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ABSTRACT

We propose a new compression method devoted to large structured
hexahedric meshes having discontinuities. It is dedicated to appli-
cations such as visualization or physical simulations whose man-
agement by any workstation or mobile device with limited memory
and bandwidth is critical. Our method relies on a multiresolution
analysis that generates a hierarchy of meshes at increasing resolu-
tions. Our technique also uses a discontinuity tracking feature for
their preservation, whatever the resolutions, and consequently main-
tains a coherent geometry with respect to the original mesh. Experi-
mental results emphasize the quality of our compression, in terms of
both geometrical distortion and compression ratio.

Index Terms— Hexahedric mesh, compression, multiresolution
analysis, geometrical discontinuities, upscaling

1. INTRODUCTION

Hexahedric meshes are commonly manipulated in geosciences [1].
They are for instance used by geologists to study flow simulations,
and benefit from an increasing interest for geologic modelling [2].
With huge progresses in data acquisition in the past decade, digi-
tization of physical terrains becomes increasingly more accurate,
and acquisition devices are now able to produce ultra-high resolu-
tion geometric point clouds. The resulting tremendous quantity of
data prominently impacts the memory size required for their stor-
age, but also their transmission and their transfer. Consequently, it
greatly affects the simulation interactivity that is necessary to exploit
such an instance of big data [3]. For all these reasons, compression
algorithms [4, 5] are inevitable and should allow a progressive de-
compression that is adapted to a broad range of applications, starting
with visualization for instance. We propose (H)exaShrink as a novel
compression scheme dedicated to structured hexahedral meshes. It
generates a hierarchy of meshes at increasing levels of resolution,
and strives to maintain a geometrical coherency over the resolutions.
Hence our scheme also preserves geometrical discontinuities. De-
spite the growing interest for this type of data, structured hexahedric
meshes have not benefited from the same attention as unstructured
or surface meshes [6,7].

The paper is structured as follows: Section 2 presents the speci-
ficities of structured hexahedric meshes. Section 3 briefly reviews
prior methods for volumetric mesh compression [8], before introduc-
ing our structured mesh compression technique in Section 4. Section
5 presents several visual results, and quantitative comparisons with
a reference compression technique. Finally, Section 6 summarizes
our contributions and proposes future works.
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2. CONTEXT

2.1. Representation of data geometry

A volume or volumetric mesh is the numerical representation of a
3D object, area, architecture, etc. This representation is composed
of polyhedra (tetrahedra, hexahedra), and is the counterpart of 3D
surface representations, described by polygons (triangles or quads).
Thereby, the set of polyhedra, called cells, defines the grid that tiles
the 3D domain. In the case of an hexahedral mesh, each cell (some-
times denoted hex or brick) possesses three different kinds of sim-
plices: 6 faces (quads), 12 edges, and 8 vertices, which may some-
times be degenerated.

2.2. Structured meshes

Structured meshes are generally described with the Corner-Point
Grid format [9], an hexahedron tessellation of an Euclidean 3D vol-
ume. This format consists of a set of hexahedral cells topologically
aligned in a Cartesian regular lattice, so that the cells can be indexed
by the triplet (4,7, k). It is sometimes referred to as a pillar grid,
because it is based on a set of pillars/coordinate lines running from
the top to the bottom of the model. Grid cells are defined by eight
corners/nodes which lay pairwise on four neighbouring pillars, as
presented in Figure 1.
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Fig. 1. Simplest structured hexahedral volume mesh, described by
pillars, with dimensions [1,1, 1].

Geo-scientific data often contains geometrical discontinuities
that physically correspond to geological faults. These faults high-
light a vertex disparity in space at the same node. Indeed, in a
free-fault area, one node is associated to at most 8 identical vertices,
whereas, in a faulty area, faults stretch the geometry vertically along
pillars, and therefore the node has different 3D vertices coordinates,



as depicted in Figures 2(a) and 2(b), respectively. A real hexahedric
model with 128 x 128 x 128 cells, which is composed of a geological
fault is presented in Figure 3.
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Fig. 2. Illustration of a free-fault and a faulty area.

Fig. 3. Rendering of a model with dimensions [128, 128, 128].

3. STATE OF THE ART

Without loss of generality, the compression techniques can be sepa-
rated according to the type of structure they are able to handle, and
which are briefly presented below.

3.1. Unstructured mesh compression
3.1.1. Progressive algorithms

Progressive algorithms aim at representing the original surface with
several resolution meshes, from coarse to fine. Thus, a hierarchy
of meshes at different resolutions is created, which is well-suited to
transmission or visualization for instance. To the best of our knowl-
edge, the literature only covers the case of progressive compression
for tetrahedra [10, 11].

3.1.2. Streaming algorithms

Another type of compression schemes appeared to alleviate the is-
sue of gigantic volume meshes, which cannot entirely fit into the
core memory [12]. The streaming process represents the mesh
in an ordered interleaved set of vertices, hexahedra, and finaliza-
tion tags. Basically, a finalization tag explicitly indicates to the
coder/compressor that a given vertex will not be referenced anymore
in the stream, and thereby the allocated structure for this vertex can
be deallocated, to efficiently minimize the memory footprint.

3.2. Structured mesh compression

To the best of our knowledge, the only method that manages the
compression of structured meshes is the one proposed by L. Chizat
[13]. It realizes a multiresolution analysis to compress, in a lossless
manner, pillar grid structured hexahedral meshes, while ensuring the
preservation of geometrical discontinuities over the resolutions. It is
mainly based on an instance of a morphological wavelet transform
[14] which is dedicated to the preservation of discontinuities, and
uses a gzip entropy encoder to produce the compressed mesh.

Although this technique provides reliable and consistent repre-
sentations, it is restricted to meshes with simple fault networks (i.e.
non intersecting, isolated or linear faults).

4. METHODOLOGY: 3D HEXAHEDRIC MESH
COMPRESSION

Our work on the geometry compression focuses on the Z coordinates
of the cell nodes along the pillars in a structured hexahedral mesh.

The key idea consists in representing the tri-dimensional ma-
trix of Z coordinates with less coefficients, while preserving the
coherency of representation and reconstruction. First of all, an ap-
proximation coefficient is computed for each group of dimensions
[N, N, N] of original coefficients, whereas the N — 1 other coef-
ficients within the original group are updated to represent the lost
details. Figuratively speaking, the original group of coefficients at
resolution L is split into two subgroups, as illustrated on top of Fig-
ure 4: the approximation coefficient, and a set of updated coefficients
called detail coefficients. Note that only the approximation coeffi-
cient is part of the Z coordinates matrix at the resolution L — 1, as it
represents an approximation of the original group of coefficients. On
bottom of Figure 4 is depicted the inverse operation, which allows
to reconstruct the original group of coefficients at resolution L using
the approximation coefficient at resolution L — 1, plus the subgroup
of detail coefficients.
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Fig. 4. Multiresolution analysis principle applied on a group of co-
efficients with dimensions [2, 2, 2].

Basically, the geometry compression algorithm follows the
wavelet analysis [15] principle given in Figure 4, where the ap-
proximation coefficient is computed using the three-stage process
described below:

1. Removing the redundancy from the Z coordinates ma-
trix. Using the vertex naming convention presented in Fig-
ures 5(a) and 5(b), the 8 vertices of a given node can be differ-
entiated according to their positions [Back/Front Bottom/Top
Left/Right] with respect to this node. Given that there is no
vertical fault within a mesh (i.e. there is no vertical gap be-
tween any two adjacent layers of cells), the following equa-
tion logically turns out:



Vnode N; jx, ¥V (X,Z) € ([Back/Front] x [Left/Right]),
vertex XBZi,j,k = vertex XTZi,]‘,k.

In other words, each of the four top vertices for every node
has the same Z coordinate as its counterpart bottom vertex.
Consequently the quantity of information in the matrix Z can
be halved without any loss of information, due to this redun-
dancy. So from now on, every node NN; j is only repre-
sented by the Z coordinates of its bottom vertices BBR; ; 1,
FBR; i, BBL; j, and FBL; j 1, as its top vertices Z co-
ordinates are removed from the Z matrix.

figuration), a single 2D configuration map is sufficient to rep-
resent the fault configuration of the whole mesh. Figure 7
illustrates the segmentation realized on the mesh, by studying
the Z coordinates of the four vertices BBR; jx, F'BR; j i,
BBL; j and FBL; ; . for every node N; j x.
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(a) A node and its 8 surrounding (b) Splitting view of the node into
cells. its 8 vertices. Fig. 7. Fault segmentation within the original mesh (pillars are
green-colored).

Fig. 5. Vertex naming convention with [Back/Front Bottom/Top

Left/Right]. 3. Morphological wavelet transform. The previous segmenta-

tion guides the analysis to preserve faults all over the process.

2. Fault segmentation within the original mesh. This phase To predict the configuration of the resulting node at the res-

uses the four bottom vertices BBR; j,x, FBR; jk, BBL; ;1
and F'BL; ;1 of each node contained in the Z matrix to de-
tect the fault node configuration within the dozen of possible
configurations (free-fault, straight, corner, T or cross), which
are presented in a 2D schematic top view in Figure 6. So,
each configuration consists of the four orientations of the
cardinal axes: north, south, east and west, which are either
active or inactive. For instance, the T-north configuration has
its south axis inactive, the three remaining ones are active.
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olution L — 1, the fault configuration of the four nodes at
resolution L is studied. The resulting configuration contains
the north axis if the configurations of the top nodes contain
at least one north axis. By repeating the procedure for the
south, east and west axes, the fault configuration of the result-
ing node is predicted as illustrated in the example of Figure
8. Finally, from this prediction, the node whose configuration
minimizes its distance with the predicted one, corresponds to
the aforementioned approximation coefficient, which will be
part of the Z matrix at resolution L — 1.
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Fig. 6. 2D top view presentation of the 12 possible oriented fault
configurations at a given node in black (black and light blue lines
represent, respectively, faults and cell borders). Fig. 8. Prediction of the fault node configuration at resolution L — 1
from the fault node configurations of 4 nodes at resolution L (black
Assuming that the fault configuration is Z-invariant (i.e. the and light blue lines represent, respectively, faults and cell borders).

nodes belonging to the same pillar present the same fault con-



5. RESULTS

Figure 9 presents results obtained from three real geoscience meshes
unpacked at three resolution levels. The two last meshes are dec-
orated with categorial properties associated to their geometry, de-
picted with different colors. Because the proposed hierarchical mesh
coder is lossless, the reconstruction at Res. 0 corresponds to the orig-
inal mesh.
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(a) Mesh#1 — Res. 0. (b) Res. —1. (c) Res. —2.

(d) Mesh#2 — Res. 0. (e) Res. —1.

(g) Mesh#3 — Res. 0.

(h) Res. —1. (i) Res. —2.

Fig. 9. Three levels of resolution generated with (H)exaShrink on
three geological meshes with respective dimensions (from top to bot-
tom) [100, 100, 21], [80, 45, 26], [100, 95, 100].

We observe that the geometry is preserved and is coherent over
the resolutions. To assess this observation objectively, Root Mean
Square Error (RMSE) levels between our (lossy) compressed meshes
and the original ones are computed, and compared to those obtained
with regard to resulting meshes from the reference compression tech-
nique JPEG2000 3D [16] using the open source OpenJPEG codec
[17] and with lossless settings. In order to be as fair as possible,
only the top layer surface meshes have been compared (see Figure
10), because JPEG2000 3D is not dedicated to deal with geological
data. Figure 11 summarizes the error measures and clearly shows
that our meshes are first of all consistent with respect to the orig-
inal meshes, and second of all, outperform those generated by the
prior JPEG2000 3D compression scheme. Indeed, our method was
dedicated to preserve faults over the resolutions.

To further illustrate the benefit of our method, Table 1 presents
compression ratios between losslessly compacted and original mesh
data. It conveys an idea of the memory usage reduction, comparing
a direct encoding of the geometry with gzip or bzip2 entropy coders
and with our proposed wavelet pre-processing. It clearly demon-
strates that the wavelet transform drastically sparsifies the mesh
structure and reduces the amount of physically stored information.

(a) Original top layer surface.

(b) Res. —2 JPEG2000 3D.

(c) Res. —2 (H)exaShrink.

Fig. 10. Mesh#3 (portion): Original top layer surface (a), third reso-
lution level from JPEG2000 3D [16] (b) and (H)exaShrink (c).
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Fig. 11. RMSE computed on the top layer surfaces with respect to
the original ones, and compared to the prior JPEG2000 3D compres-
sion scheme [16].

EE | gzip bzip2 with size block of
WT 0.10MB | 0.50MB | 0.90 MB
None 3.09 2.33 3.28 3.51
Our wavelet | 3.11 4.05 4.19 4.25

Table 1. Compression ratios for different entropy encoding (EE)
techniques, without or with wavelet (WT) pre-processing.

6. CONCLUSION AND PERSPECTIVES

We presented a lossless progressive compression technique that han-
dles large structured hexahedric meshes having discontinuities, by
creating a hierarchy of meshes at different resolutions. Besides the
entropy encoding, the resolution meshes can easily be generated and
loaded at user’s convenience, thanks to the use of wavelet trans-
form. Moreover, numerous applications are still nowadays not robust
enough to manipulate large amounts of data, and our compression
technique circumvents several issues such as in mesh upscaling for
instance. Indeed, this method is commonly used in fluid flow com-
putation [18] to limit simulation runtime, which might take days or
even weeks in case the original mesh is too dense, and consists in
building a lower resolution mesh, from a denser one.

To efficiently resolve this problem and avoid the research using
some tree structures that might require a huge amount of core mem-
ory, a wavelet decomposition of the finest resolution mesh, would
generate several meshes at different resolutions, from coarse to fine.

The authors thank L. Chizat for initial work on mesh compression.
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