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ABSTRACT

In this paper, we propose a 3D geometry compression tech-
nique for densely sampled surface meshes. Based on a 3D
multiresolution analysis (performed by a 3D Discrete Wavelet
Transform for semi-regular meshes), this scheme includes a
model-based bit allocation process across the wavelet sub-
bands and an efficient surface adapted weighted criterion for
3D wavelet coefficient coordinates. This permits to highly
improve the visual quality of quantized meshes obtained by
classical bit allocation based on MSE distortion. Moreover,
the coefficients are encoded with an original 3D context-
based bitplane arithmetic coder. The main contribution of
this paper is the introduction of 3D multiresolution contexts
adapted to 3D semi-regular mesh geometry information.

1. INTRODUCTION

Surface meshes are a powerfool tool for modeling complex
3D objects because of their simple representation (vertices
and edges). In the triangular mesh setting, there are two dis-
tinct approaches: monoresolution representations, and mul-
tiresolution ones. A lot of methods belonging to the first
framework can be found in [1, 2, 3, 4]. Generally these non
progressive methods are only based on a specific reduced
topology representation associated to scalar quantizations of
geometric information. An overview of these kind of meth-
ods can be found in [5]. Despite the fact that wavelet repre-
sentation and multiscale approach is very performant in im-
age coding [6], multiresolution approach is relatively new
for mesh coding. Few years ago, Lounsbery [7] introduced
a progressive compression scheme using 3D multiresolution
analysis and wavelet transform on meshes. Based on the
rate-distortion theory, these kind of methods provides very
good results. Then, Schroder, Sweldens and Kovacevic de-
veloped several 3D wavelet tranform techniques for geome-
try compression schemes like [8] or [9]. Other recent works
showed that the multiresolution approach provides very ef-
ficient compression methods [10, 11].

Thiswork is supported by agrant from the region PACA and Opteway
Corporation in Sophia Antipalis.

In order to optimize the trade-off rate-distortion, it is neces-
sary to perform bit allocation across the different subbands.
In our framework we proposed to dispatch the bits accord-
ing a model-based allocation [12]. The models of rate and
distortion are adjusted to fit the distribution of wavelet co-
efficients of each vertex coordinate subband [13, 14, 15].
Moreover, in this paper we propose to improve the encod-
ing of the quantized coefficients by exploiting the spatial
and multiscale correlations of the progressive meshes. For
this purpose, we introduce three-dimensional multiresolu-
tion contexts in a context-based arithmetic coder.

This paper is organized as follows. Section 2 introduces
backgrounds. Section 3 proposes our surface-adapted bit
allocation. Section 4 deals with an original 3D multireso-
lution context-based coder. Finally, we compare our algo-
rithm to state-of-the-art methods and conclude in Section 5.

2. OVERALL SETTING

Our geometry compression scheme is presented in figure
1. This method deals with surface semi-regular meshes ob-
tained by remeshing methods [16, 17]. This permits to ap-
ply the Lifted Butterfly Wavelet Transform [9]. The re-
sulting representation is a set of (N — 1) high frequency
wavelet coefficients, a low frequency subband correspond-
ing to a coarse version of the original mesh and the topology
information of this coarse mesh. Wavelet coefficients are
three-dimensional vectors X; = (X;1,X;2,X;3), where
1 stands for the resolution index. The coordinate sets are
processed separately and can be modeled by a Generalized
Gaussian Distribution [13]: this permits to fasten the bit
allocation. Note that the highly correlated low frequency
subband requires a predictive preprocessing before encod-
ing. Topology information is not treated here but can be
encoded using any connectivity coder like [2, 14].

3. DISTORTION MEASURE AND ALLOCATION
3.1. Weighted distortion

The proposed distortion measure arises from the following
statement: applying a noise on vertices according to their
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Fig. 1. Global Scheme.

tangent plane does not affect the overall shape. But ap-
plying the same noise on vertices according to their nor-
mal direction considerably changes the surface geometry.
Since wavelet coefficients are computed in a local coor-
dinate frame induced by the surface tangent plane (corre-
sponding to x and y components, the z axis being the normal
direction), the metric error is much less sensitive to quanti-
zation error of tangential (x and y axis) than normal coor-
dinates (z axis). Thus, from a rate-distortion point of view,
bits should be allocated preferentially to the local normal
direction. To take into account this statement, direction se-
lection weights §; ; are introduced in the criterion [15].

3.2. Bit allocation

The general purpose of our bit allocation process is to de-
termine the best set of quantization steps {g; ;} for each
subband (in our case, set of coordinates {z; ;} for i and j
fixed) that minimizes the total distortion D at a given rate
Rrqrger (bits/vertex). By introducing Lagrangian operators,
this constrained allocation problem can be written as:

JA({qi,j}) =Dr + )\(RT - RTarget);
or equivalently,

N 3
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where oﬁj is the variance of the subband i, j. The coef-
ficients a; ; depend on the subsampling and correspond to
a;; = size({x;;})/(3 x # semi-regular vertices). D; ;
and R; ; are respectively the distortion and the bitrate of
each subband which depend on the quotient - J] .

The weights W; depend on the non- orthogonallty of the
wavelet filter bank. Indeed, using biorthogonal filters weights
the MSE distortion of the reconstructed quantized mesh.
Their values can be found in [15].

The direction selection weights d; ; are introduced to al-
locate more bits to the normal information. They are related
to the resolution level: from coarser to finer levels, geomet-
ric information ratio between normal coordinates and tan-
gential coordinates are more and more important. In [15],
we propose to choose these weights related to the resolution
level. They are given by:

(Si,j = oN-i

(Si,j =1
Minimization of (1) according to {¢; ;} and A gives the
optimal sets of quantization steps {g; ; }. Bit allocation so-
lutions use theoretical models for D; ; and R; ; [12]. They

are given in [13, 14] for the non-weighted criterion and in
[15] for the weighted one.

forj = 3 (z axis);
otherwise.

4. PROPOSED 3D CONTEXT-BASED CODER
4.1. Problem statement

Once quantized using the optimal quantization steps found
in section 3, the subbands are coded through a Context-
based Bitplane Arithmetic Coder (CBAC). Dealing subbands
with a coder using contexts computed from the neighbor-
hood and parent-children relations of wavelet coefficients
is a good way to exploit all correlations of semi-regular
meshes. In this way, we introduce here 3D spatial contexts
adapted to geometric data.

Recall that input meshes are semi-regular and multi-
scale: each triangle of one resolution level is subdivided
to form the finer mesh at next resolution. Topologically,
subdivision is done by inserting midpoints on the edges and
quadrisecting the triangle. Figure 2 describes the topology
representation for a vertex X; of a semi-regular mesh.

As it was explained in section 3, wavelet coefficients
are computed in a local coordinate frame induced by the
surface tangent plane corresponding to x and y component,
z axis being the normal direction. It arises from this a close
relation between subbands of x and y components. Then,
we can define two kinds of geometric contexts:
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Fig. 2. 1-Neighborhood topology for a vertex: the set
{Nk(X;)} is the 1-neighborhood of X; at the same reso-
lution level and { P (X;)} the "parent” vertices at the lower
resolution level.

e acontext for "tangential information” (x and y axis);
e a context for "normal” information (z axis).

Neighbors states used to form the context are presented in
the following tables 1, 2 and 3. Then, context values are
computed using [6] and an arithmetic coding is performed
for each context.

4.2. Tangential context

The quantized = and y components obtained by our bit al-
location process are relatively close (same variance, same
order of magnitude): this arises from the fact that they de-
pends on the "tangential” information at each vertex. More-
over, two spatially close coefficients are highly correlated.
To exploit this correlation, we choose to predict a x-compo-
nent (respectively y-component) from the x and y-components
of its 1-neighborhood { N} (X;)}. In other words, the con-
texts used to encode subbands of “tangential” components
(the sets {z; 1} and {xz; .} for each resolution level 7) de-
pends on the values {z; 1} and {z; -} of their "tangential”
1-neighborhood { N, (X;)}. Tables 1 and 2 show how the
components are organized in the new contexts for tangen-
tial coordinates.

Ni(z:2) | No(ziz) | No(zi2)
Ni(x;1) Ti 1 No(x;1)
N3(z;2) | Na(zi1) | Na(zi2)

Table 1. Tangential context used to encode a coordinate z; ;
(x axis).

Ni(zi1) | No(mi2) | No(zin)
Ny(z;2) Ti2 No(z;2)
Ni(x;1) | Ns(zi2) | No(win)

Table 2. Tangential context used to encode a coordinate x; »
(y axis).

Pi(z;3) | No(zi3) | Po(zi3)
Ni(zi3) Zi3 No(zi3)
Ps(z;3) | Ns(zi3) | Po(z43)

Table 3. Normal context used to encode a coordinate ;3
(z axis).

4.3. Normal context

To obtain the "normal” context, we first exploit the high cor-
relation existing between spatially close coefficients. Hence,
as for the tangential information, the main information for a
z-component in the ”normal” context is the z-component of
its 1-neighborhood at the same resolution { Ny (X;)}. More-
over, introducing the 1-neigborhood corresponding to the
“parent” vertices to predict a z-component permits to ex-
ploit the relation between a coefficient and its “parents”
{P(X;)} at the lower resolution level. Table 3 shows the
corresponding multiresolution context for a “normal” coor-
dinate set {z; 3}.

5. RESULTS AND CONCLUSIONS

Tables 4, 5 and 6 show bitrate gains provided by the arith-
metic coding using the proposed 3D multiresolution con-
texts compared to the arithmetic coder from JPEG200 [6]
for three models. Using the proposed 3D multiresolution
contexts with CBAC coder decreases the bitstream size up
to 6.95% at some rates compared to the coder from [6].
Then, we compare the performances of the proposed coder
with two well-known compression methods: Touma-Gots-
man [2] and PGC [10]. The quality criterion is the PSNR
computed with the surface-to-surface distortion measure ob-
tained by MESH [18] (see figure 3). Our connectivity in-
formation is encoded with the Touma-Gotsman method [2].
The proposed algorithm provides very good performances:
it reaches the accuracy of the PGC method. Furthermore,
the proposed algorithm has low computational cost since it
includes a model-based bit allocation.

Rrarget Bitstream size (bits)
(bits/vertex) | 3DCBAC [6] Gain %
0.18 19823 20900 5.1
0.3 31067 33300 6.7
0.6 57002 61264 6.95
1.2 110467 | 117684 | 6.13
1.8 171731 | 181300 5.28
3.0 310615 | 322053 | 3.55

Table 4. Horse model: CBAC with proposed multiresolu-
tion contexts versus monoresolution coder from [6].



Rrarget Bitstream size (bits)
(bits/vertex) | 3DCBAC [6] Gain %
0.18 21761 22546 3.48
0.3 35450 36947 4.05
0.6 67905 71438 4,95
1.2 135555 | 142433 | 4.83
1.8 211517 | 221154 | 4.36
3.0 389622 | 402779 3.27

Table 5. Bunny model: CBAC with proposed multiresolu-
tion contexts versus monoresolution coder from [6].

Rrarget Bitstream size (bits)
(bits/vertex) | 3DCBAC [6] Gain %
0.18 44875 46754 4.02
0.3 71981 75075 4,12
0.6 140537 | 147598 | 4.78
1.2 296240 | 310233 | 4.51
1.8 405035 | 425739 | 4.86
3.0 561063 | 590844 | 5.04

Table 6. Feline model: CBAC with proposed multiresolu-
tion contexts versus monoresolution coder from [6].
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Fig. 3. PSNR vs Bitrate for Venus and Rabbit objects.
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