. General purpose

The general purpose of the proposed bit allocation is to optimize the trade-off between the global
bitrate and the quality of the reconstructed mesh by controlling and minimizing the losses due to the
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geometry quantization at a given bitrate. Compared to the algorithm proposed in (Lavu et al., 2003)
that optimizedocally the trade-off between the bitrate and the quantization error of the coefficients, the
proposed bit allocation process aimsigtermine the best set of quantization stgps} used to quantize
the subbands, that minimizes the global reconstruction ebrprof the decoded mesh at a given target
bitrate Riarger The quantityReager cOrresponds to the aimed bitrate for the compressed mesh, expressed
here in bits per semi-regular vertex. It can be fixed by either the user, or automatically by the computer,
depending on the applications or the bandwidth limitations. The principle is the following. The wanted
bitrate is given, and then the reconstruction error is minimized for this specific bitrate. Once the allocation
processed and the quantization steps computed for this bitrate, the encoding is performed.

The optimization problem can be formulated as follows:

minimize D i
P _ _ r({gi;}) a7)
with constraint Rr({g;,;}) = Rtarget

whereRy is the given total bitrate. By using a lagrangian operator, this constrained allocation problem
can be defined by a lagrangian criterion:

Ji(1g:,;}) = Dr(1g:,;}) + AM(Rr({g:.;}) — Riargey)s (18)

with A the lagrangian operator. By merging the distortion measure (16) proposed in Section 5 with (18),
the lagrangian criterion can be developed in:

{C]z]} ZwlZGQ[/(qu)+)\'<ZZal] zj(sz)_Rtarget)7 (19)

=0 jed; =0 jeJ;

wherea (i) and R; ; are respectively the MSE and the bitrate relative to (thg)th component
set. The coefﬂments, .j depend on the subsampling and correspond to the ratio between the size of the
(i, j)th component set and the total number of componenss|i3;|).

6.2. Optimal solution

The solution of this constrained allocation problem can be obtained by differentiating Eq. (19) with
respect to the quantization stefgs ;} anda (first order conditions), or equivalently by solving the fol-
lowing system:

9, (q;, /}) — 0

9qi,j 20
3JA({(11,_1}) _ 0 ( )
oA -

This system can be developed in

3051',]'(%1]) ' oR; j(qi ;)

i a;, =0, (21a)
0qi.; T 3qi;
N
Z Z a; jR; j(qi,j) = Riarget (21b)
i=0 jeJ;

Finally, we have to solve the following system @N + 4) equations with 2N + 4) unknowns (the set
{Qi,j} and)x):
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aaél‘_j(‘h.j)
0qi,j . ai.j
OR; j(qi,j)) A w; ’ (228)
0qi,j
N
Z Zai,j Ri j(qi,j) = Riarget (22b)
i=0 jed;

In order to obtain the optimal quantization steps analytically, (22a) requires to be inverted. Unfortunately,
this stage is impossible due to the complexity of the equations. To overcome this problem, an iterative
algorithm depending oh is generally proposed.

6.3. Overall algorithm

The optimal solutions of system (22) for the given bitr&g.4e: are then computed thanks to the
following overall algorithm:

(1) xis given. For each s€t, j), computey; ; that verifies (22a);
(2) while (22b) is not verified, calculate a newby dichotomy and return to step 1;
(3) stop.

The computation of the quantization stgps; } as solutions of (22a) can be done according to different
methods. In the following Section 7, we propose to process this algorithm with an efficient approach
thanks to theoretical models for the bitrate and the MSE (Parisot et al., 2003).

7. Model-based approach

The only way to compute the bitrate and the MSE of the different component sets of the wavelet sub-
bands without real pre-quantizations is to perform a model-based bit allocation. Therefore, we introduce
theoretical models for the distortion and the bitrate, depending on the probability density functions of
each data set. Let us focus now on the estimation of these density functions.

7.1. Wavelet coefficients distribution

Fig. 5 shows typical probability density functions of the tangential and normal sets of wavelet coeffi-
cients of normal meshes obtained by the unlifted butterfly wavelet transform.

We observe that distributions are zero mean and all informations are concentrated on few coefficients
(very small variances). By using)&-test, we observe each probability density function of the tangential
and normal sets can be modeled b@eneralized Gaussian DistributiqGGD) 2

2 For instance, the 2-test applied on the two probability density functions shown in Fig. 5 provides: 1.5621 for the
tangential set, ang? = 0.1286 for the normal set when 26 quantization cells are used, meaning that than 99% of the coefficients
are well modeled by a GGD.
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Fig. 5. Typical probability density functions of tangential and normal sets (mdetal3. The dash-dot lines represent the real
density functions, and the solid lines represent the corresponding GGD. (a) Tangential set (level 2). (b) Normal set (level 2).

08

The formulation of a GGD is given by

Poa(x) =ae™ Pl (23)

with b = (%JF(B/a)/ I'(l/a) anda = #f/a) The parametex is computed using the variane€ and
the fourth-order moment of each set (Kasner et al., 1999). Fig. 5 also shows the GGD used to model the

real distribution (solid lines).
7.2. Processing of the low frequency subband

On the other hand, the three subsets of the low frequency subband do not have any particular distri-
bution and cannot be modeled by an unimodal function like the high frequency component sets, since
they represent a coarse version of the original mesh. To overcome this problem, we choose to model anc
encode the differences between two low frequency components, instead of the components themselve:
(differential coding) (Payan and Antonini, 2002). We observe that these differences can also be modeled
by a GGD. However, this method is interesting if no side information is required by the decoder to re-
construct the good connectivity. This is possible if the differential coding is processed by following the
ordered list of low frequency vertices given by the topological coder.

7.3. Theoretical models for the distortion and the bitrate

The theoretical model to compute the Msg of a uniform scalar quantizer is given by:

+% $4+(m-1q

+00
Uézfpa,a(x)dX'i‘ZZ / (x _ﬁ)zpa,a(x)dx’ (24)

m=1
$+Imlq

N
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wherex is an original sample antlits decoding value. Furthermore, since an entropy coder is used after
the quantization, we suppose that the bitrRtafter encoding is equal to the entropy of the quantized
components of each set:
+00
R=— Z Pr(m) log, Pr(m). (25)
m=—00

Pr(m) is the probability of a quantization leved:

$+(ml-1)q +3%
Pr(m) = / pa,a(x) dx and P(O) = / po,a(x) dx: (26)
%+|m|q —%

wherep, ,(x) is the probability density function of a subset.
Moreover, the authors of (Parisot et al., 2003) show that for an uniform scalar quantization using the
center of the cells as decoding value, the MSE (24) for a Gi3[Xx) can be rewritten as

O‘é =02D(j, o), (27)

with o2 the variance of the set, aigo= 1. D(gG, ) is a simple function given by

+o00o +00
D@G.e)=1+2) (md)?fou(@. @) =4) md fLn(d. ). (28)
m=1 m=1
where functionsf, ,, are defined by
3q+mg
fn@o= [ ¥pratods (29)
3G+m-1g
and by
34
fro@) = [ ¥ praCode (30)
_%q

By the same way, the bitraf® associated to a GGD can be rewritten as (Parisot et al., 2003)
+00
R(G, @) =~ foo(d @) 109, foo(d, @) =2 fom(G, @) 10, fon(d. ). (31)
m=1
According to the theoretical model (28) for the MSE, and the theoretical model (31) for the bitrate of a
component set, the system (22a) becomes

aD(gi, ;o)
~ _ 8(},',]‘ - al‘)j
ha(ql,j) - 3Ri,[(£}‘i,[ﬂa) - _)"waz 9 (32&)
~ q; L
i,j
N
Z Zai.j Ri,j(qi,j» @) = Riarges (32b)

i=0 jelJ;
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Fig. 6. First LUT used to solve the system (32a)-thy) according to Ii4g), for differentq.

whereh, (g;, ;) can be developed in
ha(gi, ;)
~ ~ ~ d m m
Zm 1m[2f1,m(aaCIi,j) - Zin,jfo,m(Ol, Qij) mqlzj d;o (o, 6]1 1) +241 j dql (o, %/)]
PGBIN foolers G g) + 1+ 225 2 e G IIN fom(es i) + 11

In2.

(33)
7.4. Model-based algorithm

In order to speed the allocation process up, Parisot et al. (2003) propose to use some offline computed
Look-Up Tables (LUT) to solve the system (32). They propose to exploit two parametric curves:

e [In(g); In(—hy)]: this LUT allows to compute the quantization stgmorresponding to a specific
hq(g;, ;). Fig. 6 shows the parametric curves corresponding to this LUT. This allows to compute the
guantization steps verifying (32a).

e [R;In(—hy)]: this LUT allows to compute the bitratR corresponding to a specifig, (g;, ;). Fig. 7
shows the parametric curves corresponding to this LUT. This permits to verify the constraint on the
bitrate (32b);

In that case, the algorithm given in Section 6.3 becomes:
(1) compute the varlanaa2 and the parametey; ; for each seti, j);

(2) a value ofx is given. For each sdt, j), computeh, (g; ;) thanks to the right-hand side of (32a).
Then, use the LUT ofR; In(—A,)] to compute the corresponding bitrakg;;
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Fig. 7. Second LUT used to solve the system (32&)+I,) according tor, for differenta.

(3) while (32b) is not verified, calculate a newby dichotomy and return to step 2;

(4) At this step, the optimal is known. Thus, for each sét, j), use the LUT of{In(g); In(—hy)] to
compute the optimal quantization stgp corresponding to the value 6f,(g; ;) found in step 2.

(5) stop.

7.5. Complexity

In this section, we evaluate the complexity of the model-based algorithm to show the interest of the
proposed approach.

Step 1 of the algorithm permits the computation of the variamtend of the parametar. The
parametew is computed from the variance and the fourth-order moment for each component set (Kasner
et al., 1999). This step can be done in 4 operations per component.

At step 2, after the computation of(rh,) using, o2 and Eq. (32a), the set ¢R; ;} is computed at
low cost by addressing the LUT associatedRo In(—h,)].

Step 3 consists in computing a simple weighted sum of the bitrates estimated at step 2 (2 arithmetic
operations per component set) to verify the constraint on the global bitrate. The computation of a new
is done by a simple dichotomy.

At step 4, the set of quantization stefgs; } is computed at low cost by addressing the LUT associated
to [In(@); In(—hy)].

The convergence of the algorithm is reached after few iterations (lower than 5). Finally, the step 1
represents the highest computational cost of this algorithm, with 4 operations per sample, hence a
computational complexity of approximately 12 operations per semi-regular vertex. This involves a fast
allocation process with a very low computational complexity, taking less ttdaedond on a Pentium
Il 1 GHz, 512 Mbytes RAM.
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8. Experimental results

This section presents some experimental results of the proposed coder, and we compare its perfor-
mances to some state-of-the-art coders. These coders are:

e The zerotree coder of normal meshes (NMC) (Khodakovsky and Guskov, 2002);

e The EQ mesh coder (EQMC) for normal meshes (Lavu et al., 2003);

e The original Zerotree Coder (PGC) (Khodakovsky et al., 2000) for semi-regular meshes, including
the remeshing technique MAPS (Lee et al., 1998);

The coders NMC and EQMC are currently the most efficient geometry coders. In order to encode the
connectivity of the base mesh, we use the topology coder of Touma and Gotsman (Touma and Gots-
man, 1998) as in the three state-of-the-art coders previously denoted. This permits to compare only the
performances of the different geometry coders.

Recall that the main objective of our algorithm (but also of EQMC) is to improve the coding per-
formances by optimizing the rate-distortion trade-édf;, one specific target bitratéThus, to confirm
that the proposed algorithm achieves performance gains compared to the state-of-the-art coders for any
given bitrate, Figs. 8, 9, and 10 show the PSNR curves according to different given bitrates (per irreg-
ular vertex), for the models 6RSE RABBIT, and VENUS. The curves are constructed as follows. For
our algorithm, they depend on several valueskgfqe; €ach dot corresponding to a mesh coded and
decoded at its finest resolution. For EQMC, they depend on several valueg¢Laf/u et al., 2003).

For NMC and PGC, they depend on several given bitstream sizes (Khodakovsky and Guskov, 2002;
Khodakovsky et al., 2000).
The PSNR is given by

where bb is the bounding box diagonal afdis the surface-to-surface distance between the irregular
input mesh and the reconstructed semi-regular one (computed with MESH (Aspert et al., 2002)).

86

82

78

N
&
& o
70 , \
—e—Proposed coder ' "‘ \ N
66 f / —¥=—NMC \
’ —¢- -EQMC / )
4 — -PGC Y

62

0 2 4 L} 8
Bitrate (bits / irregular vertex)

Fig. 8. Bitrate-PSNR curve for BRsEat its finest resolution (901120 triangles).
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Fig. 10. Bitrate-PSNR curve for 8ius at its finest resolution (327680 triangles).

We observe that, for any target bitrate, the proposed coder provides performance gains compared the
state-of-the-art coders NMC and EQMC (excepted one bitrate for the obpet¥where EQMC is
slightly better). We obtain similar results with the models.FNE, SKuLL and MOLECULE. This is re-
markable since theoretically the MSE should be a suitable criterion only in case of optimal rate coding
(high bitrates). Finally, we find experimentally that the MSE is always a suitable criterion, for any bitrate
range.

Table 3 gives the PSNR values relative to the proposed coder and to the coder NMC according to dif-
ferent given bitrates for all the models (at their finest resolution). We observe the proposed bit allocation
improves the coding performances upi#a.5 dB. In addition, Fig. 11 provides some visual benefits rel-
ative to the use of the proposed coder. This figure shows the distribution of the reconstruction error on the
object FELINE, quantized with the proposed coder (Fig. 11(a)) and with NMC (Fig. 11(b)). The colour



F. Payan, M. Antonini / Computer Aided Geometric Design 22 (2005) 466—486 483

Table 3
Proposed coder versus the state-of-the-art NMC: PSNR improvement (in dB) for 6 typical models, at their finest resolution

RABBIT (155650 vertices, 311296 triangles)

Bitrate (bits/iv) 014 026 038 092 248 361 6.20 903
Proposed coder 635 7015 7326 7920 8350 8461 8535 8550
NMC 63.38 6904 7209 7799 8274 8408 8505 8542
Improvement ®7 111 117 121 076 053 030 007
HORSE(450562 vertices, 901120 triangles)
Bitrate (bits/iv) 026 087 124 197 288 385 584 1151
Proposed coder 639 7447 7697 7951 8118 8222 8352 8479
NMC 62.75 7351 7606 7863 8050 8143 8280 8436
Improvement 164 096 091 088 068 079 072 043
VENUS (163842 vertices, 327680 triangles)
Bitrate (bits/iv) 020 034 092 160 342 520 674 906
Proposed coder 615 6564 7256 7614 7982 8121 8173 8202
NMC 60.71 6459 7163 7529 7895 8131 8177 8069
Improvement 103 105 102 086 087 052 041 025
FELINE (64510 vertices, 129024 triangles)
Bitrate (bits/iv) 039 071 100 130 222 328 437 505
Proposed coder 534 6535 6810 7060 7372 7484 7514 7522
NMC 57.03 6286 6657 6899 7299 7447 7496 7511
Improvement 232 249 153 162 075 036 018 011
SKuULL (131074 vertices, 262144 triangles)
Bitrate (bits/iv) 021 053 082 152 225 408 508 7.90
Proposed coder 580 6119 6470 6838 7065 7296 7338 7358
NMC 53.75 6098 6396 6773 7027 7260 7319 7354
Improvement ®B5 021 074 066 039 036 019 004
MOLECULE (54272 vertices, 108544 triangles)
Bitrate (bits/iv) 043 089 169 225 310 6.08 7.60 1079
Proposed coder 489 5200 5755 5953 6154 6430 6538 6615
NMC 4357 5093 5630 5848 6073 6343 6459 6559
Improvement n2 107 124 105 081 087 079 055

corresponds to the magnitude of the distance point-surface normalized by the bounding box diagonal,
between the input irregular mesh and the quantized one (computed with MESH (Aspert et al., 2002))
(for colours see the web version of this article). One can argue that NMC leads to more local errors than
the proposed algorithm. Moreover, Fig. 12 shows renderingsexus, compressed at different given
bitrates. This demonstrates that even at low bitrates the meshes quantized with the proposed algorithm is
not so far from the original irregular one.

9. Conclusions

In this paper, we design an original wavelet coder based on the rate-distortion optimization, for densely
sampled triangular meshes. Exploiting thermal remesheof Guskov et al. (2000), our coder includes
an original model-based bit allocation that optimizes the quantization of the wavelet coefficients at any
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Fig. 11. Distribution of the reconstruction error on the objegetIRE at its finest resolution. The total bitrate is equal t310
bits/irregular vertex. (a) Proposed method. PSANRB5.35 dB. (b) NMC. PSNR= 62.86 dB.

given bitrate. By assuming that the quantization of the coarser levels does not modify significantly the
computation of the local coordinate systems, we argue that the weighted sum of the MSE relative to the
gquantization of each wavelet component set is a suitable distortion criterion to evaluate the reconstruction
error between the irregular input mesh and the reconstructed normal one during the bit allocation. By
minimizing this MSE for a given target bitrate, the allocation process dispatches the bit budget across the
wavelet subbands according to their influence on the quality of the reconstructed mesh for this specific
bitrate. Moreover, the use of theoretical models for the distortion and the bitrate of each component set
involves a very fast computation of the optimal quantization steps. Experimental results demonstrate that,
for any given bitrate, the proposed approach provides improvements in coding performance compared
to the two state-of-the-art normal mesh coders (Khodakovsky and Guskov, 2002; Lavu et al., 2003) (up
to +2.5 dB compared to the original zerotree coder), for a very low computational complexity. In future
works, we could improve this algorithm to allow a strictly progressive compression, since our method is
at moment only scale-wise progressive.
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Fig. 12. Renderings of ENusat its finest resolution, compressed at different target bitrates. (a) Input mesh. (b) 2.6 bits/irregular
vertex (bitstream size- 16340 bytes). (c) 0.7 bits/irregular vertex (bitstream siz4677 bytes). (d) 0.3 bits/irregular vertex
(bitstream size= 1842 bytes).
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