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Abstract—We propose an adaptive semi-regular remeshing
algorithm for surface meshes. Our algorithm uses Voronoi
tessellations during both simplification and refinement stages.
During simplification, the algorithm constructs a first centroidal
Voronoi tessellation of the vertices of the input mesh. The sites
of the Voronoi cells are the vertices of the base mesh of the
semi-regular output. During refinement, the new vertices added
at each resolution level by regular subdivision are considered as
new Voronoi sites. We then use the Lloyd relaxation algorithm to
update their position, and finally we obtain uniform semi-regular
meshes. Our algorithm also enables adaptive remeshing by tuning
a threshold based on the mass probability of the Voronoi sites
added by subdivision. Experimentation shows that our technique
produces semi-regular meshes of high quality, with significantly
less triangles than state of the art techniques.

I. I

Dense meshes created by 3D scanners or 3D modelling
software programs often have an irregular sampling. Because
of their irregularity and size, these meshes are awkward to
handle in such common tasks as storage, display or transmis-
sion. It is now established that multiresolution structures are
well-suited to address these issues. Several approaches exist.
The first approach is to simplify progressively the input mesh
to get several levels of detail [1]. The second approach is to
extend multiresolution analysis to surface meshes, by using
either ”irregular wavelets” [2] directly on the input mesh,or
wavelets based on subdivision connectivity [3], [4], [5] on
remeshedsemi-regular meshes.

A. Semi-Regular Meshes

A semi-regular meshMsr is based on a mesh hierarchyMl
sr

(l ∈ {0,1, ..., L}) that represents a given surface at different
levels of resolution.M0

sr corresponds to the lowest resolution,
and is called thebase mesh. Ml

sr is a subdivided version
of Ml−1

sr , and corresponds tolth level of resolution. ML
sr

corresponds to the highest resolution of the given surface (see
Fig. 1, top right).
We call semi-regular remeshingthe process transforming an
irregular meshMir into a semi-regular oneMsr. This process
generally consists in:
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Fig. 1. One example of semi-regular meshes. Top, from left to right: the base
mesh, the first, the second and the finest level of resolution ofS. Bottom,
the subdivision procedure that produces the different levels of resolution.

• decimating the irregular meshMir to obtain the base mesh
M0

sr. We refer to this stage assimplification.
• refining M0

sr several times to obtain the intermediary
resolutionsM1

sr, M2
sr and so on, until the final oneML

sr.
This refinementis based on a subdivision scheme. This
consists in splitting each triangle into four smaller ones
by adding new vertices on each edge, and then updating
their position to fit as closely as possible to the original
surface (see Fig. 1, bottom).

Semi-regular meshes have several advantages, for instance:

• the surfaces are displayed easily at different levels of
details, according to the screen resolution, or the position
from the camera. This makes the transmission and the
displaying faster;

• the surfaces are compressed more efficiently. It is now
established that wavelet-based coders taking as input
semi-regular meshes are the most efficient [5], [6], [7].

B. Related Works in Semi-regular Remeshing

We first cite the work of Eck et al. [8] that consists
in building a parameterization based on Voronoi tiling and
harmonic maps. In 1998, Lee and al. [9] proposed a remeshing
technique based on vertex collapse and conformal mapping.



Guskov and al. then introduced an algorithm producing semi-
regular meshes such as each level of resolutionl is a normal
offset of the (l + 1) resolution level [10]. This algorithm gives
good compression results [11], but works only for closed
surfaces. Kyu-Yeul and al. improved this method for surfaces
with boundaries in 2002 [12].

In 2007, Guskov presented another semi-regular remeshing
based on global parameterization that is smooth with respect
to a differential structure built on the base domain [13]. This
method also exploits a vertex-based Voronoi tessellation to
construct the base mesh.

C. Proposed Approach and Contributions

We propose an original semi-regular remeshing based on
Voronoi tessellation. The Voronoi tessellation is well known
in geometry processing [14]. In (re)meshing for instance,
Valette et al. developed a resampling technique for surface
meshes based on a metric-driven discrete Voronoi tessellation
construction [15]. Alliezet al. also proposed a variational
surface reconstruction based on Voronoi tessellation [16].

The originality of our method is that Voronoi tessellation
are used not only during simplification [13] but also during
refinement to fit the vertices on the original surface.

a) Simplification: a first centroidal Voronoi tessellation
of the geometry of the irregular meshMir is computed. The
sites of the Voronoi cells are the vertices of the base mesh.

b) Refinement:the first contribution is that we consider
the new vertices ofM1

sr added by subdivision ofM0
sr as

additionalVoronoi sites. Then, the Lloyd relaxation algorithm
is applied again to optimize their position. By applying
successively this procedure on the resulting mesh, we finally
obtain semi-regular meshes uniformly sampled, and visually
close to the original surface (represented byMir ).
Our second contribution is a criterion based on the density of
the geometry of the input mesh, that allows us to refine only
triangles located in highly detailed regions. This technique
produces adaptive semi-regular meshes.

The rest of this paper is organized as follows. Section II
briefly introduces the Voronoi tessellation. Section III presents
the two steps of our algorithm, simplification and refinement.
Section IV shows some experimental results. We finally con-
clude in section V.

II. V T

A. Definition in the continuous case

Let us introduce an open setS ⊂ �n, andK different sites
{sk; k = {0,1, ...,K−1}}. The Voronoi tessellation (ordiagram)
can be defined as the set ofK distinct cells (or regions) Rk

such that:

Rk = {v ∈ S | d(v, sk) ≤ d(v, sj); j , k}, (1)

with d a specific distance. The dual of a Voronoi tessellation
is a Delaunay triangulation.

B. Centroidal Voronoi Tessellation

A centroidal Voronoi tessellation is a Voronoi tessellation
where each sitesk is also the mass centroid of the Voronoi
cell Rk [17]:

sk =

∫
Rk

vρ(v)dv∫
Rk
ρ(v)dv

, (2)

whereρ(v) is a density function. Centroidal Voronoi tessella-
tions minimize the following energy:

E =
K−1∑
k=0

∫
Rk

ρ(v)‖v− sk‖
2dv. (3)

Those tessellations are widely used in applications that
require a good sampling of the input domain. One way to
distribute a set of points isotropically and in accordance with
a density function is to apply the Lloyd relaxation [18] overan
initial tessellation. The Lloyd relaxation consists in iterating
the following stages:

• each regionRk of the Voronoi tessellation is integrated
and the sitesk is computed by using Eq. (2);

• each pointvi is then associated to the Voronoi regionRk

which is represented by the nearest sitesk to the pointvi

by using the nearest neighbour rule of Eq. (1).

Fig. 2. Neighbourhood of a vertexvi . The blue region is the dual cell ofvi ;
its area represents the densityρ(vi ).

Fig. 3. Left: Voronoi tessellation of V. Right: simplified version used
as base mesh for the semi-regular outputMsr.



(a) A patch of triangles of resolution (l − 1)
is shown in blue. The Voronoi tessellation is
shown in red.

(b) the triangles are subdivided; each new
vertex, (represented by ’+’), is an additional
Voronoi site.

(c) Each additional Voronoi site is initialized
by the nearest vertexvi of Mir , and the Voronoi
tessellation is updated by Lloyd relaxation.

Fig. 4. Principle of an iteration of our refinement procedure.

C. Centroidal Voronoi Tessellation in 3D meshes

In our case, the input data are surface meshes. The setS

is the set of verticesvi of the irregular meshMir . Moreover,
we choose the densityρ of a givenvi of Mir as the area of the
dual cell ofvi as shown by Fig. 2. We choose the distanced in
Eq. (1) as the Euclidean distance (in the 3D space), suited for
smooth and densely sampled meshes. The sitesk of a Voronoi
region Rk is the nearest vertexvi in the original meshMir to
the mass centroid ofRk. See Fig. 3 (left) for an example of
Voronoi tessellation on V.

III. P M

A. Simplification

We recall that this stage produces the base meshM0
sr from

the irregular meshMir . Let us denotesl
k as thekth site at

resolutionl. The goal is to create a Voronoi tessellation with
few sitess0

k. Those sites will correspond to the vertices ofM0
sr.

Once the sites selected, all the other vertices ofMir will be
decimated to obtainM0

sr.
We choose to use the Linde–Buzo–Gray (LBG) algo-

rithm [19] to determine those sites. The LBG algorithm
consists in creating an initial Voronoi tessellation composed
by only one region, and then iterating the following process
until obtaining a given number of sites:

• split the site s0
k of each regionR0

k into two sites (the
number of cells is multiplied by two);

• use the Lloyd relaxation until convergence to update the
tessellation.

Once the sites selected, we choose to remove the rest
of the vertices ofMir by using vertex collapses, similarly
to [9]. During this process, the parameterization of [9] is
also constructed. We will use this parameterization during
refinement.

B. Refinement

The objective is to produce the output semi-regular mesh
Msr from the coarse meshM0

sr. The refinement is done
iteratively. For a given iteration, the procedure to obtainthe
meshMl

sr from Ml−1
sr is the following (see Fig. 4):

• Ml−1
sr is subdivided by associating one new vertex at each

edge (see Fig. 4(b));
• we consider each new vertex as a new Voronoi sitesl

k. Its
position is initialized by the nearest vertexvi of Mir , by
using parameterization computed during simplification;

• the Lloyd relaxation is finally applied on the set of sites
{sm

k ; m= {0,1, ..., l}}, to obtain the semi-regular meshMl
sr

(see Fig. 4(c)).

The limitation of this algorithm is that subdividing uni-
formly all the triangles is not always relevant. Indeed, it is
useless to subdivide flat regions, contrary to highly detailed
regions. Finally the resolution of each triangle should be
adapted to the local geometric features of the input surface.
Therefore, we propose to make this algorithm adaptive. For
this purpose, we first define, at each resolution levell, a
probability mass functionf associated to the sitesl

k such as:

f (sl
k) = |R

l
k|, (4)

where|Rl
k| is the number of vertices ofMir associated toRl

k, the
kth Voronoi region at the resolutionl. Then, for each triangle
tl of Ml

sr composed by three Voronoi sitessl
k1

, sl
k2

and sl
k3

, we
associate a probability mass functiong defined by:

g(tl) = min
q∈{k1,k2,k3}

( f (sl
q)). (5)

Once the probabilities are computed, we choose to subdivide
only the triangles with a probability higher than a user-given
threshold ǫ. This procedure enables to subdivide only the
highly detailed regions since there are generally more vertices
in those regions. This is typically true for meshes which are
man-made.

An outline of our refinement procedure is shown by Fig. 5.

IV. E R

Using a geodesic distance instead of the 3D Euclidean
distance (as proposed in section II-C) seems more relevant
when applying Voronoi tessellation on surfaces. But the bias
induced by those two distances are low when dealing with
densely sampled meshes [15]. Thus in our context, the Voronoi
tessellation would be efficient if Mir is dense in comparison



Fig. 5. Outline of the refinement procedure.

to Msr. Irregular meshes with a too small number of vertices
must be oversampled before remeshing.

To know the most relevant oversampling scheme for our
method, we first compare the performances of our remeshing
on different models subdivided three times with the approx-
imating Loop [20] or with the interpolating Butterfly [21]
schemes. Fig. 6 shows the evolution of the remeshing error
during the refinement procedure, each dot corresponding to
an iteration. The remeshing error is the Root Mean Square
Error stimulated by the Hausdorff distance presented in [22].
This allows us to measure a mean distance between two
surfaces with different samplings. We observe that the object
is better remeshed when the input data is oversampled with
the Butterfly filter (lower remeshing error). Similar results
are obtained on other objects. Therefore, for the subsequent
experimentation, input data are oversampled with Butterfly
before remeshing.

In order to observe the impact of the thresholdǫ during
refinement, we have also remeshed V with different values
of ǫ. Fig. 7 shows the evolution of the remeshing error.
We observe that the remeshing error decreases faster when
using high thresholds. This observation was expected since
the remeshing error essentially decreases when subdividing
the highly detailed regions.

Now we compare our results with the remeshers of [9]
and [10]. Fig. 7, 8 and 9 show the evolution of the remeshing
error V, S and R (for S, (we did not

find S remeshed with [9]). We observe that for a given
remeshing error, our approach strongly reduces the number of
triangles of the semi-regular output (compared to [9] and [10]).

Fig. 10 shows some visual results for S. We clearly
observe that we obtain a higher visual quality with our method,
while reducing the number of triangles in the smooth regions.
We also observe that there are much more triangles in highly
detailed regions (on the scar).

Finally, Fig. 11 and 12 show additional visual results for
V and R, respectively.

V. C

In this paper, we proposed an original semi-regular remesh-
ing for surface meshes. A multiresolution Voronoi tessellation
is constructed upon the original mesh by getting a coarse
one and then adding Voronoi sites adaptively. We obtain
semi-regular meshes of higher quality with our approach,
and experimental results confirm the interest of our adaptive
Voronoi-based approach. When comparing with two state of
the art remeshers, we observed that:

• at low resolution, where the subdivision is performed
uniformly, our method obtains the smallest remeshing
error (at these levels, all the triangles present high proba-
bility). This proves the interest of using a Voronoi-based
approach;

• at higher resolution, where the subdivision becomes
adaptive, we also obtain smallest remeshing errors while
reducing the number of triangles by almost a factor 2.
This proves the interest of an adaptive approach.

Future works will concern:

• the study of our algorithm on more densely and more
complex meshes;

• the adaptation of our method to clouds of points, to
produce semi-regular meshes directly from 3D scanners.

A

V and R are courtesy of Cyberware and
S is courtesy of Headus. We are particularly grate-
ful to Igor Guskov for providing us with his normal
meshes. The MAPS version of V can be found at:
http://www.multires.caltech.edu/software/pgc/.
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Fig. 6. Evolution of the remeshing error (logarithmic scale) for V during
the refinement stage. The input mesh is subdivided three times with Loop filter
(dashed plot) or Butterfly filter (continuous plot).
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Fig. 7. Evolution of the remeshing error (logarithmic scale) for V during
the refinement stage.
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in SIGGRAPH 2000, 2000.

[11] A. Khodakovsky and I. Guskov, “Compression of normal meshes,” in
Geometric Modeling for Scientific Visualization, Springer-Verlag, Ed.,
2003.

[12] L. Kyu-Yeul, K. Seong-Chan, and K. Tae-Wan, “Normal meshes for
multiresolution analysis of irregular meshes with boundaries,” JSME
international journal Series C, Mechanical systems, machine elements
and manufacturing, 2002.

[13] I. Guskov, “Manifold-based approach to semi-regular remeshing,”
Graph. Models, vol. 69, no. 1, pp. 1–18, 2007.

[14] A. Franz, “Voronoi diagrams—a survey of a fundamental geometric data
structure,”ACM Comput. Surv., vol. 23, no. 3, pp. 345–405, 1991.

[15] S. Valette, J. M. Chassery, and R. Prost, “Generic remeshing of 3d
triangular meshes with metric-dependent discrete voronoi diagrams,”
IEEE Transactions on Visualization and Computer Graphics, vol. 14,
no. 2, pp. 369–381, 2008.

[16] P. Alliez, D. Cohen-Steiner, Y. Tong, and M. Desbrun, “Voronoi-based
variational reconstruction of unoriented point sets,” inSGP ’07: Pro-
ceedings of the fifth Eurographics symposium on Geometry processing.
Aire-la-Ville, Switzerland, Switzerland: Eurographics Association, 2007,
pp. 39–48.

[17] Q. Du, V. Faber, , and M. Gunzburger, “Centroidal voronoi tessellations:
applications and algorithms,” inSIAM Review, no. 41(4), 1998.

[18] S. P. Lloyd, “Least squares quantization in pcm,”IEEE Transactions on
Information Theory, vol. 28, pp. 129–137, 1982.

[19] Y. Linde, A. Buzo, and R. Gray, “An algorithm for vector quantizer
design,” IEEE Transactions on Communications, vol. 28, pp. 84–94,
1980.

[20] C. Loop, “Smooth subdivision surfaces based on triangles,” Master’s
thesis, University of Utah, 1987.

[21] N. Dyn, D. Levin, and J. A. Gregory, “A butterfly subdivision scheme
for surface interpolation with tension control,”ACM Transactions on
Graphics, vol. 9, pp. 160–169, 1990.

[22] N. Aspert, D. Santa-Cruz, and T. Ebrahimi, “Mesh: Measuring errors
between surfaces using the hausdorff distance,” inIEEE International
Conference in Multimedia and Expo (ICME), 2002.



Fig. 10. Left: S uniformly remeshed with [10]. Middle: the original S. Right: S remeshed with our adaptive scheme. We observe that our
scheme produces much less triangles in smooth regions while maintaining a better visual quality.

Fig. 11. V remeshed with our method. Fig. 12. R remeshed with our method.


