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Abstract—We propose an adaptive semi-regular remeshing
algorithm for surface meshes. Our algorithm uses Voronoi
tessellations during both simplification and refinement stages.
During simplification, the algorithm constructs a first centroidal
Voronoi tessellation of the vertices of the input mesh. The sites
of the Voronoi cells are the vertices of the base mesh of the
semi-regular output. During refinement, the new vertices added
at each resolution level by regular subdivision are considered as
new Voronoi sites. We then use the Lloyd relaxation algorithm to
update their position, and finally we obtain uniform semi-regular S
meshes. Our algorithm also enables adaptive remeshing by tuning e o -

a threshold based on the mass probability of the Voronoi sites °
added by subdivision. Experimentation shows that our technique L] ° °
produces semi-regular meshes of high quality, with significantly
less triangles than state of the art techniques.
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|. INTRODUCTION
Fig. 1. One example of semi-regular meshes. Top, from left tatripe base
Dense meshes created by 3D scanners or 3D modellingsh, the first, the second and the finest level of resolutic®kofr. Bottom,

software programs often have an irregular sampling. Beacadile subdivision procedure that produces thigedent levels of resolution.

of their irregularity and size, these meshes are awkward to

handle in such common tasks as storage, display or transmis- o . .

sion. It is now established that multiresolution structueee  * decimating the irregular mestl;: to obtain the base mesh
well-suited to address these issues. Several approaclsts ex Mg_r._We refer to this stage amplification _
The first approach is to simplify progressively the input mes * Tefining Mg several times to obtain the intermediary
to get several levels of detail [1]. The second approach is to re;olutlgnsMér, .Mgr and so on, until the final onlg;. _
extend multiresolution analysis to surface meshes, bygusin  This refinementis based on a subdivision scheme. This

either "irregular wavelets” [2] directly on the input mesr, consist; in splitting.each triangle into four smaller ones
wavelets based on subdivision connectivity [3], [4], [5] on Py adding new vertices on each edge, and then updating
remeshedsemi-regular meshes. their position to fit as closely as possible to the original
surface (see Fig. 1, bottom).
A. Semi-Regular Meshes Semi-regular meshes have several advantages, for instance
A semi-regular mesiMs, is based on a mesh hierarcMj, . the surfaces are displayed easily affetient levels of

(I € {0,1,...,L}) that represents a given surface affetient details, according to the screen resolution, or the pasitio
levels of resolutionM?, corresponds to the lowest resolution, ~ from the camera. This makes the transmission and the
and is called thebase meshML, is a subdivided version displaying faster;

of M1, and corresponds td" level of resolution. M . the surfaces are compressed mofiéciently. It is now
corresponds to the highest resolution of the given surfaee ( established that wavelet-based coders taking as input
Fig. 1, top right). semi-regular meshes are the moftogent [5], [6], [7].

We call semi-regular remeshinthe process transforming an

irregular meshM;; into a semi-regular onéls;. This process B Related Works in Semi-regular Remeshing

generally consists in: i . .
We first cite the work of Eck et al. [8] that consists

_ in building a parameterization based on Voronoi tiling and
MMSP’10, October 4-6, 2010, Saint-Malo, France. harmonic maps. In 1998, Lee and al. [9] proposed a remeshing
978-1-4244-8112/40/$26.00 ©2010 IEEE. technique based on vertex collapse and conformal mapping.



Guskov and al. then introduced an algorithm producing send- Centroidal Voronoi Tessellation
regular meshes such as each level of resolutizna normal

offset of the [+ 1) resolution level [10]. This algorithm gives
good compression results [11], but works only for clos

A centroidal Voronoi tessellation is a Voronoi tessellation
\ghere each sites, is also the mass centroid of the Voronoi

surfaces. Kyu-Yeul and al. improved this method for surdac€® ell Re [171
with boundaries in 2002 [12]. ~ ka vo(V)dv @)
In 2007, Guskov presented another semi-regular remeshing = ka p(V)dv’

based on global parameterization that is smooth with réspec

to a diferential structure built on the base domain [13]. Thiwherep(Vv) is a density function. Centroidal Voronoi tessella-
method also exploits a vertex-based Voronoi tessellatin tions minimize the following energy:

construct the base mesh.

C. Proposed Approach and Contributions E= Z kap(v)Ilv— sd?dv. 3)
k=0

We propose an original semi-regular remeshing based on
Voronoi tessellation. The Voronoi tessellation is well Wm  Those tessellations are widely used in applications that
in geometry processing [14]. In (re)meshing for instanceequire a good sampling of the input domain. One way to
Valette et al. developed a resampling technique for surfaagistribute a set of points isotropically and in accordandta w
meshes based on a metric-driven discrete Voronoi tessellata density function is to apply the Lloyd relaxation [18] ower
construction [15]. Alliezet al. also proposed a variationalinitial tessellation. The Lloyd relaxation consists inrétng
surface reconstruction based on Voronoi tessellation. [16] the following stages:

. each regionR¢ of the Voronoi tessellation is integrated
and the sites, is computed by using Eq. (2);

. each pointy; is then associated to the Voronoi regiBg
which is represented by the nearest sit¢o the pointy;
by using the nearest neighbour rule of Eq. (1).

The originality of our method is that Voronoi tessellation
are used not only during simplification [13] but also during
refinement to fit the vertices on the original surface.

a) Simplification: a first centroidal Voronoi tessellation
of the geometry of the irregular med¥, is computed. The
sites of the Voronoi cells are the vertices of the base mesh.

b) Refinementthe first contribution is that we consider
the new vertices ofMl, added by subdivision oM?, as
additional Voronoi sites. Then, the Lloyd relaxation algorithm
is applied again to optimize their position. By applying
successively this procedure on the resulting mesh, we finall
obtain semi-regular meshes uniformly sampled, and viguall
close to the original surface (representedNsy).

Our second contribution is a criterion based on the dengity (O Neighbourhood of a vertax. The biue region is the dual cell of;
the geometry of the input mesh, that allows us to refine ory{gqarea represents the densiy;).

triangles located in highly detailed regions. This techeiq

produces adaptive semi-regular meshes.

The rest of this paper is organized as follows. Section II
briefly introduces the Voronoi tessellation. Section lliégents
the two steps of our algorithm, simplification and refinement
Section IV shows some experimental results. We finally con- /
clude in section V. [

Il. VORONOI TESSELLATION
A. Definition in the continuous case

Let us mtroduce an open segf c R", andK different sites
{sq; k=1{0,1,. —1}}. The Voronoi tessellation (atiagram)
can be deflned as the set Kf distinct cells (or regiong Ry
such that:

‘4

Re={ve 7 d(v,s) <d(v,s); ] # Kl
Fig. 3. Left: Voronoi tessellation of Mus. Right: simplified version used
with d a specific distance. The dual of a Voronoi tessellatici Pase mesh for the semi-regular outly.
is a Delaunay triangulation.



(a) A patch of triangles of resolution ¢ 1) (b) the triangles are subdivided; each new (c) Each additional Voronoi site is initialized
is shown in blue. The Voronoi tessellation is  vertex, (represented by, is an additional by the nearest vertex of M;;, and the Voronoi
shown in red. \oronoi site. tessellation is updated by Lloyd relaxation.

Fig. 4. Principle of an iteration of our refinement procedure.

C. Centroidal Voronoi Tessellation in 3D meshes . MLt is subdivided by associating one new vertex at each
edge (see Fig. 4(b));

. We consider each new vertex as a new \Voronoi sjtéts
position is initialized by the nearest vertgxof M;., by
using parameterization computed during simplification;

. the Lloyd relaxation is finally applied on the set of sites

In our case, the input data are surface meshes. The”set
is the set of vertices; of the irregular meshM;;,. Moreover,
we choose the densigyof a giveny; of M;; as the area of the
dual cell ofv; as shown by Fig. 2. We choose the distadde
Eqg. (1) as the Euclidean distance (in the 3D space), suited fo ) .
smooth and densely sampled meshes. Thesgitd a Voronoi (s m= 0,1,....1}}, to obtain the semi-regular meah,
region R is the nearest vertex in the original meshvi; to (see Fig. 4(c)).
the mass centroid dR.. See Fig. 3 (left) for an example of The limitation of this algorithm is that subdividing uni-

\oronoi tessellation on kus. formly all the triangles is not always relevant. Indeed,sit i
useless to subdivide flat regions, contrary to highly dethil
[ll. ProPosep METHOD regions. Finally the resolution of each triangle should be

adapted to the local geometric features of the input surface
_ Therefore, we propose to make this algorithm adaptive. For
We recall that this stage produces the base mé§hirom  this purpose, we first define, at each resolution ldveh

the irregular meshM,. Let us denotes, as thek™ site at probability mass functiorf associated to the sitg such as:
resolutionl. The goal is to create a Voronoi tessellation with

few sitess). Those sites will correspond to the verticesh,. f(s) = IR, 4)

Once the sites selected, all the other verticesdvigf will be . . i
decimated to obtaim®.. where|R | is the number of vertices dfl;; associated t&,, the
o 3(_”‘ Voronoi region at the resolution Then, for each triangle

We choose to use the Linde-Buzo-Gray (LBG) algq; | o
rithm [19] to determine those sites. The LBG algorithnh Of Msr composed by three Voronoi siteg, §, ands, we

consists in creating an initial Voronoi tessellation corsgd associate a probability mass functigrdefined by:
by only one region, and then iterating the following process gt)= min (f(éq))- (5)
until obtaining a given number of sites: aelka ko ks)

. split the sites? of each regionR? into two sites (the Once the probabilities are computed, we choose to subdivide

A. Simplification

number of cells is multiplied by two); only the triangles with a probability higher than a useregiv
« use the Lloyd relaxation until convergence to update thRresholde. This procedure enables to subdivide only the
tessellation. highly detailed regions since there are generally mordogst

Once the sites selected, we choose to remove the rigsthose regions. This is typically true for meshes which are
of the vertices ofM; by using vertex collapses, similarlyman-made.
to [9]. During this process, the parameterization of [9] is An outline of our refinement procedure is shown by Fig. 5.

also constructed. We will use this parameterization during
refinement. IV. EXPERIMENTAL RESULTS

Using a geodesic distance instead of the 3D Euclidean
distance (as proposed in section II-C) seems more relevant
The objective is to produce the output semi-regular mesthen applying Voronoi tessellation on surfaces. But thes bia
Mg from the coarse mestMY. The refinement is doneinduced by those two distances are low when dealing with
iteratively. For a given iteration, the procedure to obtia densely sampled meshes [15]. Thus in our context, the Vidrono

meshM., from M1 is the following (see Fig. 4): tessellation would befgcient if M;, is dense in comparison

B. Refinement



Coarse find SkuLL remeshed with [9]). We observe that for a given

mesh remeshing error, our approach strongly reduces the nuniber o
[ triangles of the semi-regular output (compared to [9] arid)[1
ch Fig. 10 shows some visual results fokusL. We clearly
eck probabilities R . L . .
of triangles I observe that we obtain a higher visual quality with our mdtho
| while reducing the number of triangles in the smooth regions
no - Triangles with We glso obs_erve that there are much more triangles in highly
high probability? detailed regions (on the scar).

Finally, Fig. 11 and 12 show additional visual results for

es .
Y Venus and Rissit, respectively.

Subdivide each triangle with high
probability by adding Voronoi sites in

the middle of its edges V. CoNcLusION

In this paper, we proposed an original semi-regular remesh-
ing for surface meshes. A multiresolution Voronoi tessita
Lloyd relaxation is constructed upon the original mesh by getting a coarse
one and then adding Voronoi sites adaptively. We obtain
semi-regular meshes of higher quality with our approach,

and experimental results confirm the interest of our adaptiv
Convergence? no Voronoi-based approach. When comparing with two state of
the art remeshers, we observed that:

[yes . at low resolution, where the subdivision is performed
Semi-regular uniformly, our method obtains the smallest remeshing
mesh error (at these levels, all the triangles present high proba
bility). This proves the interest of using a Voronoi-based
approach;
Fig. 5. Outline of the refinement procedure. . at higher resolution, where the subdivision becomes

adaptive, we also obtain smallest remeshing errors while
reducing the number of triangles by almost a factor 2.
to Mg,. Irregular meshes with a too small number of vertices  This proves the interest of an adaptive approach.
must be oversampled before remeshing. Future works will concern:
To know the most relevant oversampling scheme for our .
) .« the study of our algorithm on more densely and more
method, we first compare the performances of our remeshing .
. L . : complex meshes;
on different models subdivided three times with the approx- . .
o X . . . the adaptation of our method to clouds of points, to
imating Loop [20] or with the interpolating Butterfly [21] . :

. ) . produce semi-regular meshes directly from 3D scanners.
schemes. Fig. 6 shows the evolution of the remeshing error
during the refinement procedure, each dot corresponding to
an iteration. The remeshing error is the Root Mean Square
Error stimulated by the Hausdbistance presented in [22]. Venus and Riseir are courtesy of Cyberware and
This allows us to measure a mean distance between t@MouiL is courtesy of Headus. We are particularly grate-
surfaces with dferent samplings. We observe that the objeftll to Igor Guskov for providing us with his normal
is better remeshed when the input data is oversampled witteshes. The MAPS version of eMys can be found at:
the Butterfly filter (lower remeshing error). Similar result httpy/www.multires.caltech.edsoftwargpgq'.
are obtained on other objects. Therefore, for the subséquen
experimentation, input data are oversampled with Butterfly REFERENCES
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Fig. 10. Left: SurL uniformly remeshed with [10]. Middle: the originalk8iL. Right: SuLL remeshed with our adaptive scheme. We observe that our
scheme produces much less triangles in smooth regions whildaimiiy a better visual quality.

Fig. 11. \enus remeshed with our method. Fig. 12. Ruseir remeshed with our method.



