Search strategies for floating point constraint systems

CP 2017

 $\label{eq:Heytem Zitoun} \textbf{Heytem Zitoun}^1 \quad \text{Claude Michel}^1 \quad \text{Michel Rueher}^1 \quad \text{Laurent Michel}^2$

¹ Université Côte d'Azur

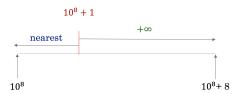
² University of Connecticut

- 1 Basics of Floating point numbers
- Ontext and motivations
- Obdicated floating point search strategies
- 4 Search strategies implementation
- **5** Experiments and futherwork

Basics of Floating point numbers

Consider the number -11.5

In base 2 we can represent this number in the following way :


IEEE754 norm :

- Simple precision : 32 bits (1 bits for the sign + 23 for mantissa + 8 for exponent)
- Double precision : 64 bits (1 + 52 + 11)

Absorption

Absorption occurs when adding two floating point numbers with different orders of magnitude. The result is the biggest number for positive numbers (resp. smallest for negative numbers) Example :

$$10^8 + 1 = 10^8$$

CP 2017

Cancellation : loss of the most significant bits

Occur when subtracting two close numbers with FP error :

 $0.99999988079071044922 \neq 0.99999999$ $((1.0 - 10^{-7}) - 1.0) = -0.000001013278 \neq -10^{-7}$

Using this result to compute other value lead to bigger errors :

 $((1.0 - 10^{-7}) - 1.0) * 10^7 = -1.1920928955078125 \neq -1$

Rump polynomial

$$R(x,y) = \frac{1335}{4}y^6 + (11x^2y^2 - y^6 - 121y^4 - 2)x^2 + \frac{11}{2}y^8 + \frac{x}{2y}$$

Over \mathbb{F} with x = 77617 and y = 33096

Context and motivation

Overview

New Approach :

\rightarrow Dedicated search strategies for floating point numbers

Why :

- Verification of FP program
- Existing search are not well adapted

Why do we need floating point constraints ?

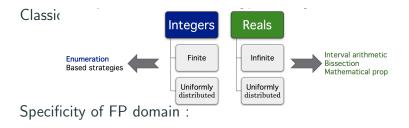
- \rightarrow Verification programs with FP computations (Bounded Model Checking, SMT, ...)
 - **Programs** are **run** over the floats, but are **written** with reals in mind

Constraints over the reals \neq Constraints over the floats

- 16.0 + x = 16.0 with x > 0 solutions exist over the floats but no solution exists over reals
- $x^2 = 2$

no solution exists over the floats ($\sqrt{2}$ is a solution over reals)

Evaluation over \mathbb{R} eals and \mathbb{F} loats can be different With a = 10⁸, b = 1.0, c = -10⁸ $a, b, c, r \in \mathbb{R} \rightarrow \text{GoHere}$ $a, b, c, r \in \mathbb{F} \rightarrow \text{GoHere}$ Goal : Searching a path where the execution over FP differ from the expected behavior over the reals


 \rightarrow efficient search strategies over floats

Problem :

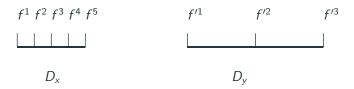
Searching strategies in existing FP solvers are **derived** from the searching strategies over **the reals** and those strategies don't scale !

Dedicated floating point search strategies

Why classical strategies are not well adapted ?

- Finite but we work with very large domains [-1,1] more than 10¹⁸ FP numbers
- Non-uniformly distributed more than half FP numbers between [-1,1]

ightarrow Classical strategies don't work for floats

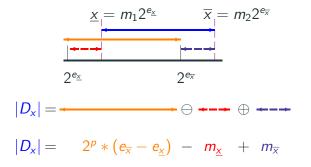

FP search strategies : intuitions

Take advantage of :

- the structure of variable domain
- floating point arithmetic issues (absorptions, cancellation)
- structure of the problem (constraints)

 \rightarrow Definition/Computation **properties** for domain of variables (width, cardinality, ...) and constraints (degree, occurences, ...)

let x and y be two FP variables with the following domains



Which criteria should we use to select the variable to split ?

- Width : D_y is bigger than D_x
- Cardinality : $|D_x| > |D_y|$
- **Density** : D_x is more dense than D_y
- Magnitude : magn(y) > magn(x)

Computing cardinality

Goal : compute the number of floats between $[\underline{x}, \overline{x}]$

Consider the following system :

$$(x - y) * y = z$$
$$y * y = w/x$$

Which variable should we select to split?

- The variable with the highest degree ?
- The variable with the largest number of occurences ?
- A variable that can lead to an **absorption** ?
- A variable that can lead to a cancellation ?

let $\mathbf{z} = \mathbf{x} + \mathbf{y}$, $\mathbf{x} \ge \mathbf{0}$ and x absorbs y

$$(\overline{x})^ \overline{x}$$
 $(\overline{x})^+$

Red part corresponds to the distance where y is absorbed by x. Distance D_{abs} : $\left[\frac{\overline{x}-\overline{x}^+}{2}, \frac{\overline{x}+\overline{x}^+}{2}\right]$

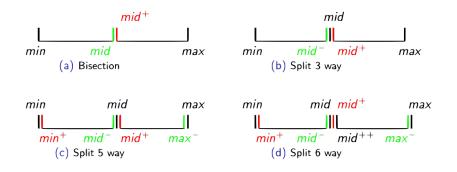
$$y \in D_{abs} \to x$$
 absorbs y

Search strategies

Two strategies :

- maximizing the property
- minimizing the property

Example cardinality :


select the variable with the largest (resp. smallest) the number of floating point numbers.

Example : combination of density and absorption

- ${\sf V}$: set of variables from the system
 - AbsWDens :
 - Step $1 \rightarrow V_2$ set of variables from V with $abs(x \in V) > 0$
 - Step 2 \rightarrow max_{dens}(x' \in V₂)
 - DensWAbs :
 - Step $1 \rightarrow V_2$ set of variables from V with $dens(x \in V) > \frac{min_{dens} + max_{dens}}{2}$

• Step 2
$$\rightarrow$$
 max_{abs} $(x' \in V_2)$

Splitting strategies

mid : middle of the interval f^+ (resp. f^-): the successor (resp. predecessor) of f

Full

Semi

Select variable x_j while variable x_j is not bound do | Split the domain of x_j end

Implementation & Experiments

We use Objective-CP optimization system

- developed by L. Michel and P. Van Hentenryck
- various different solvers (LP, MIP, CP, ...)
- very flexible search system
- We incorporate FPCS solver
 - developed by Claude Michel
 - filtering technics implemented (2B and 3B consistency over the floats)
 - handling of rounding modes, nonlinear expressions and usual mathematical functions (trigonometric, ...)

- **Combinaisons** : different variable selection strategies + different splitting strategies
- **Reference strategy** : lexicographic + bisection
- Benchmarks from program verification problems
- Time in seconds (timeout 180 seconds)

Results

variable ch	split.	$\sum t$	ſ	variable ch	oice	split.	$\sum t$	[variable ch	split.	$\sum t$			
strat.	dyn.	1	(ms)	ĺ	strat.	dyn.	1	(ms)	ĺ	strat.	dyn.	1	(ms)	
maxAbs	semi	6	4883	ĺ	$\max Abs$	semi	6	187	Ì	maxAbs	semi	2	2376	
maxAbs	full	6	4930		\max Card	semi	6	189		$\max Abs$	full	2	2379	
maxDens	semi	6	5059		densWAbs	semi	6	191		$\max Abs$	full	3	2410	
densWAbs	full	6	7517		densWAbs	full	6	196		$\max Dens$	semi	2	2439	
maxCard	semi	6	180191		$\max Abs$	full	6	202		\max Card	full	3	4405	
densWAbs	semi	6	180194		$\max Dens$	semi	6	217		$\max Abs$	semi	5	4451	
maxDegree	full	6	180307		maxDegree	full	6	305		$\max Abs$	full	5	4467	
maxDegree	semi	6	180310		maxDegree	semi	6	307		\max Card	full	2	4594	
maxAbs	full	5	184613		\max Width	full	6	31244		$\max Dens$	semi	5	4626	
maxDens	semi	5	184796		$\min Dens$	full	6	38332		$\max Abs$	semi	6	4696	
ref 55			550988	[ref			540011	[ref			10977	
				ĺ										
minDegree	semi	3	906285		$\min Dens$	semi	3	720005			semi	3	360000	
minOcc	semi	3	906285		minDegree	semi	2	720005		\min Magn	semi	3	360000	
maxWidth	semi	3	906607		$\min Degree$	full	2	720005		maxDegree	semi	3	360000	
minCard	semi	3	911526		minAbs	full	3	720005		minDegree	semi	3	360000	
\max Magn	semi	3	1077852		maxDens	full	3	720006		minOcc	semi	3	360000	
absWDens	full	3	1080002		minOcc	semi	2	720006		absWDens	semi	2	360000	
	semi	2	1080004		minAbs	full	2	720006		absWDens	semi	3	360000	
minDens	semi	3	1080005		absWDens	full	5	720147		absWDens	semi	5	360000	
absWDens	full	5	1080147		$\max Width$	semi	2	900002		absWDens	semi	6	360000	
absWDens	full	6	1440000		absWDens	full	5	1080000		densWAbs	semi	3	360000	

(a) all

(b) with solutions

(c) without solution

Experiments

Analysis

- **Single property** : absorption and density outperform other strategies
- Combinaisons : densWAbs improve maxDens results
- **Splitting** : when a solution exists our splitting strategies are better than bisection

Details :

http://www.i3s.unice.fr/~hzitoun/cp2017/benchmark.html

! Preliminary experiments.

Conclusion

Conclusion

Contribution

- Introduction of set of properties (measure)
- First dedicated approach to floating point search strategies based
- Preliminaries experiments are **encouraging**

Futhercomming work

- more experiments
- development of new searching and splitting strategies