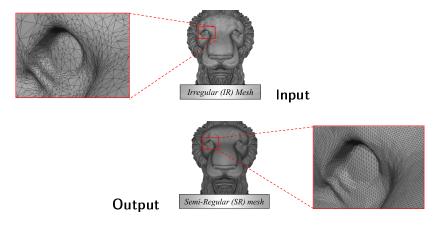
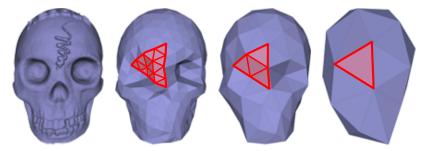
Semi-Regular Triangle Remeshing: A Comprehensive Study

Frédéric Payan, Céline Roudet, Basile Sauvage



Eurographics, State-of-the-Art Report Lisbon, Portugal, May 2016.


<ロ> (四) (四) (三) (三) (三)

Remeshing

Goal: shape fidelity.

Semi-regular meshes

- A triangle mesh is semi-regular (SR) if the triangles can be merged by fours down to a low resolution mesh.
- It is a property of the mesh connectivity, sometimes called "subdivision connectivity".
- Most vertices are regular (*i.e.* have valence 6).

Summary

Introduction

- Context
- Wavelet-based multi-resolution analysis
- Overview of SR remeshing

② Goals of SR remeshing

- Shape fidelity
- Quality of mesh elements
- Compactness

3 Conclusions

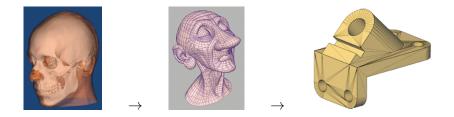
- Summary
- Future works

Summary

Introduction

- Context
- Wavelet-based multi-resolution analysis

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶


- 2

- Overview of SR remeshing
- 2 Goals of SR remeshing
 - Shape fidelity
 - Quality of mesh elements
 - Compactness

3 Conclusions

- Summary
- Future works

Context: representing the geometry of 3D objects

- 3D data \rightarrow surfaces \rightarrow meshes \rightarrow triangle meshes.
- Triangle meshes are popular and widespread for computer graphics applications.

Context: large meshes are widespread

- Meshes are getting larger:
 - encouraged by applications;
 - supported by hardware.
- Progresses in all stages of the pipeline:
 - modeling, acquisition and reconstruction:
 - processing;
 - storage and transmission;
 - rendering.

The Digital Michelangelo Project

Goal: quality of the mesh elements.

Shape of the triangles, distribution of the vertices.

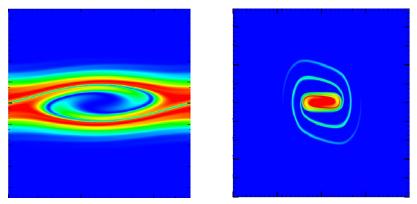
Context: large meshes are still challenging

• Limitations: storage, transmission, real-time rendering, etc.


Goal: compactness of the output mesh.

It is a strength of SR meshes.

• Do you need so many details? It depends on the application.



When do you need details?

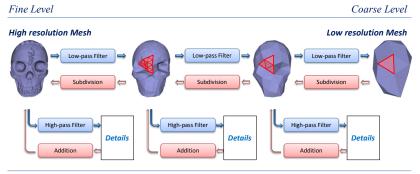
Where do you need details?

Plasma visualization: (position x velocity)-slice Courtesy M. Haefele

Summary

Introduction

- Context
- Wavelet-based multi-resolution analysis


▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

- 2

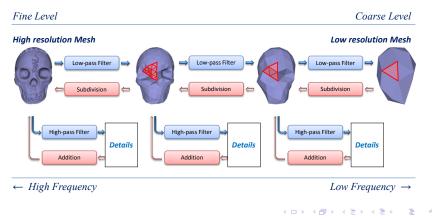
- Overview of SR remeshing
- 2 Goals of SR remeshing
 - Shape fidelity
 - Quality of mesh elements
 - Compactness

3 Conclusions

- Summary
- Future works

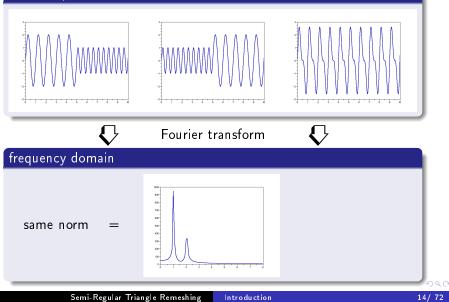
 $\leftarrow \textit{High Frequency}$

Low Frequency \rightarrow

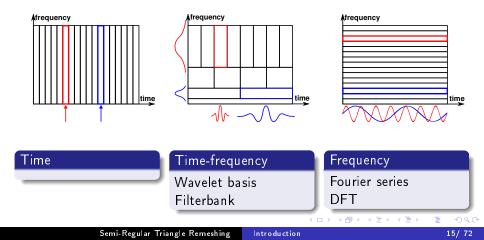

< ∃→

(日) (同) (三)

æ

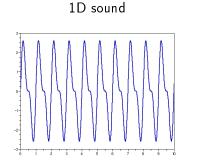

Applications

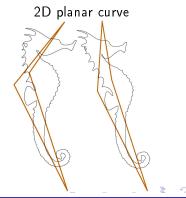
- Level-of-detail visualization and rendering [CPD*96].
- Progressive transmission [LKSS00];
- Geometry compression [KSS00, PA05];


From frequency to time-frequency analysis

time = space domain

From frequency to time-frequency analysis

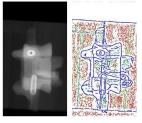

$$s(t)=\sum_i c_i\phi_i(t)$$



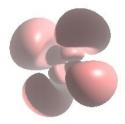
Embedding dimension

$$s(t)=\sum_i c_i\phi_i(t)$$

- Intrinsic dimension (parameter t): 1D.
- Embedding dimension (coefficients c_i):

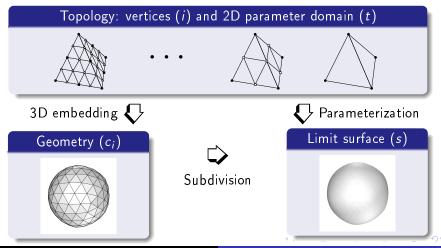


Intrinsic dimension


$$s(t)=\sum_i c_i\phi_i(t)$$

- Embedding dimension (coefficients c_i): 1D.
- Intrinsic dimension (parameter t):

2D image Courtesy O. Le Cadet.

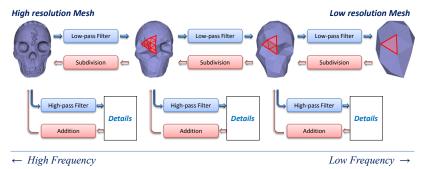


3D electronic density field Courtesy C. Chauvin

Semi-regular meshes / subdivision connectivity

$$s(t)=\sum_i c_i\phi_i(t)$$

Semi-Regular Triangle Remeshing Introduction


Fresh look at the filterbank

 $s(t) = \sum_i c_i \phi_i(t)$

< D > < P > < P > < P >

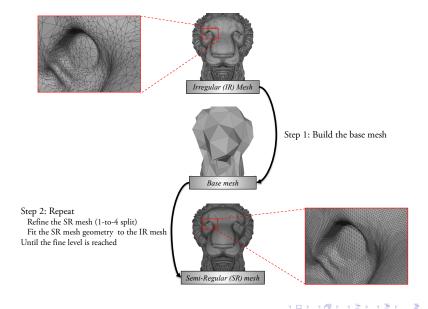
Summary

Introduction

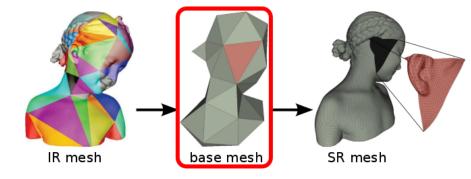
- Context
- Wavelet-based multi-resolution analysis

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

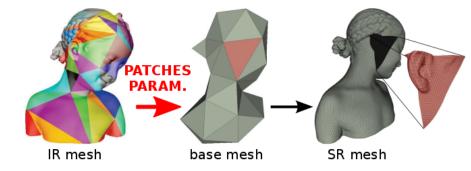
- 2

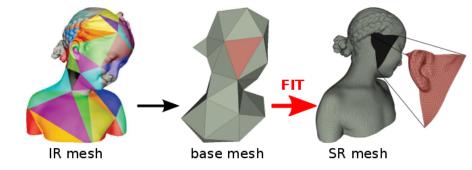

- Overview of SR remeshing
- 2 Goals of SR remeshing
 - Shape fidelity
 - Quality of mesh elements
 - Compactness

3 Conclusions

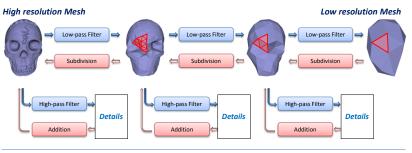

- Summary
- Future works

- Direct SR modeling.
- Meshing of other types of data.
- Re-meshing of irregular meshes.


Overview


Component 1: construction of the base mesh

Component 2: mapping base mesh \longrightarrow IR mesh


Component 3: geometric fitting

Comparison with the filterbank

Fine Level

Coarse Level

 $\leftarrow \textit{High Frequency}$

Low Frequency \rightarrow

- The low resolution mesh (filterbank) is *not* the base mesh (remeshing).
- The low-pass filter (filterbank) is *not* the reverse of refinement + fitting (remeshing).

Introduction

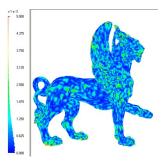
- Context
- Wavelet-based multi-resolution analysis

◆□▶ ◆□▶ ◆□▶ ◆□▶

æ

• Overview of SR remeshing

2 Goals of SR remeshing


- Shape fidelity
- Quality of mesh elements
- Compactness

3 Conclusions

- Summary
- Future works

Definition

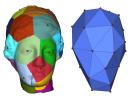
- How a SR mesh approximates an IR mesh.
- Minimize the Remeshing Error (RE).

- Remeshing Error = max(d(IR, SR), d(SR, IR))
- with

$$d(X,Y) = \big(\frac{1}{\operatorname{area}(X)}\int_{x\in X} d(x,Y)^2 dx\big)^{\frac{1}{2}},$$

Major rule

- Base mesh has to be a coarse version of the IR mesh.
- Same topology (same boundaries and genus).



Shape fidelity - Base mesh

Example

Mesh partitioning [EDD*95, KPA10, CJL11]

Example

Incremental simplification [LSS*98, GVSS00, KLS03]

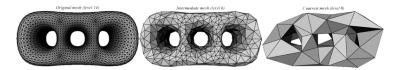
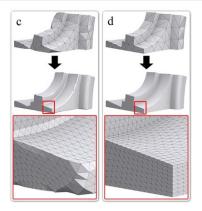



Figure: Image from [LSS*08] → (=) +

Shape fidelity - Feature Preservation

Second rule

Preserving features improves the shape fidelity [Gio99, Gus07, CJL11].

Figure: Image from [CJL11]

Semi-Regular Triangle Remeshing Goals of S

Shape fidelity - Feature Preservation

Example

Segmentation [CJL11]

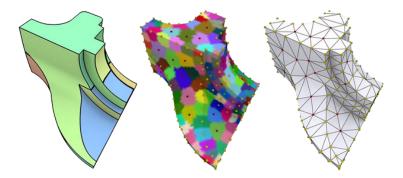
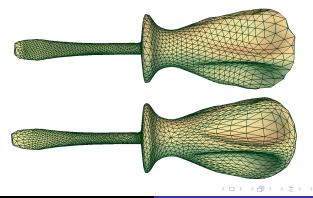


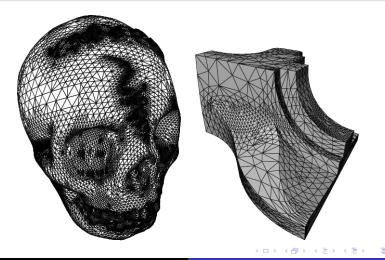
Figure: Segmentation, clustering/relaxation and triangulation.


Shape fidelity - Minimize the error during fitting

Third rule

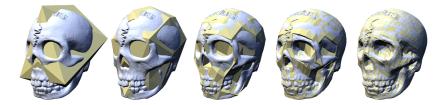
Minimize the error during refinement.

Example


Anisotropic sampling [Gus07]

Shape fidelity - Minimize the error during fitting

Example


Adaptive sampling [LSS*98, GVSS00, HLG01, KPA10].

Shape fidelity - Minimize the error during fitting

Example

Minimizing the remeshing error at each level [FSK04, Gus07, KPA10]

Figure: Image from [FSK04].

Introduction

- Context
- Wavelet-based multi-resolution analysis

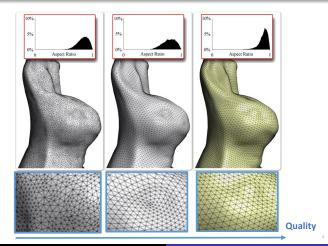
◆□▶ ◆□▶ ◆□▶ ◆□▶

æ

• Overview of SR remeshing

2 Goals of SR remeshing

- Shape fidelity
- Quality of mesh elements
- Compactness


3 Conclusions

- Summary
- Future works

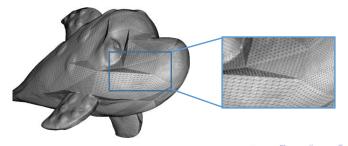
Quality of mesh elements

Objective

SR meshes with well-shaped triangles, and isotropic sampling with smooth gradation [AUGA08]

Semi-Regular Triangle Remeshing

Goals of SR remeshing


Quality of mesh elements - Semi-regularity

Starting point

Semi-regularity is well-suited to get *High Quality* (HQ) triangles.

But... it's not enough for SR remeshing of surfaces.

Quality of mesh elements - HQ Base Mesh

First rule

Build a High Quality base mesh...

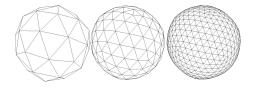


Figure: Image from [KVLS99].

But... it's not enough with complex shapes.

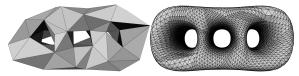


Figure: Image from [LSS*98].

Semi-Regular Triangle Remeshing Goals of SR remeshing

Quality of mesh elements - Intra-patch uniform sampling

Second rule

- Patches have to be as "flat" as possible to preserve the intra-patch uniform sampling.
- Easier if the the patch boundaries match sharp features.

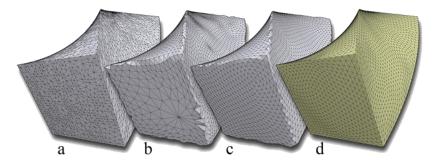


Figure: Image from [CJL11].

Quality of mesh elements - Patch boundaries

Third rule

Ensure a smooth gradation of the sampling along the patch boundaries.

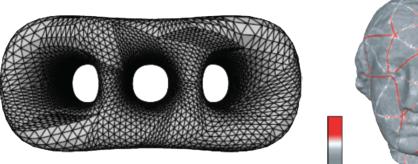


Figure: Images from [LSS*98].

Figure: Images from [KLS03].

▲□ → ▲ 三 → ▲ 三 →

Example

Smoothing the sampling in the parametric domain [LSS*98, KVLS99, HLG01];

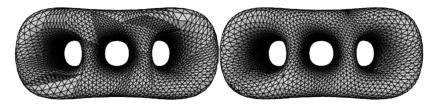


Figure: Images from [LSS*98].

Quality of mesh elements - Patch boundaries

Example

Using a "globally smooth" parameterization [KLS03];

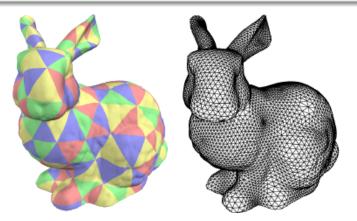
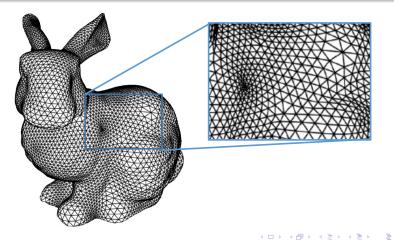



Figure: Images from [KLS03].

Last rule

Ensure a smooth gradation around the extraordinary vertices[Gus07, PTC10].

Example

Manifold-based parameterization around the extraordinary vertices [Gus07]

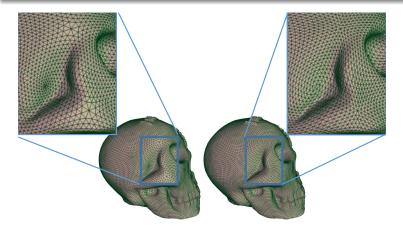


Figure: Images from [Gus07] *** (2) *** (2) *** Semi-Regular Triangle Remeshing Goals of SR remeshing

45/72

Example

Using an almost isometric mesh parameterization [PTC10].

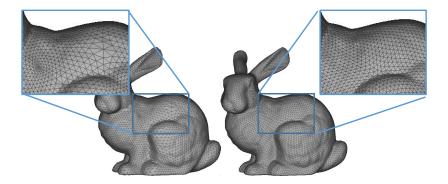
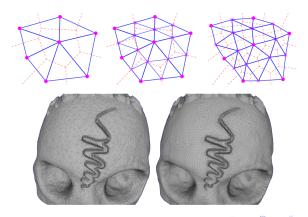



Figure: Images from [PTC10].

Example

Using a **Voronoi diagram and a relaxation** to distribute uniformly the vertices at each resolution [KPA10].

Introduction

- Context
- Wavelet-based multi-resolution analysis

◆□▶ ◆□▶ ◆□▶ ◆□▶

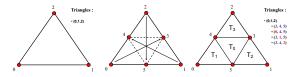
æ

• Overview of SR remeshing

2 Goals of SR remeshing

- Shape fidelity
- Quality of mesh elements
- Compactness

3 Conclusions

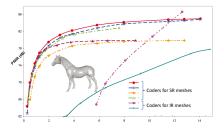

- Summary
- Future works

Definition

Compactness is the ability of a surface representation to encode large objects with few data.

How encoding the connectivity of SR meshes ?

The connectivity of the SR meshes is almost implicit.


How encoding the geometry of SR meshes?

SR meshes support **efficient wavelet analysis**, that creates very sparse sets of wavelet coefficients.

Semi-Regular Triangle Remeshing Goals of SR remeshing

Compactness - Wavelet-based Compression

"Encoding SR meshes with wavelet-based algorithms decreases the reconstruction error by a factor 4 [...], compared to other progressive coding schemes" [KSS00].

Bitrate-PSNR curves

- Bitrate: bits per IR vertex.
- $PSNR(dB) = 20 \log_{10} \frac{boundingboxdiagonal}{Recontructionerror}$

Characteristics of the Wavelet Coefficients

- wavelet coefficients are 3D vectors computed in local frames.
- Each coefficient is defined by a tangential component, and a normal component.
- Most of the **geometry information** is concentrated in the normal components.

Compactness - How improving the compactness?

Major Rule

Building SR meshes such as the future sets of wavelet coefficients will be as sparse as possible.

Example

- Remove the tangential components of the future wavelet coefficients, to get 1D coefficients.
- Position the SR vertices such as the wavelet coefficients will be along the normals [GVSS00, LMH00, LKK03, FSK04].

Example

- Reduce the norm of the future wavelet coefficients, to reduce the range of each set of wavelet coefficients.
- Building a parameterization as smooth as possible [KLS03].

Introduction

- Context
- Wavelet-based multi-resolution analysis

《曰》 《聞》 《臣》 《臣》

æ

- Overview of SR remeshing
- 2 Goals of SR remeshing
 - Shape fidelity
 - Quality of mesh elements
 - Compactness

3 Conclusions

- Summary
- Future works

- Relation between SR meshes, MR analysis, wavelets, remeshing.
- Goals:
 - shape fidelity,
 - quality of the mesh elements,
 - compactness.
- Components:
 - Building the base mesh.
 - Parameterization of IR mesh on the base mesh.
 - Geometric fitting of the SR to the IR.
- End-user? Trireme code available online [Gus07].

Our	paper.
-----	--------

	Goals (contributions)			Components (methods)		Input and output (features)					
Ref.	Shape fidelity	Mesh quality	Compact- ness	Base mesh	Parametrization	Geom. fitting	Any Genus	Bnd.	Adapt.	Sharp Features	Remarks
[EDD*95]	+	+		MP	local harmonic	FI	\checkmark	\checkmark			
[LSS*98]	++	+		IS	conformal	FI	\checkmark	~	\checkmark	\checkmark	a.k.a. MAPS
[Gio99]	+		+	PP	local harmonic	FI	~	v	•	- V	based on [EDD*95]
[KVLS99]		+		PP	implicit	FI					
[GVSS00]			++	IS	shape-preserving	FI	\checkmark		\sim		a.k.a. normal meshes or INM
[LMH00]			++	IS	no param.	FI			\checkmark		a.k.a. displaced subd. surfaces
[HLG01]	+	++		PP	MIPS	FI		\checkmark	- V		
[KLS03]		++	+	IS	conformal	FI	\checkmark	V			based on [LSS*98], a.k.a. GSP
[LKK03]				IS	shape-preserving	FI	1	-V			extension of [GVSS00] for boundaries
[FSK04]	++		+	N/A	N/A	Α	~	V			param. as input, based on [GVSS00]
[AGL06]				IS	conformal	FI	1	-V		\checkmark	OoC extension of [LSS*98]
[LYHL06]		+		PP	min. area disto.	FI	~	~			
[Gus07]	++	+	+	MP	mean-value	FI	\checkmark				a.k.a. TriReme, anisotropy
[PTC10]		++	+	IS	conformal/authalic mix	FI	~				
[KPA10]	+	+		MP	conformal	VI			\checkmark		
[DMS10]	+		+	N/A	N/A	VI					SR meshes as input
[CJL11]	+	++		MP	N/A	FI	\checkmark			\checkmark	

- Remeshing.
- Parameterization.

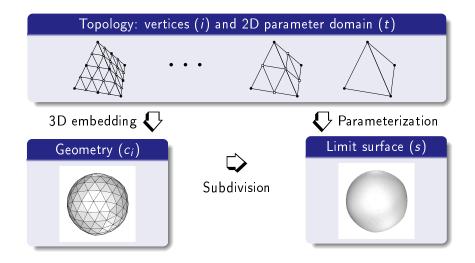
< 一型

Introduction

- Context
- Wavelet-based multi-resolution analysis

《曰》 《聞》 《臣》 《臣》

æ


- Overview of SR remeshing
- 2 Goals of SR remeshing
 - Shape fidelity
 - Quality of mesh elements
 - Compactness

3 Conclusions

- Summary
- Future works

- Few implementations available.
- No test dataset.
- No consensus on the quality measures.
- Timings and complexity.
- Robustness issues.

Don't confuse control mesh and limit surface

Sharp features should be high frequencies

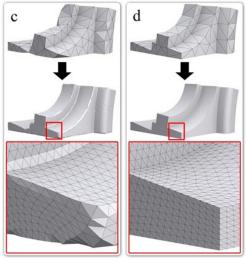
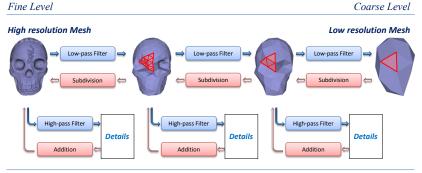



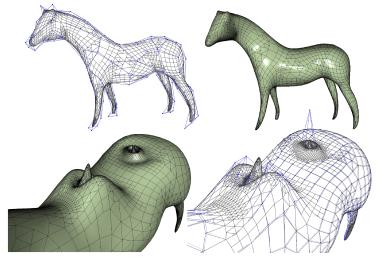
Image from [CJL11]

Semi-Regular Triangle Remeshing

Con clusion s

Should we bind the MR scheme with the mesh?

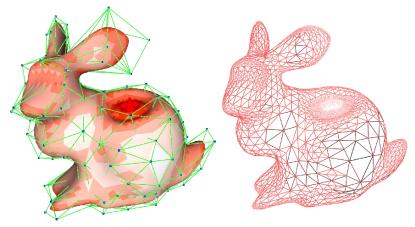
 $\leftarrow \textit{High Frequency}$


Low Frequency \rightarrow

э

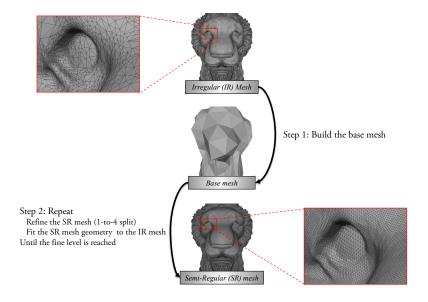
< 一型

- Semi-automated: high-level user interaction.
- Automated: tangent vector fields.


Mixed quad-triangle meshes

Courtesy P. Kraemer

Semi-Regular Triangle Remeshing


$\sqrt{3}$ subdivision

Courtesy P. Kraemer

< 行

- Mesh attributes (color, normal, texture).
- Direct SR meshing.
- Parallel and out-of-core algorithms.

Con clusions

 [AUGA08] Alliez P., Ucelli G., Gotsman C., Attene M.: Recent advances in remeshing of surfaces.
 In Shape Analysis and Structuring, Mathematics and Visualization (2008), Springer.

[CJL11] Chiang C.-H., Jong B.-S., Lin T.-W.: A robust feature-preserving semi-regular remeshing method for triangular meshes. *The Visual Computer 27*, 9 (2011), 811–825.

[CPD*96] Certain A., Popovic J., DeRose T., Duchamp T., Salesin D., Stuetzle W.: Interactive multiresolution surface viewing. In *Proceedings of ACM SIGGRAPH'96* (1996), pp. 91–98. [EDD*95] Eck M., DeRose T., Duchamp T., Hoppe H., Lounsbery M., Stuetzle W.: Multiresolution analysis of arbitrary meshes. In *Proceedings of ACM SIGGRAPH'95* (1995), pp. 173–182.

[FSK04] Friedel I., Schröder P., Khodakovsky A.: Variational normal meshes. ACM Transactions on Graphics 23, 4 (2004), 1061–1073.

[Gio99]

Giola P.:

Reducing the number of wavelet coefficients by geometric partitioning.

Computational Geometry: Theory and Applications 14, 1-3 (1999), 25–48.

[Gus07] Guskov L: Manifold-based approach to semi-regular remeshing. Graphical Models 69, 1 (2007), 1–18. [GVSS00] Guskov I., Vidimce K., Sweldens W., Schröder P.: Normal meshes. In Proceedings of ACM SIGGRAPH'00 (2000), pp. 95-102. [HLG01] Hormann K., Labsik U., Greiner G.: Remeshing triangulated surfaces with optimal parameterizations. Computer-Aided Design 33, 11 (2001), 779-788.

Bibliography IV

[KLS03] Khodakovsky A., Litke N., Schröder P.: Globally smooth parameterizations with low distortion. In Proceedings of ACM SIGGRAPH'03 (2003), pp. 350–357.

[KPA10] Kammoun A., Payan F., Antonini M.: Adaptive semi-regular remeshing: A voronoi-based approach.

In Proceedings of IEEE International Workshop on Multimedia Signal Processing (2010), pp. 350–355.

[KSS00]

Khodakovsky A., Schröder P., Sweldens W.:
Progressive geometry compression.
In *Proceedings of ACM SIGGRAPH'00* (2000),
pp. 271–278.

 [KVLS99] Kobbelt L., Vorsatz J., Labsik U., Seidel H.-P.: A shrink wrapping approach to remeshing polygonal surfaces. Computer Graphics Forum 18, 3 (1999), 119–130.

[LKK03] Lee K.-Y., Kang S.-C., Kim T.-W.: Remeshing into normal meshes with boundaries using subdivision. Computers in Industry 50, 3 (2003), 303-317.

[LKSS00] Labsik U., Kobbelt L., Schneider R., Seidel H.-P.: Progressive transmission of subdivision surfaces. Computational Geometry 15, 1-3 (2000), 25–39.

Bibliography VI

[LMH00] Lee A. W. F., Moreton H., Hoppe H.: Displaced subdivision surfaces. In Proceedings of ACM SIGGRAPH'00 (2000), pp. 85–94.

 [LSS*98] Lee A. W. F., Sweldens W., Schröder P., Cowsar L., Dobkin D.: MAPS: multiresolution adaptive parameterization of surfaces.
 In Proceedings of ACM SIGGRAPH'98 (1998), vol. 32,

pp. 95-104.

[PA05]

Payan F., Antonini M.:

An efficient bit allocation for compressing normal meshes with an error-driven quantization. Computer Aided Geometric Design - Special issue on Geometry Mesh Processing 22, 5 (2005), 466–486.

< 注 > …

[PTC10] Pietroni N., Tarini M., Cignoni P.:

Almost isometric mesh parameterization through abstract domains.

IEEE Transaction on Visualization and Computer Graphics 16, 4 (2010), 621–635.