
Measuring Errors for Massive Triangle Meshes
Anis Meftah 1, Arnaud Roquel 2, Frédéric Payan 3, Marc Antonini 4

I3S laboratory UMR 6070, University of Nice-Sophia Antipolis and CNRS, France
1 meftah@i3s.unice.fr
2 roquel@i3s.unice.fr
3 fpayan@i3s.unice.fr

4 am@i3s.unice.fr

Abstract—Our proposal is a method for computing the distance
between two surfaces modeled by massive triangle meshes which
can not be both loaded entirely in memory. The method consists
in loading at each step a small part of the two meshes and
computing the symmetrical distance for these areas. These areas
are chosen in such a way as the orthogonal projection, used
to compute this distance, have to be in it. For this, one of the
two meshes is simplified and then a correspondence between the
simplified mesh and the triangles of the input meshes is done. The
experiments show that the proposed method is very efficient in
terms of memory cost, while producing results comparable to the
existent tools for the small and medium size meshes. Moreover,
the proposed method enables us to compute the distance for
massive meshes.

I. INTRODUCTION

A. Context

The spectacular development of 3D scanners and CAD tools
allowed the creation of more and more detailed 3D surface
meshes. As an example, the Michelangelo project [1] produced
densely sampled meshes from scanned statues. The problem
arises when processing and visualizing of these massive data.
Indeed, processing such objects requires their global load in
memory, which is impossible due to their size. Many works
have been proposed to process massive 3D meshes like [2],
[3], [4] for compression, [5] for remeshing and [6], [7], [8], [9]
for simplification. These treatments produce new meshes but
introduce unavoidably a distortion (remeshing, compression or
simplification error). To estimate such a distortion between
the original mesh and the produced one, a metric is necessary,
and the surface-to-surface (S2S) distance stimulated by the
Hausdorff distance is often used. This S2S distance is one
of the simplest approaches to provide a mean square error
(MSE)-like measurement for surface meshes, since it allows
to compare surfaces represented by meshes with different
samplings.

B. Problem statement and proposed method

The most popular tools to estimate this distance are MESH

[10] and METRO [11]. But these programs do not work with
massive meshes. This is why only visual comparisons are
considered in some papers [5] for evaluating the efficiency
of remeshing and compression algorithms.

MMSP’10, October 4-6, 2010, Saint-Malo, France.
978-1-4244-8112-5/10/$26.00 c©2010 IEEE.

(a) The reference mesh Bir. (b) Lir
i extracted from the Mir.

Fig. 1. Bir , L0 and Mir illustrated on BIMBA.

Recently, we proposed an algorithm for the computation of
the S2S distance for massive semi-regular meshes [12]. But,
this approach works only if one of the two meshes is semi-
regularly sampled and if the other one is not massive (which
happens in a context of semi-regular remeshing). This previous
method loaded entirely the irregular mesh on memory and
exploited the relevant multiresolution structure of the semi-
regular mesh to load only a small area of it and then compute
the distance for this region only.

Our proposal is a solution for computing the S2S distance
for all triangle meshes, regardless of their sampling and their
size. The idea is to exploit a coarse reference mesh for making
a correspondence between the triangles of the two densely
sampled meshes (by using an orthogonal projection on the
coarse level). This reference mesh is obtained by simplifying
one of the two input meshes. The indexing step will then
enable the computation of the S2S distance on the fly, while
having in memory only a small area of the two meshes.

This paper is organized as follows. Section 2 introduces
the notations and the S2S. Section 3 presents our proposal.
Section 4 shows some experimental results in remeshing and
compression domains. Section 5 concludes the paper.

II. NOTATIONS AND BACKGROUND

A. Notations

Let us call Mir a given irregular mesh, and Mpr the
corresponding processed mesh (by compression, remeshing or
simplification). Bir defines a coarse mesh called the reference
mesh (see figure 1(a)), obtained by simplifying M ir. Let us
also define Lir

i the region of the mesh Mir indexed by the

Simplification

Indexing Mir

Indexing Mpr

Forward
distance

Backward
distance

Fig. 2. Global scheme of our method.

ith triangle of Bir, and as well as, Lpr
i is the region of the

mesh Mpr indexed by the ith triangle of Bir (see figure 1(b)).
The indexation step will be detailed later. A fixed number of
triangles Li defines a group of triangles (GOT).

B. The surface-to-surface distance

The surface-to-surface distance generally used to evaluate
remeshing or compression errors between two meshes depends
on the distance between a point q and a set of n points R =
{r1, ..., rn}, which is given by

d(q, R) = min
r∈R

‖ q − r ‖2 . (1)

Considering two sets of vertices belonging to two surfaces
Q = {q1, ..., qm} and R = {r1, ..., rn}, using the point-to-
surface distance given by (1), we can compute the root mean
square error (RMSE) between two surfaces defined by:

Drmse(Q, R) =

√
1

| Q |
∫ ∫

q∈Q

d(q, R)2dQ. (2)

| Q | is the area of Q.

In practice, this distance is not symmetrical, i.e.,
Drmse(Q, R) �= drmse(R, Q). We will refer to Drmse(Q, R)
as forward distance and to Drmse(R, Q) as backward dis-
tance. Finally, the so-called surface-to-surface distance (S2S)
is given by the symmetrical distance Ds :

Ds(Q, R) = max(Drmse(Q, R), Drmse(R, Q)). (3)

In our case, the forward error is the difference between M ir

and Mpr. The backward distance is the difference between the
Mpr and Mir. For more details please read the paper [10].

As introduced before, the problem arises when this distance
is computed for massive meshes. Indeed, the actual tools crash
when dealing with massive models because the entire objects
have to be loaded in memory.

III. MEASURING THE S2S DISTANCE FOR MASSIVE

MESHES

The proposed method consists in computing the S2S dis-
tance while loading in memory only a small area of the two
3D objects. Figure 2 gives an overview of our method, which
contains three principal steps:

• Simplification of Mir: Mir is simplified using QSLIM
[13] to obtain the reference mesh B ir. This mesh is used
to make a correspondence between M ir and Mpr;

• Indexation of the triangles of Mir and Mpr using Bir:
The correspondence is obtained by doing an orthogonal
projection of the triangles of Mir and Mpr on Bir . The
index of the base triangle of Bir which contains the
projected point is kept. Hence, we know for any triangle
the area of the other mesh that has to be loaded to
compute the distance for it.

• Computation of the distance on the fly: the first mesh is
loaded Li by Li (i = 0..n n being the number of triangles
of Bir). For a given Li the distance is computed using
the corresponding region on the second mesh.

A. Indexing

As explained in section II-B, the S2S distance is based
on the computation of the minimum distance of a point to a
surface. So, if the area where this minimum distance has to be
computed is known, only this area would be loaded in memory
for its computation. Thus, the goal of the indexing step is to
determine approximately, for each triangle, which area has to
be loaded for the computation of the S2S distance. For this,
the orthogonal projection is done for each vertex belonging to
Mir and Mpr on the triangles of Bir.

• If one or more orthogonal projected points exist, the point
which minimizes the distance to the barycenter of the B ir

triangle is kept;
• Else, the distance between the processed vertex of M ir

and the barycenters of all the triangles of B ir is com-

puted, and the index of the triangle minimizing this
distance is kept.

Figure 2 shows the result of the indexing step on BIMBA using
the base level Bir (for more details see [12]).

B. Computation of the distance

Once the indexing step done, the forward distance (from
Mir to Mpr) is done by loading in memory each L ir

i , one by
one. For a given Lir

i , the corresponding region Lpr
i plus its

one-ring neighborhood [12] are loaded and the point-to-surface
distances are estimated. For the backward distance, the inverse
process is applied. For each area Lpr

i , we use the one-ring
neighborhood of Lir

i for the computation of the the point-to-
surface distances. To make the process faster, the forward and
backward distance are computed simultaneously by loading in
memory at the same time the one-ring neighborhoods of L ir

i

and Lpr
i . This avoids useless hard disk accesses. Finally, the

symmetrical distance is computed by applying Eq. (3).

C. General Algorithm

1: Simplify Mir to generate Bir with n triangles
2: for each vertex vi of Mir and Mpr do
3: Compute its distance to all barycenters of the trian-

gles of Bir

4: Keep the kth nearest barycenters of the triangles
of Bir (k being a parameter chosen by the user to
accelerate the process. It corresponds to the number
of triangles used on the projection)

5: Compute the orthogonal projection on these k trian-
gles

6: if there is one or more projected points inside B ir

then
7: associate to vi the index of the triangle of Bir

which minimizes the distance between vi and
the projected points.

8: else
9: associate to vi the index of the nearest triangle

among the k kept triangles.
10: end if
11: end for
12: for i = 0 to n do
13: Load the GOT composed by the one-ring neighbor-

hood of Lir
i

14: Load the GOT composed by the one-ring neighbor-
hood of Lpr

i

15: Compute the forward distance between Lir
i and the

one-ring neighborhood of Lpr
i

16: Compute the forward distance between Lpr
i and the

one-ring neighborhood of L ir
i

17: end for
18: Compute the symmetrical RMSE distance Ds(Mpr, Mir)

by applying Eq. (3).

IV. EXPERIMENTAL RESULTS

A. Remeshing Errors

Table I compares errors computed with MESH and the
proposed method for different remeshing algorithms and dif-

ferent models. HORSE and FELINE are semi-regular meshes
remeshed with MAPS [14]. VENUS is remeshed using the
normal remeshing algorithm [15]. SCREW is remeshed in
our lab [16]. ROCKER-ARM and RAMESSESS5 are remeshed
using the TRIREME software [17]. We observe that the errors
computed with our method, which loads only a small part
of the two meshes (4.8% for SCREWDRIVER and 2.4% for
ROCKER-ARM) and MESH are comparable. For all experi-
ments, the bias between the two methods does not exceed 2%.
This bias could be eliminated by loading more neighbors, but
it will increase the memory requirements. Therefore, we prefer
keeping this configuration, which is a good tradeoff between
precision and memory cost. Moreover, this bias does not affect
the PSNR results as shown later.

Table 2 shows some results obtained with the proposed
method for densely sampled meshes: RAMESSESS7, MOULD

and BIMBA which are formed by approximately 4 and 7
millions triangles. For these huge meshes the software MESH

does not give results because it crashes when trying to load
the entire mesh (Out Of Memory error).

B. Compression Errors

The Peak Signal to Noise Ratio (PSNR) is often used in
the image coding field to evaluate the coding performances. In
geometry compression, the PSNR depends on the S2S distance
Ds between a given mesh M and its quantized version M̂ .
This is given by:

PSNR = 20 ∗ log10(
BB

Ds(M,M̂)
),

where BB is the length of the Bounding Box diagonal of M .
Fig. 3 shows the PSNR curves for the semi-regular VENUS

compressed with the coder of [18]. It proves that the bias
between our method and MESH has no impact on the PSNR
measurements. Indeed, the two curves obtained respectively
by our method and MESH are perfectly superposed.

57

62

67

72

77

0 1 2 3 4 5 6 7 8 9 10

Bitrate (Bit/Virr)

P
S
N
R
 (
d
B
)

Proposed m ethod M ESH

Fig. 3. Measuring compression errors using the proposed method and MESH

for VENUS.

Model Number of MESH Proposed Bias Size of Memory
triangles software method Mir + Mpr (Kb) used (Kb)

VENUS 81,920 1.679 ∗ 10−4 1.679 ∗ 10−4 0.0006% 6691 363 (5.4%)
HORSE 225,280 1.004 ∗ 10−4 1.024 ∗ 10−4 1.95% 12374 713 (5.7%)

SCREWDRIVER 286,720 8.821 ∗ 10−5 8.842 ∗ 10−4 0.23% 14429 695 (4.8%)
RAMESSES5 421,888 4.410 ∗ 10−5 4.410 ∗ 10−5 0.002% 37365 1783 (4.7%)

ROCKER-ARM 704,512 6.136 ∗ 10−5 6.209 ∗ 10−5 1.1% 32262 1411 (2.4%)

TABLE I
REMESHING ERRORS COMPUTED WITH MESH AND THE PROPOSED METHOD.

Model Number of The proposed Max of L0 size of Needed Memory
triangles method neighbors Mir + Mpr (Kb) memory (Kb) used

MOULD 3,891,200 5.589 ∗ 10−5 19 171614 8151 4.75%
BIMBA 4,194,304 2.439 ∗ 10−5 16 181857 8774 4.8%

RAMESSES7 6,750,208 4.409 ∗ 10−5 18 292692 9268 3.16%

TABLE II
MEASURING ERRORS FOR HUGE MESHES.

0

100

200

300

400

500

600

700

800

900

100 200 500 750 1000

n (num ber of triangles on the reference m esh)

m
e
m
o
ry
 u
s
e
d
 (
M
b
)

Fig. 4. Maximum size of the memory used during computation Vs the number
of triangles of Bir (n) for RAMESSES7.

C. Memory Usage

Fig. 4 shows the maximum size of memory used when
processing RAMESSES7, for different values of n (number of
triangles of Bir). As expected, when n increases, the size of
memory decreases. This is due to the fact that the required
memory is proportional to the size of L i which is smaller
when n is greater. On the other hand, the processing time is
higher since more hard disk accesses are required.
The size S of the loaded data (from the two meshes) is given
by the following formula:

S = max
i=1,...,n

(Nbi)∗size(Lir
i)+ max

i=1,...,n
(Nbi)∗size(Lpr

i),

where max(Nbi) is the maximum number of the one-ring
neighborhood triangles for the n triangles of B ir . To compute

the size of a given Li, the size of geometry G and connectivity
T is needed.

T = 3 ∗ 4 ∗ N bytes,

where N is the number of triangles of the given mesh; ”4”
corresponds to the size in bytes of the index of the vertex
coded in int.
Assuming that, the number of vertices is the half of the number
of triangles, G is equal to:

G = 4 ∗ N
2 bytes.

”4” corresponds to the size in bytes of float (single-precision
32-bit floating).

size(Li) = T+G
n = 14∗N

n bytes

Finally,

S = maxi=1,...,n(Nbi) ∗ 14∗(Nir+Npr)
n bytes.

This function is characteristic of hyperbolic curves: this con-
firms Fig. 4.

V. CONCLUSION

In this paper we proposed a method to measure the distance
between massive 3D meshes. The proposed method consists
in computing locally this distance while loading the meshes
region by region. First, one of the two meshes is simplified.
Then a correspondence between the simplified mesh and
the triangles of the input meshes is done. This relationship
between the two meshes enables the computation of the error
locally by loading only a small part of the two meshes.
Experimental results show that the distances computed with
our method are comparable to those obtained when loading the
entire meshes in memory. The proposed method also able to
measure the error for massive meshes up to 7 million triangles
with a small memory size which is not possible with the
classical tools.

REFERENCES

[1] M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D. Koller, L. Pereira,
M. Ginzton, S. Anderson, J. Davis, J. Ginsberg, J. Shade, and D. Fulk,
“The digital michelangelo project: 3D scanning of large statues,” in
Proceedings of ACM SIGGRAPH 2000, Jul. 2000, pp. 131–144.

[2] M. Isenburg and S. Gumhold, “Out-of-core compression for gigantic
polygon meshes,” in SIGGRAPH’03 Conference Proceedings, 2003.

[3] M. Isenburg and P. Lindstrom, “Streaming meshes,” Visualization Con-
ference, IEEE, vol. 0, p. 30, 2005.

[4] A. Meftah, M. Antonini, A. Elkefi, and C. Ben Amar, “Low memory
cost scan-based wavelet transform for 3D multiresolution meshes using
the unlifted butterfly filter,” in International Symposium on Image/Video
Communication over fixed and mobile networks, Tunisie, 2006, IEEE.

[5] M. Ahn, I. Guskov, and S. Lee, “Out-of-core remeshing of large
polygonal meshes,” IEEE Transactions on Visualization and Computer
Graphics, vol. 12, no. 5, pp. 1221–1228, 2006.

[6] P. Lindstrom, “Out-of-core simplification of large polygonal models,” in
SIGGRAPH ’00: Proceedings of the conference on Computer graphics
and interactive techniques, USA, 2000.

[7] E. Shaffer and M. Garland, “Efficient adaptive simplification of massive
meshes,” in VIS ’01: Proceedings of the conference on Visualization ’01.
USA: IEEE Computer Society, 2001, pp. 127–134.

[8] M. Isenburg, P. Lindstrom, S. Gumhold, and J. Snoeyink, “Large mesh
simplification using processing sequences,” in VIS ’03: Proceedings of
the 14th IEEE Visualization 2003 (VIS’03), USA, 2003.

[9] J. Wu and L. Kobbelt, “A stream algorithm for the decimation of massive
meshes,” in Graphics Interface, 06 2003, p. 185192.

[10] N. Aspert, D. Santa-Cruz, and T. Ebrahimi, “Mesh: Measuring errors
between surfaces using the hausdorff distance,” in Proc. of the IEEE
International Conference in Multimedia and Expo (ICME) 2002, vol. 1,
Lausanne, Switzerland, Aug. 2002, pp. 705–708.

[11] P. Cignoni, C. Rocchini, and R. Scopigno, “Metro: Measuring error on
simplified surfaces,” Computer Graphics Forum, vol. 17, no. 2, 1998.

[12] A. Roquel, A. Meftah, F. Payan, and M. Antonini, “Measuring errors
for huge semi-regular meshes,” in Proceedings of IS-T / SPIE Electronic
Imaging ”Three-Dimensional Image Processing (3DIP) and Applica-
tions”, vol. 7526, no. 1. SPIE, 2010.

[13] M. Garland and P. S. Heckbert, “Surface simplification using quadric
error metrics,” in SIGGRAPH ’97: Proceedings of the 24th annual
conference on Computer graphics and interactive techniques, USA,
1997.

[14] A. W. F. Lee, W. Sweldens, P. Schröder, L. Cowsar, and D. Dobkin,
“Maps: multiresolution adaptive parameterization of surfaces,” in SIG-
GRAPH ’98: Proceedings of the conference on Computer graphics and
interactive techniques. USA: ACM, 1998.

[15] I. Guskov, K. Vidimče, W. Sweldens, and P. Schröder, “Normal meshes,”
in SIGGRAPH ’00: Proceedings of the conference on Computer graphics
and interactive techniques, USA, 2000, pp. 95–102.

[16] A. Kammoun, F. Payan, and M. Antonini, “A feature-preserving remesh-
ing scheme for surface meshes,” I3S-CNRS, Equipe IMAGES, Pole SIS,
Tech. Rep. I3S/RR-2009-03-FR, March 2009.

[17] I. Guskov, “Manifold-based approach to semi-regular remeshing,”
Graphical Models, vol. 69, no. 1, pp. 1–18, 2007.

[18] F. Payan and M. Antonini, “An efficient bit allocation for compressing
normal meshes with an error-driven quantization,” Computer-Aided
Geometric Design, Special Issue on Geometric Mesh Processing, vol. 22,
pp. 466–486, July 2005.

