
Search strategies for floating point constraint

systems

?

Heytem Zitoun1, Claude Michel1, Michel Rueher1, and Laurent Michel2

1 Université Côte d’Azur, CNRS, I3S, France
firstname.lastname@i3s.unice.fr

2 University of Connecticut, Storrs, CT 06269-2155
ldm@engr.uconn.edu

Abstract. The ability to verify critical software is a key issue in em-
bedded and cyber physical systems typical of automotive, aeronautics or
aerospace industries. Bounded model checking and constraint program-
ming approaches search for counter-examples that exemplify a property
violation. The search of such counter-examples is a long, tedious and
costly task especially for programs performing floating point computa-
tions. Indeed, available search strategies are dedicated to finite domains
and, to a lesser extent, to continuous domains. In this paper, we intro-
duce new strategies dedicated to floating point constraints. They take
advantage of the properties of floating point domains (e.g., domain den-
sity) and of floating point constraints (e.g., floating point arithmetic)
to improve the search for floating point constraint problems. First ex-
periments on a set of realistic benchmarks show that such dedicated
strategies outperform standard search and splitting strategies.

1 Introduction

A key issue while verifying programs with floating point computations is the
search of floating point arithmetic errors that produce results quite di↵erent
from the expected result over the reals. Consider foo, a program doing floating
point computations:

void f oo (){
f loat a = 1 e8 f ;
f loat b = 1 .0 f ;
f loat c = �1e8 f ;
f loat r = a + b + c ;
i f (r >= 1.0 f)

doThenPart () ;
else doElsePart () ;

}

? This work was partially supported by ANR COVERIF (ANR-15-CE25-0002).

Over the reals, r is equal to 1.0 and the doThenPart function is called. How-
ever, over the floats with a“round to the nearest” rounding mode, an absorption
phenomenon occurs: a + b is equal to a and, thus, r is assigned to 0. As a re-
sult, the doThenElse function is called instead of the doElsePart function. This
simple example illustrates how the flow of a very simple program over the floats
(F) can di↵ers from the expected flow over the reals (R). Such a flow discrep-
ancy might have critical consequences if, for instance, the condition is related to
decide whether to brake or not in an ABS system.

Constraint programming has been used to verify such properties [16, 5] in a
bounded model checking framework [6, 7]. However, the search of such counter-
examples is a long, tedious and costly task especially for programs performing
floating point computations. The use of standard search technique to solve con-
straints over F lacks e�ciency. Numerous search strategies over finite domains
have been proposed [4, 8, 14, 15, 17] and, to a lesser extent, over continuous do-
mains [12, 11]. But, such strategies do not adapt well to floating point numbers.
A subset of integers bounded by two integers is a finite and uniformly distributed
set which can be enumerated. A subset of reals bounded by two floating point
numbers is an infinite set of reals that cannot be enumerated and thus, search
strategies over continuous domains rely on interval arithmetic, bisection and
mathematical properties to prove the existence of solutions in some small inter-
val [1]. A contrario, the set of floating point numbers is a finite set with a huge
cardinality and a non-uniform distribution (half of the floating point numbers
belongs to the interval [�1, 1]). The aforementioned technique like enumeration
are not well suited to floating point number density and distribution. Though
floating point number approximate real numbers, they do not benefit from the
same properties such as continuity. It is thus di�cult to reuse search strategies
designed for the reals with floating point variables.

The purpose of this paper is to introduce new search strategies dedicated
to floating point numbers to ease and, perhaps more importantly, speed-up the
solving of verification problems. Preliminary experiments performed on a limited
but realistic set of benchmarks show that such dedicated strategies outperform
standard search and splitting strategies.

2 Notations and definitions

2.1 Floating point numbers

Floating point numbers were introduced to approximate real numbers. The
IEEE754-2008 standard for floating point numbers [10] sets floating point for-
mats, as well as, some floating point arithmetic properties. The two most com-
mon formats defined in the IEEE754 standard are simple and double floating
point number precision which, respectively, use 32 bits and 64 bits. A floating
point number is a triple (s,m, e) where s 2 {0, 1} represents the sign, the p bits
m, the significant or mantissa and, e the exponent [9]. A normalized floating
point number is defined by:

(�1)s1.m⇥ 2e

To allow gradual underflow, IEEE754 introduces de-normalized numbers whose
value is given by:

(�1)s0.m⇥ 20

Note that simple precision are represented with 32 bits and a 23 bits mantissa
(p = 23) while doubles use 64 bits and a 52 bits mantissa (p = 52).

2.2 Absorption

Absorption occurs when adding two floating point numbers with di↵erent order
of magnitude. The result of such an addition is the furthest from zero. For
instance, in C, using simple floating point numbers with a rounding mode set to
“round to nearest”, 108 + 1.0 evaluates to 108. Thus, 1.0 is absorbed by 108.

2.3 Cancellation

Cancellation occurs when most of the most significant bits are lost. For instance,
it appears when subtracting the close results of two operations. Consequences
of cancellation increase with the accumulation of rounding errors. Such a phe-
nomenon is highlighted by subtracting two close operands [18].

For instance, evaluating3 ((1.0f - 1.0e-7f) - 1.0f) * 1.0e+7f in C us-
ing simple floating point numbers and a rounding mode sets to ”round to nearest”
yields 1.1920928955078125 instead of �1.0. Indeed, over F subtracting 1.0 to the
result of 1.0�10�7 leads to loose the most significant bits. The subtraction result
is then used in a product that amplifies this loss in the mantissa.

2.4 Notations

In the sequel, x, y and z denote variables and x, y and z, their respective
domains. When required, xF, yF and zF denote variables over F and xF, yF and
zF, their respective domains while xR, yR and zR denote variables over R and xR,
yR and zR, their respective domains. Note that xF = [xF, xF] = {xF 2 F, xF  xF 
xF} with xF 2 F and xF 2 F. Likewise, xR = [xR, xR] = {xR 2 R, xR  xR  xR}
with xR 2 F and xR 2 F. Let xF 2 F, then x

+
F is the smallest floating point

number strictly superior to xF and x

�
F is the biggest floating point number

strictly inferior to xF. In addition, given a constraint c, vars(c) denotes the set
of floating point variables appearing in c.

3 Properties of floating point domains, variables and

constraints

This section defines properties on floating point domains and constraints that
are useful to build dedicated search strategies. Domain properties like cardinality

3 One must take care to annotate all literals with ‘f’ to force floating point constants
and to decompose the expression into elementary arithmetic operations to prevent
the compiler from evaluating at compile time.

2ex 2ex

x = m12
e
x

x = m22
e
x

-�
-�

-�
-� -�

Fig. 1: Computing cardinality of floating point intervals

or density capture the structure of the domains of the floating point variables.
Constraint properties take into account floating point arithmetic properties like
absorption or cancellation. They also capture structural properties by, for in-
stance, taking advantage of the derivative.

3.1 Properties of floating point domains and variables

Definition 1 (Width). Let w(xF) the width of domain xF be defined as

w(xF) = xF � xF

The domain width is defined by the distance between its two bounds. It is a
rather historical criteria. On finite domains, many strategies rely on this criteria,
especially one of the most widespread, namely minDom [14]. Selecting variables
with the smallest domain aims at focusing on the most constrained variables.
However, over the floats, this criteria is questionable because of the non uniformly
distributed floating point values. Here, a smaller width does not necessarily mean
a smaller number of values.

Example 1 (Width versus size). Let xF and yF be two simple floating point vari-
ables and xF = [1, 2], yF = [10, 12] be their respective domains. While w(xF) = 1
and w(yF) = 2, xF contains 8388608 values and yF contains 2097152 values. Thus,
the most constrained variable is yF rather than xF.

Definition 2 (Cardinality). Let |xF| denotes the cardinality of domain xF.
Given xF = [xF, xF] with xF � 0 one can define |xF| with

|xF| = 2p ⇤ (e
xF � e

xF) +m

xF �m

xF + 1

where e

xF and e

xF are the exponents of, respectively, xF and xF, and m

xF and m

xF
are the mantissa of, respectively, xF and xF while p is the length of the mantissa.

This formula can be extended to other cases by exploiting symmetries. Figure 1
illustrates how the cardinality of a floating point interval is computed. The bold
double ended arrow represents the interval xF. The main idea is to compute the
number of floating point values contained in the interval [2exF

, 2exF] (computed
by 2p ⇤ (e

xF � e

xF) + 1) represented by the simple double ended arrow. Then,

it withdraws the number of floats in [2exF
, xF) (i.e., m

xF floats) and adds the
number of floats in (2exF

, xF] (i.e., mxF floats).
Notice that, over finite domains, width and cardinality return nearly the same

values (especially when there are no ‘holes’ in the finite domains). However, over
the floats, these two properties are not correlated. Width and cardinality play
di↵erent roles over the floats. Cardinality could be used to identify either the
domain with the smallest number of floats, i.e., the variable that constraint the
most the problem, or the domain with the biggest number of floats, i.e., the
variable with a high potential of solutions.

Definition 3 (Density). Let ⇢(xF) the density of xF be defined as

⇢(xF) =
|xF|
w(xF)

Intuitively, density captures the proximity of floating point values within a given
domain. It helps identifying domains that have a small number of values on
a big domain or a big number of values on a small domain (with respect to
the width). The former allows to reach easily values that should correspond to
various behaviors while the latter potentially contains many values corresponding
to the same behavior. Remember that, over the floats, density increases near zero.

Definition 4 (Magnitude). Let mag(xF) be the magnitude of xF and defined
as

mag(xF) =
e

xF + e

xF

2 · e
max

where e

max

is the biggest exponent in F.

In practice, the magnitude of [0, 1] should be near zero while magnitude of
[1036, 1037] should be near 1. In essence, the property helps identifying domains
that mainly hold big values or small values. More precisely, magnitude has a
dual purpose. First, the property helps selecting variables involved in an absorp-
tion, for instance when a big magnitude domain and a small magnitude domain
are both involved in an addition. This is easier to implement but less precise
than the dedicated property defined in the upcoming definition 8. Second, this
property might help selecting domains with extreme values. Extreme values are
those that are often associated to undesirable behaviors.

Definition 5 (Degree). Let degree(xF) denote the degree of a variable xF and
be defined as the number of constraints in which xF appears. It is defined as

degree(xF) =
X

c2C

(xF 2 vars(c))

where C is the set of constraints.

Naturally, the degree definition mirrors its counterpart in finite-domain solvers.
It is a static property. The higher the degree of xF, the more xF plays an im-
portant role in the solving process. Many strategies over finite domains take
advantage of this property like the weighted degree strategy [4].

Definition 6 (Occurrences). Let occur(xF) denote the maximum number of
occurrences of xF among all constraints in a set C be defined as

occur(xF) = max
c2C

count(xF, c)

where count(xF, c) is the number of xF occurrences in constraint c.

Multiple occurrences is a recurring problem in handling floating point variables.
While solutions have been proposed to handle this problem [13, 2], identifying
variables with multiple occurrences, might help by, for instance, choosing a more
adapted filtering process and fixing these variables as soon as possible.

3.2 Properties of floating point constraints

This section introduces properties that take advantage of floating point arith-
metic operators used within constraints. The properties will be helpful to define
constraint-driven branching strategies.

To appreciate the first property, consider a floating point addition constraint
zF = xF�yF in which the rounding more is set to “round to nearest even”. If the
domain xF has a significantly larger magnitude than yF, some values in yF may
simply be absorbed when carrying out the addition. Measuring which fraction
of yF is obliterated in this way is the purpose of the absorption property.

Definition 7 (Absorption). Let absorb(yF,xF) denote the absorption of yF by
xF and be defined as:

absorb(yF,xF) =
|[�2emax

�p�1
, 2emax

�p�1] \ yF|
|yF|

Namely, it is the number of yF values that are absorbed by at least a value of xF.
In the above, e

max

is the exponent of max{abs(xF), abs(xF)}.

Note how uF = [�2emax

�p�1
, 2emax

�p�1] \ yF captures the part of yF that is
absorbed by the biggest value in magnitude in xF. Thus, if none of the values
of yF are absorbed by xF, uF will be empty and absorb(yF,xF) will be equal to
0. On the contrary, when all values of yF are absorbed by xF, uF will be equal
to y and absorb(yF,xF) will be equal to 1. Selecting variables that are involved
in an absorption could help improving the quality of the software and providing
counter-examples that instantiate an absorption (see fig. 2).

The next property only applies to subtraction constraints.

Definition 8 (Cancellation). Given a floating point subtraction constraint
zF = xF yF where is the floating point subtraction with the rounding more set
to “round to nearest even”, let cancellation denote the number of bits canceled
by the subtraction and be defined as

cancellation = max{e
xF , exF , eyF

, e

yF}�min{e
zF , zF 2 zF}

uF uFyF 0 yF

xF
�

xF xF
+

xF

xF � 2emax

�p�1
xF + 2emax

�p�1

Fig. 2: illustration of absorption phenomena

The cancellation definition was extracted from [3]. It increases with the num-
ber of canceled bits and whenever it becomes strictly positive, some bits are
potentially lost.

Definition 9 (Derivative). Given a constraint c : e1⌃e2 in which ⌃ 2 {=,
,�, <,>}, c can be rewritten as f : e1�e2⌃0. If f is a monovariate function, its
derivate can be evaluated using interval arithmetic and gives rise to the definition
of c’s derivative as

derive(c) = f 0(x) ⇡ f(x+ h)� f(x)

h

The approach generalizes to the case where f is a multivariate function. Its jaco-
bian J gives the variation of each of the variables of f according to other variables
of f . Using this matrix, either component-wise or by computing an aggregation
of the variation of each variable according to the others, the involvement of a
variable of f in the variation of f can be estimated.

Over the floats, a big variation of f might introduce some holes in the repre-
sentation of the function while a small variation is often represented by the same
floating point value. It thus provides useful information to drive the search.

4 Search strategies for the floats

As usual, search strategies over floats are based on a combination of variable
selection heuristics and splitting techniques. The next subsection introduces dif-
ferent variable selection heuristics based on the above-mentioned properties. The
subsection wraps up with four splitting techniques used in the experiments.

4.1 The choice of a variable

Single property strategies:
Single property based strategies select the variable that either maximizes or
minimizes the chosen properties. For instance, one can choose the variable that
maximizes the domain density or the one that minimizes this density. That’s to
say, maxDens = max

xF2X

⇢(xF) (ditto for minDens).
Other constraint properties deserve a more specialized approach. For in-

stance, absorb or cancellation can be maximized or minimized while the min-
imization or maximization of derive should be done according to its absolute

min mid mid

+
max

(a) Bisection
min mid

�

mid

mid

+
max

(b) Split 3 way

min

min

+
mid

�

mid

mid

+
max

�

max

(c) Split 5 way

min

min

+
mid

�

mid mid

+

mid

++
max

�

max

(d) Split 6 way

Fig. 3: Di↵erent splitting strategies

value. The absorb property is based on constraints of the form z = x + y. So, to
implement this property, we pick up the subset of constraints from C that are
additions (form z = x + y) and for which absorb(y, x) > 0.

Finally, degree and occur are static properties whose value stays the same
along the search tree.

Multi property strategies:
In the following, we define two strategies that are based on two properties :
absWDens and densWAbs.

absWDens selects the variable that maximizes density from a subset of vari-
ables that are involved in an absorption (absorb > 0).

densWAbs selects the variable that maximizes absorption among the subset
of variables that satisfies density � maxDens+minDens

2 .

4.2 Domain splitting strategies

Problems over the floating point numbers are characterized by huge domains and
non uniformly distributed values. As a result, an enumeration strategy like the
one often used in finite domains would fail to quickly find a solution, spending
most of the time to exhaustively enumerate all possible combinations of values.
It would also fail by missing the opportunity to reduce the size of the domains
which is o↵ered when a classical domain splitting strategy like a simple bisection
is followed by a filtering process. However, in the presence of a lot of solutions, a
simple bisection (Figure 3a) quickly reaches its limits, the filtering applied after
each bisection being unable to reduce domain sizes. On the other hand, problems
with no solution should benefit from a simple bisection.

To overcome these di�culties, we use 3 splitting strategies that mix bisection
and enumeration ad that are derived from the strategies introduced in [5]. Instead
of just splitting the domain in two parts, some of the floating point values at the
boundaries of the split are isolated and used as enumerated values. Figures 3b to
3d illustrate the new splitting strategies that combine bisection and enumeration.

These combinations begin always with the enumeration of the selected values
before handling the two remaining sub-domains. These splitting strategies are
called partial enumeration splittings.

4.3 Semi-dynamic and dynamic strategies

Two alternatives are possible when it comes to composing variable selection and
domain splitting. The semi-dynamic strategy can first choose a variable and
then recursively split that variable until it becomes bound. This approach does
not reconsider other variables until the chosen one is grounded. Note that it
is possible to leverage any splitting strategy, including the partial enumeration.
The dynamic strategy adopts a more permissive view. At each node of the search
tree, it selects a variable, splits its domain according to some strategy and moves
on to possibly select a di↵erent variable at the next node. It does not insist on
fully instantiating the chosen variable.

5 Experiments

We combined the di↵erent variable selection heuristics and splitting techniques
on a set of 8 realistic benchmarks. A standard strategy based on a lexicographic
order variable selection and dynamic 2 way split (i.e., a classical bisection) serves
as reference value.

All the experiments were carried out on a MacBook Pro i7 2.3GHz with 8GB
of memory. All strategies have been implemented in the Objective-CP solver
enhanced with floating point constraints. All floating point computations are
done with simple precision floats and a rounding mode set to “nearest even”.

5.1 Benchmarks

The benchmarks used in these experiments come from test and verification of
floating point software.

Heron The heron function compute the area of a triangle from the lengths of
its sides a, b, and c with Heron’s formula:

p
s ⇤ (s� a) ⇤ (s� b) ⇤ (s� c) where

s = (a+ b+ c)/2. The next C program implements this formula, where a is the
longest side of the triangle.

// Precondi t ion : a > 0 and b > 0 and c > 0 and a > b and b > c
f loat heron (f loat a , f loat b , f loat c) {

f loat s , squared area ;

squared area = 0 .0 f ;
i f ((a + b >= c) && (b + c >= a) && (a + c >= b)) {

s = (a + b + c) / 2 .0 f ;
squared area = s ⇤(s�a)⇤ (s�b)⇤ (s�c) ;

}

return s q r t (squared area) ;
}

The first benchmark verifies that if a 2 (5.0, 10.0], b 2 (0.0, 5.0] and c 2 (0.0, 5.0],
then squared area < 105. The second verifies that with the same input domains,
squared area > 156.25 + 10�5) [5].

Optimized Heron Optimized heron is a variation of heron which uses a more
reliable floating point expression to compute squared area.

// Precondi t ion : a > 0 and b > 0 and c > 0 and a > b and b > c
f loat opt imized heron (f loat a , f loat b , f loat c) {

f loat s , squared area ;

squared area = 0 .0 f ;

i f ((a + b >= c) && (b + c >= a) && (a + c >= b)) {
squared area = (((a+(b+c))⇤ (c�(a�b))⇤

(c+(a�b))⇤ (a+(b�c))) / 1 6 . 0 f) ;
}

return s q r t (squared area) ;
}

Here, one test verifies that if a 2 (5.0, 10.0], b 2 (0.0, 5.0] and c 2 (0.0, 5.0], then
squared area < 105 while the second verifies that with the same input domains,
squared area > 156.25+10�5). Note that the latter benchmark has no solution.

Cubic The solve cubic benchmark was extracted from the Gnu Scientific Library.
It seeks a set of input values that reach the first condition of the program.

int s o l v e c ub i c (double a , double b , double c ,
double ⇤x0 , double ⇤x1 , double ⇤x2) {

double q = (a ⇤ a � 3 ⇤ b) ;
double r = (2 ⇤ a ⇤ a ⇤ a � 9 ⇤ a ⇤ b + 27 ⇤ c) ;
double Q = q / 9 ;
double R = r / 54 ;
double Q3 = Q ⇤ Q ⇤ Q;
double R2 = R ⇤ R;
double CR2 = 729 ⇤ r ⇤ r ;
double CQ3 = 2916 ⇤ q ⇤ q ⇤ q ;
i f (R == 0 && Q == 0) {

. . .

Square 2 The next benchmark checks that the square product of a float cannot
be equal to 2.

// i n v s q u a r e i n t t r u e�unreach�c a l l . c
int f (int x) {

f loat y , z ;
// assume (x >= �10 && x <= 10) ;
y = x⇤x � 2 . f ;
// a s s e r t (y != 0 . f) ;
z = 1 . f / y ;
return 0 ;

}

As a matter of fact, there is no simple floating point value whose square equal
to 2 with the standard rounding mode. Thus, this bench has no solution.

Square 4 A variation checks that the square of a float cannot be equal to 4.

// f l o a t i n t i n v s q u a r e f a l s e �unreach�c a l l . c
int g (int x) {

f loat y , z ;
// assume (x >= �10 && x <= 10) ;
y = x⇤x � 4 . f ;
// a s s e r t (y != 0 . f) ;
z = 1 . f / y ;
return 0 ;

}

A solution for this problem is well known and this benchmark has solutions.

Slope The slope function computes an approximation of the derivative of the
square function.

f loat s l ope (f loat x0 , f loat h) {
f loat x1 = x0 + h ; f loat x2 = x0 � h ;
f loat fx1 = x1⇤x1 ; f loat fx2 = x2⇤x2 ;
f loat r e s = (fx1 � fx2) / (2 . 0⇤h) ;
return r e s ;

}

The benchmark checks that for x0 = 13, the result is always inferior or equal to
25 for all value of h 2 [10�9

, 10�6].

5.2 Results

In the tables, the variable choice column contains two columns, the strategy
column (short name “strat.”) and the dynamic column (short name “dyn.”).
The strategy column specifies the kind of strategy used to choose the variable
whose domain will be split. It is a minimization or a maximization of the defined
properties (noted “min” or “max” followed by the first letters of the property
name) or one of the combinations of density and absorption that we have defined.
Note that we have not implemented the derivate property yet. The dynamic
column takes the value “full” when a di↵erent variable is chosen at each node of

variable choice split.
P

t
strat. dyn. (ms)

maxAbs semi 6 4883
maxAbs full 6 4930
maxDens semi 6 5059
densWAbs full 6 7517
maxCard semi 6 180191
densWAbs semi 6 180194
maxDegree full 6 180307
maxDegree semi 6 180310
maxAbs full 5 184613
maxDens semi 5 184796

...
ref 550988

...
minDegree semi 3 906285
minOcc semi 3 906285

maxWidth semi 3 906607
minCard semi 3 911526
maxMagn semi 3 1077852
absWDens full 3 1080002
maxWidth semi 2 1080004
minDens semi 3 1080005
absWDens full 5 1080147
absWDens full 5 1440000

(a) all

variable choice split.
P

t
strat. dyn. (ms)

maxAbs semi 6 187
maxCard semi 6 189
densWAbs semi 6 191
densWAbs full 6 196
maxAbs full 6 202
maxDens semi 6 217
maxDegree full 6 305
maxDegree semi 6 307
maxWidth full 6 31244
minDens full 6 38332

...
ref 540011

...
minDens semi 3 720005
minDegree semi 2 720005
minDegree full 2 720005
minAbs full 3 720005
maxDens full 3 720006
minOcc semi 2 720006
minAbs full 2 720006

absWDens full 5 720147
maxWidth semi 2 900002
absWDens full 5 1080000

(b) with solutions

variable choice split.
P

t
strat. dyn. (ms)

maxAbs semi 2 2376
maxAbs full 2 2379
maxAbs full 3 2410
maxDens semi 2 2439
maxCard full 3 4405
maxAbs semi 5 4451
maxAbs full 5 4467
maxCard full 2 4594
maxDens semi 5 4626
maxAbs semi 6 4696

...
ref 10977

...
maxMagn semi 3 360000
minMagn semi 3 360000
maxDegree semi 3 360000
minDegree semi 3 360000
minOcc semi 3 360000

absWDens semi 2 360000
absWDens semi 3 360000
absWDens semi 5 360000
absWDens semi 6 360000
densWAbs semi 3 360000

(c) without solution

Table 1: Total time to solve benchmarks according to variable choice and splitting

the search tree or “semi” when the variable choice is postponed until the curent
variable is fully instantiated.

Column “split” gives the number of generated values and subdomains. Thus,
2 stands for figure 3a, that is to say, a classical bisection, 3 stands for figure
3b, 5 for figure 3c and 6 for figure 3d. Column

P
t gives the total amount of

milliseconds required to solve all the benchmarks, or all the benchmarks with
or without solutions, according to the selected strategies. When available, the
”#OUT” column gives the number of timeout and memory out. Note that the
timeout is 180s and that each memory out is accounted as a time out.

Table 1 gathers three subtables that give the total amount of time required
to solve all the benchmarks (table 1a), all the benchmarks with solutions (table
1b) and all the benchmarks without solution (table 1c) according to a given com-
bination of variable choice and splitting strategy. Note that these tables reports
only the ten best cases and the ten worst cases among the 144 combinations of
variable choice and splitting strategies tested, as well as the time required to
solve the related set of benchmarks using the reference strategy.

Tables 2, 3 and 4 give the total amount of time to solve all benchmarks,
all benchmarks with solutions, and all benchmarks without solution according
to one of the criteria introduced in our search strategies, i.e., respectively, the
variable choice strategy, the nature of the variable choice (semi- or fully-dynamic)
and the number of fragments created by splits. Thus, each line of Table 2 sum
64 cases, each line of Table 3, 576 cases and each line of Table 4 288 cases.

variable choice all with solution without solution
strat.

P
t (ms) #OUT

P
t (ms) #OUT

P
t (ms) #OUT

maxWidth 4330019 21 2962680 14 1367339 7
minWidth 3762938 19 3470297 18 292641 1
maxCard 3231581 16 1962573 9 1269008 7
minCard 4315427 25 4023103 24 292324 1
maxDens 2573614 13 2323093 12 250521 1
minDens 4936905 27 3316894 18 1620011 9
maxMagn 4881081 24 3261049 15 1620011 9
minMagn 3722681 19 2761916 14 960765 5
maxDegree 3413676 17 1793656 8 1620020 9
minDegree 5259904 27 3639886 18 1620018 9
maxOcc 3360986 17 3071415 16 289571 1
minOcc 5259433 27 3639415 18 1620018 9
maxAbs 2728996 15 2521099 14 207897 1
minAbs 3784212 20 3492984 19 291228 1
maxCan 3360698 17 3071986 16 288712 1
minCan 3356934 17 3068356 16 288578 1

absWDens 5065493 27 3391300 18 1674193 9
densWAbs 2344948 11 1418791 6 926157 5

Table 2: Total time to solve benchmarks according to variable choice strategy

variable choice all with solution without solution
dyn.

P
t (ms) #OUT

P
t (ms) #OUT

P
t (ms) #OUT

semi 37278081 192 27144829 138 10133252 54
full 33851636 173 27485876 141 6365760 32

Table 3: Total time to solve benchmarks according to semi or full dynamic search

5.3 Analysis

As shown in Table 1a, the best strategy outperforms the standard strategy by a
factor of more than 110. These performances are even better for problems with
solution (see Table 1b) where the gain factor is of more than 2800. On the other
hand, the improvement for benchmarks without solution is only 4 times. Thus,
the best tested strategies can significantly improve the search of a first solution
whenever such a solution exist.

Combining wisely two properties can also be helpful to select useful solutions:
the densWabs combination improves the density property while selecting solution
that provide an absorption phenomena.

Thanks to Table 2, we can compare the di↵erent variable choice strategies.
Here, the tested combination of strategies have the overall best behavior, espe-
cially, on benchmarks with solutions.

split. all with solution without solutionP
t(ms) #OUT

P
t(ms) #OUT

P
t (ms) #OUT

2 23444527 124 20325639 108 3118888 16
3 23539280 123 17177874 89 6361406 34
5 13654772 72 10155196 54 3499576 18
6 10491138 46 6971996 28 3519142 18

Table 4: Total time to solve benchmarks according to splitting strategy

Table 3 shows that the fully dynamic strategy brings the best results on
average, though the semi dynamic strategy is slightly better on benchmarks
with solutions. However, these results are somewhat unbalanced by two of the
variable strategies, namely the occurence and degree strategies. Such properties
are static properties whose values stay the same along the search tree. As a
consequence, once a variable is chosen according to this property, it will be
chosen in the next node of the search tree until it cannot be chosen anymore,
i.e., when fully instantiated. Thus, these two properties, whether maximized
or minimized, behave alike the semi-dynamic strategy and penalize the fully
dynamic results.

Table 4 confirms that the 2 splits or bisection is a better choice for problem
without solution while the 6 splits have better performances on problems with
solutions.

On the whole the most successful strategies are based on the absorption prop-
erty, a purely floating point property. The goal when maximizing the absorption
is to generate floating point errors, that’s to say values for which the control flow
over the floats di↵ers from the expected flow over the reals. This is precisely the
case of the benchmarks derived from Heron’s formula.

6 Conclusion

This paper introduced a set of properties to choose a variable in a search for
solving constraints over the floating point numbers. These maximized or min-
imized properties have been used to choose a variable during the search and
combined with a semi dynamic and fully dynamic choice of variable, as well as,
4 splitting strategies. Preliminary experiments have shown that some of these
combinations outperforms the standard strategy by two order of magnitude for
all kind of benchmarks and three order of magnitude for benchmarks with so-
lutions. Further works include experimenting on a broader set of benchmarks,
exploring other properties and evaluating which combination of properties could
benefit to the search.

References

1. G. E. Alefeld, F. A. Potra, and Z. Shen. On the existence theorems of kantorovich,
moore and miranda. Topics in Numerical Analysis: With Special Emphasis on
Nonlinear Problems, pages 21–28, 2001.

2. Mohammed Said Belaid, Claude Michel, and Michel Rueher. Boosting local con-
sistency algorithms over floating-point numbers. In Principles and Practice of
Constraint Programming - 18th International Conference, CP 2012, Québec City,
QC, Canada, October 8-12, 2012. Proceedings, pages 127–140, 2012.

3. Florian Benz, Andreas Hildebrandt, and Sebastian Hack. A dynamic program
analysis to find floating-point accuracy problems. In ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI ’12, Beijing, China
- June 11 - 16, 2012, pages 453–462, 2012.

4. Frédéric Boussemart, Fred Hemery, Christophe Lecoutre, and Lakhdar Sais. Boost-
ing systematic search by weighting constraints. ECAI’04, pages 146–150, 2004.

5. Hélène Collavizza, Claude Michel, and Michel Rueher. Searching critical values
for floating-point programs. In Testing Software and Systems - 28th IFIP WG
6.1 International Conference, ICTSS 2016, Graz, Austria, October 17-19, 2016,
Proceedings, pages 209–217, 2016.

6. Hélène Collavizza, Michel Rueher, and Pascal Van Hentenryck. CPBPV: A
constraint-programming framework for bounded program verification. Constraints,
15(2):238–264, 2010.

7. Hélène Collavizza, Nguyen Le Vinh, Michel Rueher, Samuel Devulder, and Thierry
Gueguen. A dynamic constraint-based BMC strategy for generating counterexam-
ples. 26th ACM Symposium On Applied Computing, 2011.

8. Steven Gay, Renaud Hartert, Christophe Lecoutre, and Pierre Schaus. Conflict
ordering search for scheduling problems. In Principles and Practice of Constraint
Programming - 21st International Conference, CP 2015, Cork, Ireland, August 31
- September 4, 2015, Proceedings, pages 140–148, 2015.

9. David Goldberg. What every computer scientist should know about floating-point
arithmetic. ACM Comput. Surv., 23(1):5–48, 1991.

10. IEEE. IEEE standard for binary floating-point arithmetic. ANSI/IEEE Standard,
754, 2008.

11. Narendra Jussien and Olivier Lhomme. Dynamic domain splitting for numeric
csps. ECAI, pages 224–228, 1998.

12. R. Baker Kearfott. Some tests of generalized bisection. ACM Trans. Math. Softw.,
13(3):197–220, September 1987.

13. Olivier Lhomme. Consistency techniques for numeric csps. In Proceedings of the
13th International Joint Conference on Artifical Intelligence - Volume 1, IJCAI’93,
pages 232–238, San Francisco, CA, USA, 1993. Morgan Kaufmann Publishers Inc.

14. Je↵ T. Linderoth and Martin W. P. Savelsbergh. A computational study of search
strategies for mixed integer programming. INFORMS Journal on Computing,
11(2):173–187, 1999.

15. Laurent Michel and Pascal Van Hentenryck. Activity-based search for black-box
constraint programming solvers. In Nicolas Beldiceanu, Narendra Jussien, and Éric
Pinson, editors, Integration of AI and OR Techniques in Contraint Programming
for Combinatorial Optimzation Problems: 9th International Conference, CPAIOR
2012, Nantes, France, May 28 – June1, 2012. Proceedings, pages 228–243, Berlin,
Heidelberg, 2012. Springer Berlin Heidelberg.

16. Olivier Ponsini, Claude Michel, and Michel Rueher. Verifying floating-point pro-
grams with constraint programming and abstract interpretation techniques. Au-
tomated Software Engineering, 23(2):191–217, 2016.

17. Philippe Refalo. Impact-based search strategies for constraint programming. CP
2004, 3258:557–571, 2004.

18. P.H. Sterbenz. Floating-point computation. Prentice-Hall series in automatic com-
putation. Prentice-Hall, 1973.

