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A B S T R A C T

Human gait represents an attractive biometric modality to re-identify a person as it requires non contact and
it is perceivable at a distance. However, the view angle variation and the presence of covariate factors cause
significant difficulties for recognizing gaits. In order to deal with such constraints, this paper presents a Part
View Transformation Model (PVTM) for gait based applications. Compared with previous methods, the PVTM is
applied on selected relevant parts chosen through a semantic classification step. Conducted on the CASIA-B gait
database, experimental results show that the proposed method outperforms well known multi-view methods
even under covariate factors (i.e. carrying bag, clothing).
1. Introduction

Over the past few years, human gait has been receiving an excep-
tional attention from pattern recognition and computer vision commu-
nities as an attractive soft-biometric cue. Several studies have been
conducted on the visual analysis of human motion and automated
person re-identification and/or recognition. Cognitive and psycholog-
ical studies have emphasized that humans are able to identify each
other by their distinct gait signature. Human gait includes both of the
body appearance and the dynamics of walking [1]. Therefore, gait is
considered to be pertinent in visual surveillance scenarios. This refers
to the fact that gait analysis does not require explicit user cooperation,
it is perceivable from a distance and it is unique for each individual.
During the last decade, a number of gait analysis techniques have
been oriented towards person re-identification [2,3] and/or recog-
nition [4]. Re-identification is the process of identifying the same
individual in different time instances either in the same camera or in
different cameras. Person re-identification and/or recognition is still a
difficult problem. Particularly, the presence of covariate factors (i.e.
carrying bags, wearing coat) and the view angle variation affect and
decrease considerably the performance of gait based applications in
real situations. In fact, as shown in Fig. 1, the covariate factors affect
considerably the appearance of the same person. These latter may cover
(wearing coat) or extend (carrying bags) human body, which has a
bad impact on gait information collection and analysis. Moreover, in
real life applications, people may walk in different directions. Basically
unlike existing methods like [5–7], in this paper a new method for gait
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based person re-identification is proposed under varying view angle
and covariate factors (i.e. carrying bag and clothing). To deal with
the view angle challenge, the proposed method is based on Part View
Transformation Model (PVTM). Meanwhile, for covariate factors, we
suggest a dynamic selection of relevant parts extracted from images.
The definition of parts is conducted using a semantic classification
step [8].

The rest of this paper is organized as follows. State of the art
about gait based re-identification methods is reviewed in Section 2. An
overview of the proposed method is exhibited in Section 3. In Section 4,
experimental results and analysis are highlighted. Finally, in Section 5
we summarized our work and set forward our conclusions.

2. State of the art

In the literature, gait based methods can be categorized into: single-
view angle based methods and multi-view angle based methods.

2.1. Single-view methods

The single-view gait based context is where both gallery and probe
gait sequences are captured at the same viewing angle. In fact, previous
research has demonstrated that the side view is the most discriminative
view angle. Han and Bhanu [9] proposed a gait sequence representation
method called the Gait Energy Image (GEI). The GEI is an image con-
structed by averaging human silhouettes over one complete gait cycle.
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Fig. 1. Walking images of the same person with different covariate factors.
Although it is simple and effective for recognizing gaits in normal walk-
ing conditions, the GEI is sensible to appearance variations, e.g., those
caused by clothing or carrying bag. To deal with this challenge, several
works have been performed. The work presented in [10] focused on the
relevance of Local binary pattern (LBP) in extracting texture features
in the whole GEI image and the region delimited by the legs. Chin Poo
Lee et al. [11] reported a combination of spatiotemporal and texture
descriptors to extract the temporal patterns in gait cycles. Authors
in this paper adopt the Transient Binary Pattern operator (TBP) after
dividing the GEI image into equal regions. The method in [12], after
dividing the GEI image into five and seven non overlapping regions,
applied the Fuzzy Local Binary Pattern (FLBP) on each region of the
image. The method in [13] rests on golden ratio. A two dimensional
Gabor Filter (2DGabor) is adopted to extract features from GEI. It uses
four different clothing models to identify unaltered area of the test GEI
that is used for recognition. This method managed to detect the part
of clothing, and discarded it. The work accomplished by [14] relies on
the Haralick features extracted from GEI. These features are extracted
locally by dividing vertically or horizontally the GEI into two or three
equal regions of interest, respectively. Alotaibi et al. [15] proposed a
feature selection method based on the GEI. They used dictionary learn-
ing with sparse coding and Linear Discriminant Analysis(LDA) to seek
the best discriminative data representation before feeding the Nearest
Centroid (NC) classifier. Authors in this paper attempt to describe an
augmentation technique to overcome some of the problems associated
with the intra-class gait variations, as well as the amount of the training
data whether it is relatively small or not. Ghebleh et al. [16] suggested
an adaptive outlier detection method to remove the effect of clothing
on silhouettes. It detects the most similar parts of probe and each
gallery sample independently and uses these parts to obtain a similarity
measure. These previously mentioned methods are applied on the side
view angle which makes them unsuitable for the majority of real time
gait based applications.

2.2. Multi-view methods

The variation caused by multiple viewing angles brings even more
challenges for robust gait based applications. Fig. 2 shows the gait
representation features (GEI) of two different subjects under different
viewing angles from 0 to 180 . Obviously, the differences between intra-
subjects under large view variation are much larger than the differences
between inter-subjects of the same view. That is why multiple viewing
angles is a problem that still challenging and remains to be solved.

As presented in [17], gait based methods addressing the multi-
view can be based on 3D information, invariant features or learning
relationships in a subspace.

2.2.1. Methods based on 3D information
Methods in the first category rely on the reconstructed 3D gait

model [18–21] [22]. Bodor et al. [18] proposed a 3D visual hull model
to construct the gait features using silhouettes from multiple cameras
2

Fig. 2. Gait Energy Image (GEIs) of two persons from CASIA gait database B walking
under different angles: 0◦, 18◦, 36◦, 54◦, 72◦, 90◦, 108◦, 126◦, 144◦, 162◦, and 180◦.

as input. Zhao et al. [19] proposed to use an array of multiple cameras
to capture a set of video sequences which are then used to reconstruct
a 3D human skeleton model. Iwashita et al. [20] proposed a spatio-
temporal 3D gait database directly in order to synthesize gait sequence
at each view angle. The person was recognized and his walking direc-
tion was estimated by comparing the gait features with those in the
database. López-Fernández et al. [21,22] presented a rotation invariant
gait descriptor based on 3D angular analysis of the subject’s movement
for multi-view gait recognition on unconstrained paths. However, the
need for multiple cameras and camera calibration limits the feasibility
of this first category in real applications.

2.2.2. Methods based on view-invariant features
The second category concerns methods that extract view-invariant

gait features [23–25]. Jean et al. [23] set forward a method to compute
view-invariant gait features which are view normalized feet and head
2D trajectories. Goffredo et al. [24] extracted model-based gait feature,
namely angular measurements and trunk spatial displacements, which
are then reconstructed using view-rectification method. Kusakunniran
et al. [25] transformed gait silhouettes from arbitrary view into the
canonical view. Procrustes mean shape was extracted as a feature
to measure gait similarity. Xu et al. [26] proposed a gait recogni-
tion method based on capsule network. They achieve view invariant
recognition using one model. The idea is to consider two different
architectures, namely matching local features at the bottom layer based
on capsule network and matching mid-level features at the middle layer
based on capsule network. When the difference between two views
is large, these methods can still perform efficiently. However, these
methods in this category are not applicable for front view because the
gait feature from front view could not be transformed into side view.

2.2.3. Methods based on subspace projection
The third category learns mapping or projection relationship of

gaits across views through a training process. The learnt relationships
normalize gait features from different views into shared or associated
subspace(s) before gait similarity is measured. The relationship be-
tween gait data from different views is established through the learning
process. Recent research mainly relies on View Transformation Model
(VTM) [27–31] and subspace learning [5–7,32–34].
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Makihara et al. [30] introduced VTM to transform gait features from
one view into another view. Singular Value Decomposition (SVD) was
applied on frequency domain features to construct the VTM. Kusakun-
niran et al. [28] defined the VTM reconstruction problem as a Support
Vector Regression (SVR) problem. They chose local regions of interests
based on local motion relationships, instead of global features, to build
VTMs through support vector regression. After that, they improved
the performance by introducing sparsity to the regression [29]. Zheng
et al. [27] established a Robust VTM which is based on Robust Prin-
cipal Component Analysis (RPCA). Muramatsu et al. [31] proposed
an Arbitrary View Transformation Model (AVTM). This is based on
combining details of both first and third categories. 3D gait visual hulls
were established and used to create training gait sequences under any
required angle views. Then VTM was constructed to transform features.

Methods based on subspace learning have been used to trans-
form the gait features obtained from various viewing spaces into a
shared feature space. Bashir et al. [32] modeled the correlation of
gait sequences from different view angles using Canonical Correlation
Analysis (CCA). Hu et al. [33] proposed a unitary linear projection
method named View-invariant Discriminative Projection (ViDP), which
allows cross-view gait recognition to be conducted without knowing
the query view angle. Xing et al. [5] proposed Complete Canonical
Correlation Analysis (C3 A) in order to overcome the shortcomings of
CCA when dealing with two sets of high dimensional features directly.
Nini Liu et al. [34] designed a Multiview Subspace Representation
(MSR) method which considers gait sequences collected from different
views of the same subject as a feature set and extracts a linear subspace
to describe the feature set. Connie et al. [6] demonstrated how to
generate virtual views to compensate the view difference in the query
and reference sets. This makes it possible to match the query and
reference sets using standardized views. The proposed method, which
associates multi-view matrix representation and randomized kernel,
offers a solution for the problem of changing of view. Xu et al. [17]
proposed Coupled Locality Preserving Projections (CLPP) in order to
deal with gait recognition under view change using GEI data. Huimin
Wu et al. [35] proposed to combine deep features and hand-crafted
representations into a globally trainable deep mode for gait recogni-
tion tasks. Wu et al. [36] performed multi-view gait recognition via
similarity learning by deep Convolutional Neural Network (CNN). They
trained deep networks to recognize the most discriminative changes of
gait patterns by a small group of labeled multi-view human walking
videos. Wanjiang et al. [7] proposed a method, called Multi view Max-
Margin Subspace Learning(MMMSL) in order to address the problem
of gait across multiple views. The MMMSL based method can obtain
single common space shared by all views. In this learnt common
subspace, same-class samples from all views cluster together, and each
different-class cluster was kept away from its nearest neighbors as far
as possible. Li et al. [37] proposed a feature extraction via GEI subspace
projections. Authors applied a sequence of three projections to obtain
an optimal subspace from the gait energy image. They developed a
three-step projection procedure for the GEI data, in order to obtain
a low-dimensional discriminant feature vector. First, they defined an
importance map and selected regions of high importance. Second, they
applied PCA on the selected important regions to reduce the feature
dimension while separating data samples of different classes. Third,
they conducted LDA to reduce the feature dimension while maximizing
the ratio of inter-class to intra-class variances. For the classification,
they adopted Collaborative Representation Classifier (CRC). Despite
all the above-mentioned efforts, the achieved multi-view gait based
method still give relatively low accuracy. In this paper, we aim to
handle both the view angle variation and presence of covariate factors
(i.e. carrying bag, clothing) challenges while keeping the discriminative
3

information so as to achieve better performance.
3. Overview of the proposed method

The overview of the proposed method is illustrated in Fig. 3. After
gait features being prepared and the semantic classification is done, the
viewing angles of gallery gait data and probe gait data are transformed
into the same direction with the generated PVTM. Therefore, gait
signatures can be measured. The advantage of our proposed method
is the use of the VTM on selected relevant parts. This makes it suitable
to deal with several covariate factors. The framework of the proposed
method contains an off-line phase and an on-line phase. In the following
sub-sections, we will detail each phase.

3.1. Off-line phase

The off-line phase is a training step which is conducted in order to
construct the Part View Transformation Model (PVTM).

3.1.1. Gait feature preparation
The well-known Gait Energy Image (GEI) [9] is used as a gait

feature. Before the generation of the GEI, a gait period estimation
step is necessary. In our work, we have adopted the method used
in [38] and [39] to determine the period of each gait sequence. GEI
is constructed from a sequence of aligned silhouettes images in a one
walking cycle. GEI captures several key information of human gait
including the motion frequency, the temporal and spatial changes of
the human body and the global body shape. This rich content of GEI
will provide a substantial correlation across views. Furthermore, Partial
Least Squares (PLS) analysis has attracted increasing attention in image
and video processing. It is an efficient supervised dimension reduction
algorithm. Inspired by the work of [27], Partial Least Square (PLS)
regression is used in this paper as a feature selection algorithm to learn
optimal feature representation vectors. The optimized obtained GEI is
expected to be better factorized than the original spatial-domain GEI.

3.1.2. Part View Transformation Model (PVTM) construction
As the observation views of the gallery and the probe are different,

the extracted gallery and probe gait features have different shapes to
each other; direct comparison of such gait features yields degradation
of recognition accuracy. We, therefore, transform one of them using a
VTM so that both gait features have the same view in common, and
calculate a matching score by comparing the gait features with the
same view. In our previous work [40], we have proposed a method
for gait based person re-identification relying on dynamic selection
of human parts. We have focused on controlled environments where
individuals are seen from a side view. The proposed method consists in
computing a new person descriptor from relevant selected human parts.
The selection of the most informative parts was achieved depending
on the presence of semantic information. This idea was generalized in
order to deal with several view angles. In this paper, for each selected
informative part from the GEI image, a Part View Transformation
Model (PVTM) is constructed. This phase involves construction of
the PVTM using multi-view gait features of multiple training persons.
We assume that 𝑀 pairs of gait features associated with source and
destination views 𝜃 and 𝜙 are available for PVTM training. These gait
eatures for PVTM training are associated with independent training
ubjects which are different from target subjects. Let 𝑋𝑚

(𝜃) and 𝑋𝑚
(𝜙)

e N-dimensional gait features of the 𝑚 th pair with views 𝜃 and
respectively. By arraying the gait features, we generate a training
atrix 𝐷 by:

=

⎛

⎜

⎜

⎜

𝑋1
(𝜃) .... 𝑋𝑀

(𝜃)
.... .... ....
𝑋1 .... 𝑋𝑀

⎞

⎟

⎟

⎟

(1)
⎝
(𝜙) (𝜙)

⎠
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Fig. 3. Overview framework of the proposed method.
𝑥

We then apply Singular Value Decomposition (𝑆𝑉 𝐷) to 𝐷. The
decomposition-based method using 𝑆𝑉 𝐷 [38] is a conventional ap-
proach for VTM construction based on a decomposition concept.

𝐷 = 𝑈𝑆𝑉 𝑇 (2)

=
[

𝑅(𝜃)
𝑅(𝜙)

]

[

𝑣1 ... 𝑣𝑀
]

(3)

Here, 𝑈 ⊂ R2𝑁×𝑀 is an orthogonal matrix, 𝑉 ⊂ R𝑀×𝑀 is also an
orthogonal matrix, 𝑆 ⊂ R𝑀×𝑀 is a diagonal matrix whose on-diagonal
elements are singular values.

𝑅(𝜃) and 𝑅(𝜙) are sub-matrices of 𝑈 , and they are view-dependent
feature-independent matrices. On the other side, 𝑣𝑚 is an intrinsic
vector, the 𝑚th row vector of matrix 𝑆𝑉 𝑇 , and it is a view-independent
feature.

3.2. On-line phase

The on-line phase contains five steps which are (1) View angle
estimation, (2) Semantic classification, (3) Gait feature preparation
which is detailed in the previous phase, (4) View transformation using
PVTM and (5) Matching.

3.2.1. View angle estimation
Our proposed method is based on View Transformation Model.

This requires the knowledge of viewing angle for each gait sequence
before applying the corresponding view transformation model. For this
reason, a viewing angle estimation step is necessary. In our previous
work [41], we have proposed a walking direction estimation solution.
Such solution can be suitable for real time applications in unconstrained
environment where the user walking direction is different and affected
by covariate factors. In fact, to classify each view angle into the
corresponding class, we adopted a KDD process (Knowledge Discovery
in Databases) for extracting useful knowledge from volumes data. The
total process of walking direction estimation is based mainly on two
steps: a first step which is a models construction step and a second one
which is View angle classification step.

3.2.2. Semantic classification
In our previous work [8], we have concentrated on covariate factors

that can affect gait representation (i.e. Single Shoulder Bag, Back Pack,
Hand Bag and Outerwear). These covariate factors can influence and
4

occlude the gait based appearance of the body shape and consequently
decrease the performance of gait based applications. The idea was to
propose an automatic semantic attribute classification solution which
predicts the class of each semantic attribute from walking person
image. The classification process is able to identify four semantic
attributes corresponding to the examined covariate factors.

3.2.3. View transformation using PVTM
Given gait features from two different views, the view transforma-

tion phase involves the transformation of a gait feature from a view
(target view) into that from the other view (source view).

Given, respectively, 𝑥(𝜃)𝐺 and 𝑥(𝜙)𝑃 a gallery gait feature with view 𝜃
and a probe gait feature with view 𝜙, we consider transforming the
gallery gait feature with view 𝜃 to that with view 𝜙. To deal with
covariate factors, the GEI image is divided into seven non overlapping
parts which are: head, chest 1, chest 2, knee 1, knee 2, foot 1, foot 2.
Fig. 4 shows a walking GEI image divided into these mentioned seven
parts. Parts affected by any detected semantic attribute are discarded.
The transformation is achieved by using the probe gait feature 𝑥𝑝(𝜙) for
each remaining relevant part, a point on the joint subspace �̂�𝑃(←𝜙) is
estimated by:

�̂�𝑃(←𝜙) = 𝑎𝑟𝑔𝑚𝑖𝑛‖𝑥𝑝(𝜙) − 𝑅(𝜙)𝑣‖22 (4)

= 𝑅(𝜙)+𝑥𝑝(𝜙) (5)

𝑤ℎ𝑒𝑟𝑒𝑅(𝜙)+ = ((𝑅(𝜙))𝑇𝑅(𝜙))−1𝑅(𝜙)𝑇 (6)

where ‖.‖2 denotes the 𝐿2 norm.
The probe gait feature of view 𝜃, �̂�𝑝(𝜃←𝜙), is generated by projecting

the estimated point on the joint subspace �̂�𝑝(←𝜙) to the gait feature space
of view 𝜙

̂𝑝(𝜃←𝜙) = 𝑅(𝜃)�̂�𝑝(←𝜙) (7)

3.2.4. Matching
The matching phase involves a score calculation for the final ac-

curacy. We calculate a dissimilarity score between the gallery and the
probe in the same gait feature space of view 𝜃 by:

𝑑(𝑥𝐺(𝜃), 𝑥
𝑃
(𝜙)) = ‖𝑥𝐺(𝜃) − �̂�𝑝(𝜃←𝜙)‖2 (8)

= ‖𝑥𝐺(𝜃) − 𝑅(𝜃)𝑅(𝜙)+𝑥𝑝(𝜙)‖2 (9)
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Fig. 4. The GEI division into seven parts: head, chest1, chest2, knee1, knee2, foot1
and foot2.

Table 1
Correct user recognition rate (%) with and without relevant parts selection.

View angle Without selection of relevant parts With selection of relevant parts

000 24, 51 21,765
018 12,745 11,568
036 37,059 38,431
054 44.51 46.863
072 41.764 47.65
090 37.843 46.470
108 36.471 43.333
126 37.451 41,765
144 39.120 48.235
162 25.294 21.176
180 26.275 25.69

4. Experimental evaluation

In this section, the different experimental setups are detailed in
order to validate the performance of our proposed method. In our
experimental evaluation, two experimentations have been conducted:
The first experimentation validate our proposed method in the case
of single view gait sequences. This experimentation is carried out
where gallery and probe contain mixed covariate factors. The second
experimentation deals with multi-view gait sequences.

4.1. Gait database

The CASIA database is one of the largest gait datasets. CASIA-
B [42], in particular, contains gait sequences of 124 subjects captured
from multiple angles under several covariate conditions. Each subject
was captured from 11 viewing angles (i.e., 0◦, 18◦, 36◦, 54◦, 72◦, 90◦,
108◦, 126◦, 144◦, 162◦ and 180◦). At each viewing angle, each subject
was asked to walk naturally along a straight line for 6 times without
carrying a bag or wearing a coat, twice carrying a bag and twice
wearing a coat.

4.2. Results

4.2.1. Single view gait re-identification
In this experimentation, we aim to validate our re-identification

method based on dynamic selection for single view gait sequences. This
method has already accomplished promising results for side view [40].
Thus, the gallery and probe sets, from the same view angle, contain
a mixture of different conditions (i.e. carrying bag, clothing, carrying
nothing). In this experiment, we have used only the relevant parts after
a semantic classification step. Relevant parts are parts that are not
affected by any semantic attribute. Table 1 shows the correct person
recognition rate (%) with and without selection of relevant parts. It is
obvious that results ‘‘with selection of relevant parts’’ give the better
recognition rate (%) for the majority of view angle. In fact, the results
confirm the weakness of the gait based method for frontal view angles
especially in the presence of covariate factors [43].
5

Table 2
Gait recognition rates (%) for bag-carrying image where the viewing angle of probe
sequences is 90◦◦ and those of gallery sequences are 54◦, 72◦, 108◦, 126◦ and 144◦.

Gallery view angle 54◦ 72◦ 108◦ 126◦ 144◦ Average

GEI-NNC [42] 13 31 44 15 2 15
GEI-LDA-TSVD [38] 10 31 23 13 10 17.4
GEI-PLS-TSVD [27] 19 59 55 23 10 33.2
GSP-CRC [37] 18 90 83 24 8 44.6
Proposed method 30 67 69 35 14 43

Table 3
Gait recognition rates (%) in coat-wearing image where the viewing angle of probe
sequences is 126◦ and those of gallery are 72◦, 90◦ , 108◦ , 144◦ and 162◦.

Gallery view angle 72◦ 90◦ 108◦ 144◦ 162◦ Average

GEI-NNC [42] 14 9 6 18 2 9.8
GEI-LDA-TSVD [38] 9 10 20 30 13 16.4
GEI-PLS-TSVD [27] 24 26 53 88 31 44.4
GSP-CRC [37] 18 16 64 77 7 36.4
Proposed method 36 52 71 60 13 46.6

4.2.2. Multi view gait re-identification
This section contains two series of experiments: The first series of

experiment shows the advantage of PVTM versus the VTM. The second
series of experiment compare our proposed method with some state of
the art methods that use the View Transformation Model (VTM).

First series of experiments. In this first series of experiments, we empha-
sized the advantage of the PVTM versus the basic VTM. PVTM based
method uses a VTM for each part (PVTM) of the divided GEI image.
Meanwhile, basic VTM based method uses a VTM for the entire GEI
image (c.f. Fig. 4). We adopted carrying nothing gait sequences in this
experiment. We normalized and cropped each GEI to 64 × 64 pixels. For
each selected probe view, we tested on the gallery view 𝜃𝐺 from the rest
10 viewing angles except the corresponding probe view. Fig. 5 presents
comparison of gait recognition rate using parts and using entire image
(the viewing angle of the probe is 126◦). From this figure, we notice that
using parts provides the best gait recognition rates for the majority of
the 10 viewing angles.

Second series of experiments. To evaluate the performance of our pro-
posed method, we compared it with four well known methods from the
state-of-the-art.

(1) The gait energy image and nearest neighbor classifier method
(GEI-NNC) [42](2) The linear discriminant analysis of GEI and trun-
cated singular value decomposition based (GEI-LDA-TSVD) method
[38] (3) The partial least squared regression on GEI and truncated
singular value decomposition (GEI-PLS-TSVD) method [27] and (4)
The subspace projections of the GEI and collaborative representation
classification (CRC) (GSP-CRC) method [37].

For this evaluation, and for fair comparison, we follow the same
protocol as proposed in [27]. Samples of the first 24 subjects in CASIA-B
Database are used for parameter training while samples of the remain-
ing 100 subjects are invested to form the gallery and probe sets for two
tests: bag-carrying walking and coat-wearing walking. The recognition
rates for these two tests are given in Tables 2–3, respectively.

Our proposed method goes beyond those presented in [38,42] which
use the entire image without taking into account covariate factors
(i.e. carrying bag, wearing coat). Concerning the method proposed
in [27], although it exceeds our proposed method in the case of coat
wearing images (especially in angles 144◦ and 162◦), our average rates
remain better. Dealing with the paper [37], although they bring better
results than ours in the case of presence of bags, especially for the
angles (72◦ and 108◦), they fail in the case of wearing coat in the
majority of view angles (except 144◦). This confirms that our proposed
method is suitable not only for view angle variation but also for
covariate factors (carrying bag, wearing coat) presence.
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Fig. 5. Comparison of gait recognition rate using Local and Global based method. The viewing angle of the probe is 126◦. The viewing angles of the gallery data are the rest 10
viewing angles except the corresponding probe viewing angle.
5. Conclusion

The change caused by multiple viewing angles lead to more chal-
lenges for robust gait based applications. In this paper, we introduced
a Part View Transformation Model (PVTM) based on selected relevant
parts of Gait Energy Image (GEI). The proposed method is suitable for
multi-view gait based application under different wearing and carrying
conditions. The relevant parts are determined based on a semantic
classification step. The experimental evaluation proves that the pro-
posed method brings the significant performance on the multi-view gait
database. In the future, we plan to evaluate the proposed method on
more difficult datasets.
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