Papareto: an object-oriented self-adaptive
framework for evolutionary computing in Java

January 8, 2014

1 Introduction

1.1 A few words about evolutionary computing

In computer science, evolutionary computation is a subfield of artificial intelli-
gence (more particularly computational intelligence) that involves combinatorial
optimization problems.

Evolutionary computation uses iterative progress, such as growth or devel-
opment in a population. This population is then selected in a guided random
search using parallel processing to achieve the desired end. Such processes are
often inspired by biological mechanisms of evolution.

Evolutionary algorithms form a subset of evolutionary computation in that
they generally only involve techniques implementing mechanisms inspired by bi-
ological evolution such as reproduction, mutation, recombination, natural selec-
tion and survival of the fittest. Candidate solutions to the optimization problem
play the role of individuals in a population, and the cost function determines
the environment within which the solutions ”live” (see also fitness function).
Evolution of the population then takes place after the repeated application of
the above operators.

In this process, there are two main forces that form the basis of evolution-
ary systems: Recombination and mutation create the necessary diversity and
thereby facilitate novelty, while selection acts as a force increasing quality.

Many aspects of such an evolutionary process are stochastic. Changed pieces
of information due to recombination and mutation are randomly chosen.

1.2 General description

Papareto is a object-oriented Java framework for the development of evolution-
ary solutions to computational problems.

Other Java frameworks for evoluionary computing include ECJ, Watch-
Maker, JGAP, etc. Papareto differs from these frameworks in a number of
ways.



First, unlike its competitors, Papareto does not fall into the category of ge-
netic frameworks because it does not consider genetic representations (chromo-
somes) of individuals. Individuals are actually not encoded at all since Papareto
directly deals with application-level objects. Doing this has two advantages:

e it avoids the high cost of encoding/decoding;

e it allows the specification of potentially more meaningful application-
specific operators, thereby limiting the creation of non-viable individuals.

Second, Papareto is self-adaptive in the two following ways:

e it comes with a multi-threaded parallel execution model that dynamically
adapts the number of threads in accordance to the constantly evolving
load of the computer;

e all along the evolution process, Papareto self-evaluates the performance
of the evolutionary operators in use in order to benefit at best of most
efficient ones.

Third, Papareto does not aim at implementing all known evolutionary strate-
gies or execution techniques for them, instead it keeps it as simple as possible,
focusing on accessibility for the Researchers and Engineers who are using it, as
well as on performance, brought by hereinbefore mentionned mechanisms.

Fourth, the object-oriented API of Papareto does not expose the technical
concept of evolutionary algorithm. Instead its defines the natural concept of a
population which evolves along generations of individuals.

The primary objective for developing an (ad hoc) evoluationary framework
was to give the Grph library the ability to generate particular graph instances.
Once done, the code was extracted from the source code of Grph and was made
available as a separate project called Papareto.

2 Algorithm

The evolutionary algorithm behind Papareto works as follows.

A population is a set of n individuals. n is called the size of the population.
To each individual ¢ is associated its fitness f(i) €] + oo + ool.

The population evolves in an iterative fashion. Every iteration aims at build-
ing up a new generation of individuals which have greater fitness.

An iteration of the algorithm consists in:

expanding the population of o new individuals. o is the size of teh offspring
of the population. More precisely, until the size of the population reaches
s + o, the algorithm:

1. use binary tournament to choose two individuals 7; and i among the
individuals in the population; it is possible that i1 = is;

2. use a crossover operator to create a new individual ¢ out of i1 and is;



3. with a given probability, use a mutation operator to alter (mutate)
the new individual;

4. adds the new individual to the population.

retains in the population only the s individuals with greatest fitness
and discarding all the others.

Unless the user wants a specific evolution strategy, the algorithm iterates
until two-subsequent generations exhibit no improvement of the fitness.

2.1 Parameters

The behavior of the evolutionary algorithm can be altered by the following
parameters. It is important to note that an adequate value for a given operator
is application-dependent. There are unfortunately not rules which apply to all
problems.

2.1.1 Size of the population

By default, the size of the population is set to s = 100, and its offspring size
is set to o = 100. These parameters can be modified even along the runtime of
the algorithm.

The bigger, the more the population can have variety.

2.1.2 Offspring size
Defines how big the population will be after a new generation is created, and
before best individuals are selected.

2.1.3 Allow duplicates

For example, consider a population of strings. The crossover appends the prefix
of one parent to the suffix of the other parent. The resulting child is then
mutated by the removal of one random character.

crossover mutation
(ab, th) ah

(tf da) crossover ta mutation
)

This example illustrates the situation in which distincts parents may entail
the generation of the same child.

2.1.4 Asynchronous updates of the population

When using asynchronous updates of the population, as soon as a new child is
created, it is added to the population. This allows this new individual to act as
a parent for another new individual in the same generation.



0O Utk WK

Doing this makes the algorithm converge faster, but not necessarily to the
global optimum.

By default, if the asynchronous updates are enabled, all new individuals are
added to the population as soon as they are instantiated. It is possible to select
for each given individual if it participates or not to asynchronous updates. This
is done by overriding the method:

@Override
protected boolean participateToAsynchronousUpdating(Individual<E> i)

{

double bestFitness = get (0). fitness;

double worstFitness = get(size() — 1).fitness;

double avgFitness = (bestFitness + worstFitness) / 2;
return i.fitness < avgFitness;

The individual that are not selected to participating to asynchronous updates
will be added to the population after all new individuals are created.

3 Self-adaptive parallelisation

The expansion of the population is a very costly process since it consists in:
e the creation of new individuals, which are potentially large objects;
e the computation of the fitness for all new individuals.

All processes of “creating then evaluating” a new individual are independant
to each other. Consequently they can be executed in parallel with no need for
synchronization whatsoever.

Before Papareto makes a new generation, it senses the current load of the
computer and computes the number ¢ of free cores. It then creates 4 x ¢ threads
that will compute in parallel the new generation.

The advantage is this adaptive strategy is to take maximum advantage of the
computer’s evolving computational resources and, at the same time, to prevent
the system to overload.

4 Multi-objective optimization

4.1 Defining objectives

Objectives are created by declaring methods named computeFitnesszzz ().

4.2 Comparing individuals

Two individuals are considered equal if



—_

5 Monitoring

Papareto comes with a basic graphical interface to the evolution of a given pop-
ulation. This interface enables the user to real-time monitor the improvement of
the fitness, the effectiveness of the crossover and mutation operators, the perfor-
mance of the algorithm, etc. The following line of code activates the monitoring
graphical interface:

Population p = ...

p.monitor ();

For the moment, this interface does not enable any interaction with the running
evolutionary algorithm, instead it only propose observation features.



