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ABSTRACT

The pipeline to get the semi-regular mesh of a specific physical object is long and fasti-
dious: physical acquisition (creating a dense point cloud), cleaning/meshing (creating an
irregular triangle mesh), and semi-regular remeshing. Moreover, these three stages are
generally independent, and processed successively by different tools. To overcome this
issue, we propose in this paper a new framework to design semi-regular meshes directly
from stereoscopic images. Our semi-regular reconstruction technique first creates a base
mesh by using a feature-preserving sampling on the stereoscopic images. Afterwards, this
base mesh is passed to a coarse-to-fine meshing process to get the semi-regular mesh of
the original surface. Experimental results prove the reliability and the accuracy of our
approach in terms of shape fidelity, compactness, but also runtime, since many steps have
been parallelized on the GPU.

GPU

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Motivated by the high fidelity and the realism of the
numerical models, and supported by the increasing sto-
rage capacities, the acquisition devices provide now high
resolution meshes, ensuring the preservation of the finest
details. Consequently these data are massive, and cannot
be easily managed by any workstation or mobile device
with limited memory and bandwidth. The semi-regular
meshes are a good way to overcome these issues, because
of their scalability and their compactness. Indeed, the
semi-regular meshes are based on a regular subdivision
connectivity, well-suited to display or transmit a mesh at
different levels of details. This subdivision connectivity
also allows a compact representation since only the con-
nectivity of the lowest level of details is needed to
reconstruct the full connectivity. This semi-regular struc-
ture is also adapted to multiresolution analysis [10] and
wavelet compression [14]. Despite their good properties,
the semi-regular meshes are sometimes forsaken by users
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because they are not provided by current acquisition sys-
tems which only provide point clouds. So, if one wants to
produce a semi-regular mesh of a specific physical object,
the pipeline presented in Fig. 1 must be processed: phy-
sical acquisition (creating a dense point cloud), cleaning/
meshing (removing redundant points and noise inherent
to acquisition process, and creating an irregular triangle
mesh), and then semi-regular remeshing [15]. This pipe-
line is long and fastidious, especially as these three stages
are performed independently.

Our original idea is to make the design of semi-regular
meshes easier, by simplifying the classical pipeline shown
above. This paper, that is an extended version of Peyrot
et al. [16], presents a coarse-to-fine approach that allows an
acquisition system to provide semi-regular meshes as
output, thus avoiding a remeshing process. We focused on
stereoscopic systems, because stereoscopy is an increasing
field of interest in surface reconstruction, due to its
rapidity and accuracy.

Our method, depicted in Fig. 2, relies on an analysis of
the stereoscopic images to get a base mesh that captures
the salient features of the original object, followed by a
coarse-to-fine meshing that generates the semi-regular
output. The most innovative part of our algorithm is the
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Fig. 1. The pipeline to get a semi-regular mesh from a physical object, and its application to multiresolution analysis.
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Fig. 2. Our 3D reconstruction technique that produces a semi-regular mesh directly from stereoscopic images.

use of the stereoscopic images as parameterization domain
to create the semi-regular mesh.

The remaining of the paper is organized as follows.
In Section 2, we remind the reader of the basics of
semi-regular meshes and briefly review two prior meth-
ods of surface reconstruction based on stereoscopy and
parameterization. Section 3 presents our semi-regular
reconstruction method. Experimental results are pre-
sented in Section 4. Finally, Section 5 summarizes our
contributions, and proposes future work.

2. Background
2.1. Semi-regular meshes

A semi-regular mesh M, is a structured mesh defined
by L levels of resolutions (Fig. 3), where all the triangles at
a specific level can be merged by fours down to a lower
resolution mesh.

This merging process can be applied (L—1) times to My,
until obtaining a base mesh My that represents the lowest
resolution of M, (Mg, can be seen as M; _1). A semi-regular
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mesh is sometimes called a subdivision mesh, because a
subdivision scheme is applied on the mesh at resolution [
to generate the semi-regular mesh at the finer level of
resolution (/+1).

2.2. Presentation of two prior surface reconstruction
methods

We now present two prior reconstruction metho-
ds similar to our proposal, because they are based on
multi-view images and use a parameterization. Interested
reader will find a complete presentation of general
reconstruction methods in Seitz et al. [22].

The method proposed in Park et al. [12] combines the
advantages of geometric and photometric techniques,
thanks to the surface parameterization. It consists in
associating a Multi-View Stereo (MVS) reconstruction pro-
cess that relies on a correspondence between pixels from
different multi-view images, and a Shape from Shading
method that utilizes the surface reflectance. The authors
use two cameras, an array of lights and a rotation table on
which the object is put (see Fig. 4). The rotation table
allows to acquire several images of the object at different
points of view, whereas only one light at a time is turned
on to provide different lighting configurations.

First of all, the technique Structure from Motion [23]
generates the 3D point cloud of the scanned object. The
multi-view method MVS of Hernandez et al. [8] is then
used to generate a depth-map, and the base mesh. The
third step consists in creating a parameterization by charts
[25] (see Fig. 5). Finally, from the parameterization and the

Fig. 5. Charts defined on the base mesh, and its associated para-
meterization (image of [12]).

normals estimated at each vertex of the base mesh, a
refinement procedure is applied, leading to high-quality
reconstructions.

Another relevant approach is proposed in Pietroni et al.
[19]. The authors present a quadrangular remeshing
technique based on a global and low distortion para-
meterization of different kinds of surfaces (polygonal
meshes, point clouds, etc.). The principle, illustrated in
Fig. 6, is to first generate a set of distance maps U’ of the
input data. Then, each image U' is parameterized into a 2D
planar domain, while controlling the resulting distortion at
the frontiers of the images in the final parameterization.
Finally, a sampling in the parameterization domain creates
a quadrangular semi-regular mesh.

Discussion: These two parameterization-based methods
are reliable. However, we cannot refer to Park et al. [12] to
get a semi-regular mesh directly from stereoscopic images,
as a coarse 3D mesh must be built before creating the
parameterization. The other method, [19], is closely related
to our goal, it requires a cross-field technique that might
be complex and uses triangles embedded in R>. A contra-
rio, our method strives to minimize the use of the 3D
connectivity by using the stereoscopic images as para-
meterization domain and a coarse-to-fine approach.

3. Presentation of our semi-regular reconstruction
method

3.1. Overview

To highlight the interest of our approach, we first pre-
sent the classical pipeline to get a semi-regular mesh of a
physical object with a stereoscopic system (Fig. 7(a)).

1. Stereo matching: The goal is to find the Pixels Of Interest
(POI) region in the two images that represents the
physical object [21]. The POI region gathers the couples
of pixels that correspond to a same point in the 3D
space through both cameras (yellow parts on the left
and right stereoscopic images). The POI region is only a
subset of the stereoscopic images since it is impossible
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Fig. 6. Overview of Pietroni et al. [19]'s method (image of [19]).
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Fig. 7. How to get a semi-regular mesh from stereoscopic images? The classical pipeline (top) vs our direct coarse-to-fine reconstruction method (down).
Purple and blue blocks indicate that the process is realized in 2D and 3D space, respectively.

to capture the same set of 3D points from two different
points of views.

. 3D coordinates computation: The coordinates of the 3D
points are computed for all the pixels belonging to the
POI region [7]. These two first steps are done by the
acquisition system.

3. Cleaning/meshing: The 3D point cloud must be cleaned,
and then triangulated, leading to a dense irregular
mesh. This is the second independent process.

4. Simplification: The semi-regular remeshing can now be
done (third independent process): the irregular mesh is
first simplified to obtain a coarse mesh corresponding to
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Fig. 8. Detection of the feature lines via our classification technique. First row: left stereoscopic images obtained with our scanner (models Pire, Box and
WAaLL). Second row: detection of high curvature areas (in blue). Third row: resulting classification after thinning: white, red and blue pixels represent

respectively the smooth regions, the sharp features and the corners.

the base mesh of final semi-regular mesh. During this
stage, a parameterization of the irregular mesh vertices
is generally computed onto this base mesh.

5. Refinement: The base mesh is subdivided several times
(1:4 subdivision) to create the different resolutions of
the final semi-regular mesh. Generally, the aforemen-
tioned parameterization optimizes the positioning of
the new vertices added by subdivision.

The originality of our semi-regular reconstruction
method, illustrated in Fig. 7(b), is that it mainly works onto
the 2D domain defined by the stereoscopic images, and
thus can be included in the acquisition system:

1. Stereo matching: This stage is identical to the one in the
classical approach.

2. POI pixel classification: The goal is to detect the feature
lines in the POI region. The creation of the base mesh
will be guided by these feature lines to ensure that
the geometrical features are preserved on the final
semi-regular output. Moreover, such assertion greatly
improves the reconstruction quality.

3. Coarse sampling: A coarse sampling, constrained by the
feature lines, is done to retrieve a set of 2D samples

that will be later the vertices of the base mesh.
This stage is based on 2D Poisson-disk sampling, to
ensure a good distribution of the samples over the POI
region.

4. Semi-regular meshing: The set of 2D samples is first
triangulated to obtain a 2D base mesh. Then, this 2D
base mesh is subdivided several times, to get a 2D semi-
regular mesh of the POI region. Finally, the 3D semi-
regular mesh is obtained by computing the 3D coordi-
nates associated to the 2D samples.

3.2. POI pixel classification

To detect the feature lines in the POI region, we first
classify the pixels according to their curvature values,' as
described below.

1 In the current version, the curvature values are calculated with the

technique of Park et al. [13] from the 3D normals associated to the cor-
responding 3D point cloud. In fine, to limit the use of 3D information, this
technique will be replaced in our algorithm by the recent technique of
Daval et al. [3] that computes the 3D normals directly from stereoscopic
images.
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Fig. 9. Example of uniform sampling performed on one
stereoscopic image.

A tensor Ty, is calculated at each pixel p(u,v) in the
POI region using

; _
U=ut+nv=v+n_g N
5

Tp(u,V)= Z Z N .-N

U=u-nv=v-n

M

where 17 is the 3D normal associated to the neighbor pixel
p'(W,v), and n depends on the size of the considered
neighbor region of p.

The three eigenvalues of Ty, are then computed with
the Jacobi operator, and a thresholding operation performs
the segmentation of high curvature area. In order to
reduce the runtime and benefit the independence of the
operation at each pixel p, this classification is GPU-
parallelized.

However, this classification is not precise enough to be
exploited as it is. A parallelized thinning technique [24] is
thus applied to the ‘high curvature’ pixels to finely detect
the sharp edges. Thinning a set of neighbor pixels consists
in generating a skeleton (i.e. a set of median lines) that
presents the same topology as the related shape.

Once the thinning is done, we classify the pixels in the
POI region according to three classes:

e corners containing the pixels where the median lines
intersect in the image;

o sharp features containing the remaining skeleton pixels;

e smooth regions containing the other pixels.

Fig. 8 depicts several results of classification obtained with
this method.

This classification of POI pixels will help the subsequent
sampling to preserve geometrical features and thus to
provide a consistent base mesh in terms of global shape
and geometrical characteristics, as explained below.

3.3. Coarse sampling

This stage is inspired by the feature-preserving Pois-
son-disk sampling for surfaces of Peyrot et al. [18], which
is based on a dart throwing.

This approach can be efficiently adapted to our setting:
the sampling domain £2 becomes the POI region of the
stereoscopic images (instead of a surface mesh in [18]),
and the feature lines detected by the previous stage guide
the distribution of 2D samples.

However, as the output 2D samples of this stage will
define the vertices of the base mesh, they must be con-
sistently distributed over the surface of the object (and not
especially over its stereoscopic images). Therefore the sampling
is done onto the POI region, to benefit from its implicit 2D
connectivity, but the distances between samples are com-
puted in the 3D space with Dijkstra's algorithm [4].

The principle of the dart throwing on a 2D image is the
following: (i) one pixel in the 2D domain £2 is chosen ran-
domly, (ii) a disk is computed around it, according to a radius
R that depends on the target number N of samples and a
density function, (iii) this pixel is considered as a valid
sample if the disk does not intersect the disks relative to the
samples already accepted (ensuring a minimal distance
between the samples).

One key idea of the proposed sampling technique is the
computation of the radius R onto the surface in the 3D
space, while handling the POI region of the stereoscopic
images. Given the requested number of samples N, we first
calculate the horizontal §; and vertical §; deviations
between samples when a uniform sampling pattern is
realized on the stereoscopic image. It generates a grid of
samples of dimension Ns x Ng, as depicted in Fig. 9,
where N; and N; represent the number of samples per row
and per column, respectively (N; x Nj=N).

To take care of the fact that the sampling domain £2 is
restricted to the pixels in the POI region, the distances 6; and
6; between samples along each dimension are shrunk by a
factor L x H/Card{POI}, with Card{POI} being the number of
pixels in £2. A uniform sampling can be realized using

R=1-max(6; ) - Sr, 2)

where S, is the spatial resolution of the scanner (0.3 mm in
our case). With some objects, it can be convenient to realize
an adaptive sampling, to better preserve the geometrical
features for instance. In that case, the radius will depend on
the surface curvature according to the following equation [18]:

R=1-max(8,5) - S; - (14 455, 3)

Empirically, we put C = —8.0 for the pixels of the class sharp
features, and C= —6.0 for the pixels of the class smooth
regions. A, and A5 are the eigenvalues of the tensor Tpq.y
computed in Section 3.2. In this formulation, the corners pixels
keep the minimum radius given by Eq. (2). To determine the
disks associated to the samples in function of the radius R, we
recall that we use Dijkstra's algorithm to compute geodesic
distances between 3D points, while using the connectivity of
the 2D sampling domain £2. Therefore, a disk does not depend
on the Euclidean distance between two given 2D samples, but
on the sum of the lengths of the 3D segments defined by the
shortest path in the POI region, as shown in Fig. 10. As output
of this stage, we get a set of 2D samples that ensures a good
distribution of the vertices of the 3D base mesh all over the
scanned surface.

3.4. Semi-regular meshing
We now present how to generate a semi-regular mesh

directly from the set of 2D samples defined previously. It is
a three-stage process: creation of the 2D base mesh from
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Fig. 10. Computation of a geodesic distance between two points of the surface in R* (right image), driven by the shortest path between the associated

pixels in the POI region (light blue region, left image).
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Fig. 11. Base mesh generated by our Voronoi relaxation without (first row) or with (second row) the constraint on the feature lines. Left: final Voronoi
diagram and triangulation. Middle: the same triangulation on the left stereoscopic image. Right: the resulting 3D base mesh.

the set of 2D samples, refinement by iterative subdivisions
to get a 2D semi-regular mesh, and fitting in 3D space.

Creation of the base mesh: The base mesh is obtained via a
constrained Voronoi relaxation [9] of the samples in the ste-
reoscopic image domain, followed by the triangulation of the
relaxed samples (via the dual of the Voronoi diagram [20]). In
our context, the Voronoi relaxation consists in first computing
a Voronoi diagram of the pixels in function of the set of
samples, and then displacing each sample to the centroid of
its cell. This process is iteratively repeated until convergence.
The relaxation greatly improves the mesh quality, when
comparing with the triangulation that we could obtain
directly from the initial voronoi diagram.

In this work, the Voronoi diagrams are generated with
Munshi et al. [11] that is a GPU implementation of popular
Dijkstra's algorithm [4]. We had to adapt this algorithm to
process stereoscopic images. Moreover, to preserve the
feature lines on the created base mesh, we added a con-
straint during the relaxation: the new samples must
belong to the same class than the initial samples (corners,
sharp features or smooth regions). In other words, if after

relaxation a sample is moved to a pixel which does not
belong to the same class, then the sample is displaced to
the closest pixel of the same class. This technique is
straightforward, but produces nice triangulations, while
preserving geometrical features of the scanned object, as
shown in Fig. 11. This figure shows also the poor triangu-
lation obtained if the constraint is not included.

Refinement: A 2D semi-regular mesh is first obtained by
applying several midpoint subdivisions [1] to the base
mesh of the left stereoscopic image (see Fig. 12). Then, the
surface fitting will embed the semi-regular mesh in the
3D space.

During the subdivision, some new vertices might be
either outside the POI region, or in holes (areas without 3D
correspondences). In the first case, they are displaced to
their closest POI pixel, as shown in Fig. 12(c) and (d). To
avoid an exhaustive research over the POI region, we use a
parallelized k-Nearest Neighbors algorithm (with k=1).

In the second case, if we use the same technique, the
resulting triangles will be badly shaped (see Fig. 13(a)),
which globally decreases the mesh quality. To reduce such
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Fig. 12. Generation of the 2D semi-regular mesh. (a) Left stereoscopic image and its POI region. (b) 2D base mesh. (c) Subdivision. (d) Displacement of the
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Fig. 13. Technique proposed to fill the holes during the refinement. (a) Without our approximation. (b) With our approximation.

artifacts, we choose to keep the vertices “fallen in a hole”
in the 2D domain, and so in the 3D space. Fig. 13(b) shows
that, with this technique, the triangles filling the holes are
better shaped. Note that instead of using this simple
scheme, one could use an interpolating scheme such as
Butterfly [5].

4. Experimental results
4.1. Visual results

All our results are generated with a single pair of ste-
reoscopic images obtained with a hand-held scanning
system. Fig. 14 gives an overview of our method on the
model Fack.

From the stereoscopic images (a), the POI region (b) is
defined, and the base mesh (resolution 0) is created (c).

Then, our coarse-to-fine approach generates several reso-
lutions (d,e,f). At resolution 5, our semi-regular recon-
struction, with only 43k vertices, is already a good
approximation of the original cloud of 250k points given
by the stereoscopic system. This is promising in terms of
both compactness and compression. Fig. 14(g) also shows
the textured semi-regular mesh, produced in a very simple
way, with one stereoscopic image. No additional texturing
technique is necessary as the connectivity of the semi-
regular mesh is generated directly on the image domain.
This is another great advantage of our approach.

4.2. Uniform vs adaptive sampling

We now study the efficiency of our feature-preserving
technique, and the difference in terms of triangle quality,
between the meshes produced with the uniform/adaptive
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Fig. 15. Preservation of the geometrical features of Door, with the uniform or the adaptive sampling.

samplings during the creation of the base mesh (Section
3.3).

Fig. 15 shows a reconstruction of a surface having sharp
features called Door.

Fig. 15 (b)-(d) present the results with the uniform
sampling, whereas Fig. 15(f)-(h) present the results
with the adaptive sampling. We observe on the smooth

shadings that the features are globally well preserved
whatever the sampling. Some artifacts along them are
visible, but they are due to the holes in the POI region
that generate notches along features when the base
mesh is created (these artifacts would be removed
by improving the stereo matching in the scanning
system).
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Fig. 16. Difference of sampling quality obtained on Face in function of uniform/adaptive sampling.

However, we observe in Fig. 15(b) and (f) that the adap-
tive sampling tends to better preserve the features from the
lowest resolution. This result was expected, as the adaptive
approach takes into account the curvature during the com-
putation of the disks, leading to a dense sampling pattern
along the geometrical features. The counterpart is that
the sampling is globally less uniform, and the quality of the
triangles is lower: the average minimum angle is 42.5°
and 37.5° respectively for the uniform and the adaptive
sampling.

C
/8
/i
s
STATUE FACE
(102,403 (249, 764 (276,313
points) points) points)

resolutions, which is advocated in case of smooth surfaces.
On the database of five objects shown in Fig. 17, the uniform
sampling increases of 11% the average min angles.

4.3. Runtime

We now evaluate the runtime of our semi-regular
meshing on five surfaces shown in Fig. 17. The results
have been obtained with an Intel Core i3 CPU 2.30 GHz
processor, associated to a 4 GB RAM.

d e

e |
) I P =5

House ‘WALL Door

(513,036 (531,572

points) points)

Fig. 17. Database used to compute the runtimes of Fig. 19.

Fig. 16 gives an additional result on Face: we see that the
uniform sampling tends to provide a more isotropic mesh,
and that the edges of the base mesh are less visible at high

Fig. 18 shows the runtime in function of the resolution,

when the base mesh has 50 vertices, and eight resolutions.
The bottom part of this figure is a zoom of the graphic,
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Fig. 18. Runtime in seconds of our method, per resolution. The bottom part is a zoom of the top one where the Y-axis spans from 0 to 1.
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Fig. 19. Total runtime (in seconds) of our method in function of the number of vertices of the base mesh.

where the Y-axis spans from O to 1. Note that the pre-
processing runtime that consists in detecting the POI
region and the POI classification is not included.

As expected, the most “greedy” resolution is the first
one, during which the base mesh is generated (including
the Poisson-disk sampling, the constrained 2D Voronoi
relaxation, and the 2D Delaunay triangulation). For
instance, the runtime to generate the 8 resolutions is
around 17 s for the Door model, among which 90% is
dedicated only to build the base mesh. Indeed, the
Poisson-disk and the relaxation phases are not parallelized
and time-demanding. The obtaining of the other resolu-
tions is much faster, partly because these steps have been
parallelized on GPU. As a proof, the generation of the
seventh resolution defined by 705,281 vertices (528,768
vertices are added) requires less than 0.6 s in the worst
case. Nevertheless, this remains very fast.

Now, Fig. 19 shows the total runtime (including the
aforementioned preprocessing runtime) to generate
8 resolutions, in function of the base mesh density. For
each surface, the curve is obtained by averaging the
runtime of five tests. Indeed, our algorithm is not
deterministic (because of the dart throwing), and the

relaxation time depends on the initial sampling. So, we
can obtain slightly differences at each resolution for a
same surface.

We observe the linearity of the total runtime with
respect to the number of vertices of the base mesh. The
differences between the models is due to the original point
cloud density (ranging from 102,403 points for Statue to
531,572 points for Door). The curvature of the scanned
surface also influences the runtime. For instance, WALL
contains around 18k points less than Door, but it contains
much more pixels classified as sharp features. Finally, the
mean sampling runtime is slower: 5.70 s for WaLL, while it
amounts to 10.90 s for Door.

4.4. Comparison with the classical pipeline

We now compare our direct semi-regular meshing with
the classical acquisition pipeline to get a semi-regular
mesh (point cloud generation — triangulation — semi-
regular remeshing). We use a Voronoi-based triangulation
technique to generate the original irregular reference
mesh M,,; from the point cloud provided by our stereo-
scopic system. This irregular mesh is then remeshed semi-
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Fig. 20. Comparison of the geometry sampling obtained with our method and with SmartMesh [2], depending on the vertex density of the semi-regular
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Fig. 21. Asymmetric RMS distance RMS(M,,; - M) obtained with our method and with SmartMesh [2] in function of the resolution.

regularly either with the SDK SmartMesh developed by the
company [2], or with Trireme [6]. To our knowledge, they
are the only semi-regular remeshing techniques available
on the web. Unfortunately, we found out that Trireme is

not a suitable tool to remesh our data. Indeed, we could
not produce any semi-regular meshes without severe
degeneracies and outlier triangles. In the contrary, Smart-
Mesh always provides manifold semi-regular meshes, in
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Table 1
Runtime comparison in seconds between our method and SmartMesh [2],
to generate 5 resolutions.

Models Wall Door Statue Face
Base mesh density 431 800 365 492
SmartMesh >3 min >7 min >2 min > 6 min

Our method 19.1s 277s 10.1s 103s

particular because it does not use any parameterization,
unlike Trireme. Consequently, we only compare the
reconstruction errors and runtimes relative to our semi-
regular meshing and to SmartMesh.

We first compute the symmetric root mean square
distance between the set of vertices of our semi-regular
meshes, and the set of vertices of M,,; (the original point
cloud provided by the acquisition system). It allows us to
assess the fidelity of our sampling to the reference point
cloud. The same distance is calculated with the set of
vertices of the semi-regular meshes produced by Smart-
Mesh. Fig. 20 shows the evolutions of these distances
depending on the resolutions: the X-axis indicates the
associated number of points. We observe that our method
presents lower distances than SmartMesh. It was expected
as our method is approximating, contrary to SmartMesh
that is interpolating (it optimizes the positions of the
vertices such as its semi-regular mesh is close to the
reference mesh). Our method has the advantage to deter-
mine the majority of vertices among the original point
cloud, as the vertices are selected via the pixels of the POI
region in the image domain. The only vertices that do not
exist in the original point cloud are associated to pixels
selected outside the POI region during subdivision. Thus,
our method is more accurate when considering only the
geometry of the initial surface.

We now assess the fidelity of our semi-regular meshes
with respect to the reference mesh M,,;.. To achieve this
goal, we compute the symmetric Root Mean Square (RMS)
distance between M,,; and our semi-regular meshes M;;
(normalized by the diagonal length of the bounding box),
which is widespread used in the state-of-the-art [15].
However, in our context, this measure is not suited.
Indeed, as explained in Section 3.4, our method fills the
holes, in order to make the texturing easier and to enhance
the mesh quality. As a consequence, when measuring the
symmetric RMS distances between our semi-regular
meshes and the reference irregular mesh M,,;, the dis-
tances between the triangles filling the holes and the
original surface are inevitably high. It severely corrupts the
comparison with SmartMesh, as this latter has been initi-
ally developed to preserve the potential borders of a sur-
face and consequently the holes. So, to fairly make com-
parisons, we compute the asymmetric RMS distance
RMS(M,;; —»Ms), which excludes the filled holes: see
Fig. 21 (the X-axis still indicates the number of points of
each resolution). Globally, we observe that our method is
better than SmartMesh in the first resolutions. It can be
explained by the fact that our method tends to preserve
the geometrical features in the base mesh, and that it is
approximating [15]. On the other hand, SmartMesh

becomes better on the highest resolutions, because it
minimizes the geometric distortion directly onto the ori-
ginal surface, without any parameterization, which avoids
the relative distortion. Furthermore, our method is pena-
lized by the fact that it works in the image domain, but
also by our feature preservation that positions more ver-
tices on them.

On the other hand, our algorithm is direct and thus
significantly faster than SmartMesh. The runtime compar-
ison is summarized in Table 1. SmartMesh indeed takes
several minutes to produce the semi-regular meshes: from
2 to 7 min in function of the data, excluding the triangu-
lation time, whereas our method needs always less than
one minute. Finally, it shows that the proposed pipeline is
a promising alternative to the classical one.

5. Conclusion and perspectives

In this paper we proposed an alternative to the fasti-
dious pipeline to get semi-regular meshes from physical
objects. The idea is to generate semi-regular meshes
directly from the stereoscopic images acquired with a
hand-held stereo acquisition system. The key idea of our
work is that the stereoscopic images can be considered as
a parameterization of the acquired surface. Therefore, our
reconstruction method processes the data as much as
possible into the image domain, before embedding the
surface in the 3D space.

The first contribution is an original sampling that cre-
ates a base mesh of the scanned surface. We show that the
Poisson-disk sampling developed by Peyrot et al. [17] can
be extended to a stereoscopic system, while retrieving the
3D information necessary to preserve features all along the
process. This allows us to take into account the surface
geometry, although the sampling is realized on the ste-
reoscopic images. The second contribution concerns our
coarse-to-fine approach that allows us to get a semi-
regular mesh preserving the geometrical features as out-
put of our acquisition system, by working mainly in the
image domain.

Our pipeline could be easily included into any stereo-
scopic acquisition system. It also has the advantage to
create semi-regular output that can be directly textured
with the stereoscopic image, and is also much more faster
and convenient than the classical pipeline.

However, a lot of improvements remains possible. For
instance, the runtime of our algorithm can be improved as
some parts are implemented on CPU. It would be inter-
esting to investigate parallel algorithms for all the stages,
to allow quasi real-time reconstructions. We could also
investigate new means to improve the shape fidelity, in
order to be competitive with the semi-regular remeshing
techniques. Another promising improvement would
be to manage several views. Indeed, our current algorithm
handles only one view, and thus only a part of the
scanned object can be reconstructed. It would be relevant
to study, for instance, mosaicing techniques, widespread in
photogrammetry, to generate a large POI region repre-
senting the whole parameterized object, and thus to



110 J.-L. Peyrot et al. / Signal Processing: Image Communication 40 (2016) 97-110

output a complete semi-regular representation of a phy-
sical object.
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