20-24 September

MICCAI 2009

London UK

MICCAI-Gricdd Workshop

Medical imaging on GRID, HPC and GPU Infrastructures
Interoperability Highlights on NeuroSciences

Proceedings of the MICCAI-Grid 2009 Workshop

Edited by
Giovanni Frisoni,
Chiara Barattieri

and
David Manset

with Johan Montagnat and Silvia D. Olabarriaga

MICCAI-Grid Workshop
http://proton.polytech.unice.fr/MICCAI-Grid/

MICCAI Page 1

emuse i

weif3 i 20-24 September
& § MICCAI 2009
B . - " L

[8 London UK

Preface

Medical image processing raises new challenges
related to the scale and complexity of the
required analyses, for example in studies that
involve the federation of large data sets or in
complex modelling and data mining. Grid and
HPC technologies are addressing such problems
by syndicating computing resources and
providing tools for exploiting them, while
additionally serving as vectors for structuring
user communities. On a different scale but
similarly, GPU-based processing is gaining more
attention given its immediate benefits to users
and close integration in imaging environments
and practices.

In the area, Grids provide a foundational layer
that can be utilized e.g., to build patient specific

Thematic

Thus far, the MICCAI-Grid workshop has created a
unique place where image processing researchers can
debate on these aspects and become familiar with
such technologies and international infrastructures
being developed.

MICCAI-Grid stimulates the community to build new
collaborations and leverage convergence by taking
advantage of the sharing and social capabilities of
distributed computing and infrastructures.

We kindly invite authors to submit original papers
addressing one or more topics from the following list:

* Medical image processing using Grid, HPC and / or
GPU infrastructures,

models, reduce computing time to meet clinical Medical image pipelines / workflows, from
practice constraints, algorithms validation and 2authoring, to planning and enactment on Grid, HPC
optimization, or collaborative studies on rare and/orGPUs,

diseases. Specific Grid initiatives are thus e Distributed and heterogeneous medical data

emerging worldwide, demonstrating a growing
interest from the health community for such
infrastructures and impacting on the way medical
research is conducted. However, deploying
medical image analysis applications on such
infrastructures requires a proper understanding
of the corresponding specific needs.

The MICCAI-Grid workshop aims at bringing
together researchers using GRID, HPC and GPU
infrastructures to address problems in medical
image processing. The scientific objectives are

representation and annotation,

* Large scale and statistical studies,

* Content-based retrieval and data mining,

* Methods evaluation and parameter sweep studies,
* Medical data visualization using Grid, HPC and / or
GPU resources,

» Dedicated Grid, HPC, GPU infrastructures,
 Standards for exchanging data and algorithms,

» Success stories and show stoppers.

twofold, (1) to demonstrate the current Important Dates

achievements of GRID, HPC and GPU

technologies through concrete examples and (2) e Workshop venue September 24, 2009
to precisely identify the fundamental problems e Deadline for submission June 14, 2009
limiting the adoption of existing systems and e Acceptance notification July 19, 2009

their interconnections from both a data and « Cameraready August 14, 2009

processing interoperability standpoint.

MICCAI-Grid Workshop
http://proton.polytech.unice.fr/MICCAI-Grid/

MICCAI Page 2

Program Committee

Alan C. Evans, Departments of Neurology
and Neurosurgery Biomedical Engineering,
Medical Physics, Montreal Neurological
Institute at McGill University, Montreal,
Canada

Giovanni B. Frisoni, Epidemiology and
Neuroimaging Laboratory, LR.C.C.S
Fatebenefratelli, Brescia, Italy

Alex Zijdenbos, Prodema Informatics,
Montreal, Canada

Johan Montagnat, CNRS / I3S, Sophia
Antipolis, France

Alfredo Tirado-Ramos, Wallace H. Coulter
Department of Biomedical Engineering
Georgia Institute of Technology, Emory
University School of Medicine and Center
for Comprehensive Informatics, Woodruff
Health Sciences Center Emory University,
Atlanta, USA

Diane Lingrand, /3S / Polytech'Sophia,
Sophia Antipolis, France

Silvia D. Olabarriaga, University of
Amsterdam, Academic Medical Center, The
Netherlands

Alejandro Frangi, Pompeu Fabra University,
Barcelona, Spain

Christian Barillot, /NSERM/INRIA IRISA,
France

Marco Antonio Gutierrez, Heart Institute,
Sao Paulo, Brazil

Ron Kikinis, Harvard University, Harvard
Medical School, USA

MICCAI Page 3

London UK

Toshiharu Nakai, National Center for
Geriatrics and Gerontology, Japan

Alexey Tsymbal, SIEMENS AG Corporate
Technology, Erlagen, Germany

Vipin Chaudhary, Computer Science and
Engineering, SUNY at Buffalo, USA

Dagmar Krefting, Institute of Medical
Informatics of the Charity - Universitats
Medizin Berlin, Germany

Leiguang Gong, /IBM T. J. Watson Research,
Hawthorne, New York, USA

Tony Solomonides, University of the West
of England (UWE), Bristol, UK

Richard McClatchey, University of the West
of England (UWE), Bristol, UK

Bob W. van Dijk, VU Medisch Centrum,
Amsterdam, The Netherlands

Tristan Glatard, CREATIS-LRMN, INSA, Lyon,
France

Yannick Legre, HealthGrid Association,
Clermont-Ferrand, France

Jerome Revillard, Biomedical Applications
Department, maat Gknowledge, Archamps,
France

David Manset, Biomedical Applications
Department, maat Gknowledge, Archamps,
France

MICCAI-Grid Workshop
http://proton.polytech.unice.fr/MICCAI-Grid/

20-24 Septembe

MICCAI 2009

r
I

20-24 September

MICCAI 2009

London UK

Sponsor

This year the MICCAI-Grid workshop is organized and sponsored by the neuGRID project.
www.neugrid.eu

Recently launched by the Research Infrastructure Unit as part of the 7th Qt#:‘
Framework Program of the European Commission, neuGRID aims to m

establish a distributed e-Infrastructure interconnecting major clinical

research centres in Europe, ultimately supplying neuroscientists with the -
most advanced Information and Communication Technologies to defeat) |
Alzheimer's disease and neurodegenerative pathologies in general. [o=t ,I"f —

Actively pursuing collaboration and convergence with other projects in the field, neuGRID is
delighted to organize this year's edition of the MICCAI-Grid Workshop.

Table of Contents
Part 1 - GPU-Based Image Processing

2D/3D Registration at 1Hz Using GPU Splat Rendering 6
C. Gendrin, J. Spoerk, C. Weber, M. Figl,D. Georg, H. Bergmann
and W. Birkfellner

A Parallel Annealing Method For Automatic Color Cervigram Image Segmentation 15
E. Kim, W. Wang, H. Li, X. Huang
Using GPUs for Fast Computation of Functional Networks from fMRI Activity 25

A. Ravishankar Rao, R. Bordawekar, G. Cecchi

A Self-Optimizing Histogram Algorithm for Graphics Card Accelerated Image Registration 35
T. Brosch and R. Tam

GPU-Based Elasticity Imaging Algorithms 45
N. Deshmukh, H. Rivaz, E. Boctor
Part 2 - GRID-Based Image Processing

Automatic Annotation of 3D Multi-Modal MR Images on a Desktop Grid
C. Basso, M. Ferrante, M. Santoro and A. Verri

A Comparison between ARC and gLite for Medical Image Processing on Grids 64
T. Glatard, X. Zhou, S. Camarasu—Pop, O. Smirnova and H. Muller

Plug--in Grid: A Fully Virtualized Grid Cluster 74
M. Niinimaki, X. Zhou, A. Depeursinge, and H. Muller

A Neuroscience Grid-Enabled Portal for the Portuguese Brain Imaging Network 84

1. Oliveira, J. Paulo Silva Cunha, D. Pacheco, J. M. Femandes,M. Pedrosa, L. Alves
and A. S. Pereira

Sentinel Network for Cancer Surveillance on a Grid Infrastructure 94
P. De Viieger, J-Y. Boire, V. Breton, Y. Legré, D. Manset,J. Revillard, D. Sarramia
and L. Maigne

HPC GRID MICCAI-Grid Workshop

G PU http://proton.polytech.unice.fr/MICCAI-Grid/

MICCAI Page 4

20-24 September

MICCAI 2009

London UK

MICCAI-Gric Workshop

Medical imaging on GRID, HPC and GPU Infrastructures
Interoperability Highlights on NeuroSciences

Part 1 — GPU-Based Image Processing

MICCAI-Grid Workshop
http://proton.polytech.unice.fr/MICCAI-Grid/

MICCAI Page 5

2D/3D registration at 1Hz using GPU splat
rendering

Release 1.2

Christelle Gendrin' Jakob Spoerk ! Christoph Weber' Michael Fig!'
Dietmar Georg> Helmar Bergmann' and Wolfgang Birkfellner

August 11, 2009

ICenter for Biomedical Engineering and Physics, Medical University Vienna, Austria
University Clinic for Radiotherapy, Division of Medical Physics, Medical University Vienna, Austria

Abstract

Nowadays, radiation therapy systems incorporate kilo voltage imaging units which allow for real-time
acquisition of intrafractional X-ray image of the patient with high details and contrast. This technol-
ogy enables real-time image based tumor motion monitoring. For tumor tracking implanted markers or
sensors provide a method of choice but require an intervention. 2D/3D intensity based registration is an
alternative non-invasive method but the procedure must be sped up to the update rate of the device. In this
paper we compare the computation time and accuracy of 2D/3D registrations using a GPU based wob-
bled splatting algorithm implemented with the Cross-Correlation (CC) or Stochastic Rank Correlation
(SRC) merit functions. SRC demonstrates better accuracy and superior robustness than CC algorithm.
Registration at a frequency of 1Hz is achieved, which is by magnitudes faster than the currently reported
time expenses for 2D/3D registration.

Contents

1 Introduction 2

2 Methods and materials 3
2.1, "Wobbled SpIating alfORthm .. « v 1« wimos smvce o m we & a0 v W © 5 % S W 3
22 GPUimplementation e e e e e e e)
23 MeritfunclON: & o s G5% SR el B R AW SR daW B ga SR i NS 5
24 Software hardware and datd-set ... : . . v sae e v wa s Be s e @ e e as E s 5
23 Toplémentton VAIALION. ... < ooe « srvw spvs smas g 8 s sme K S I S SR G 5

3 Results and discussion 6
3.1 Digitally Reconstructed Radiographs 6
3.2 Registration fime-and aceuracy = :i: ¥ 5% & % @ b E S ¥ SRR S T R Y 8% ¥ o b i 6

4 Conclusion 8

MICCAI Page 6

5 Acknowledgments 8

1 Introduction

As its name implies, Image-Guided Radiation Therapy (IGRT) uses an imaging modality during the therapy
sessions of a patient. CT, MRI and PET allow to localise the tumor and to determine the treatment plan for
maximum dose escalation in the target volume while sparing surrounding tissues. Thanks to mega voltage
(MV) on-board imaging units in the radiation therapy systems, daily patient position can be checked and
corrected, changes affecting the tumor such as size reduction or displacement might be monitored and the
treatment plan might thus be updated accordingly [1] but the resulting image suffers from poor contrast.
Recently, additional kilo voltage imaging units have been incorporated into the therapy systems allowing
the acquisition of high contrast planar x-ray images. These technologies also enable IGRT with the possible
monitoring of tumor motion in a real time .

So far, tumor tracking has been attempted by modeling periodic motion such as breathing and by tracking
implanted fiducial markers on radiographs with the drawback of additional surgery [2]. 2D/3D registration
is an non-invasive alternative method. 2D/3D registration was first introduced by Lemieux et al [3] to correct
the patient position; the basic method is shown in Figure 1. An x-ray image of the patient is acquired and
compared to Digitally Reconstructed Radiographs (DRRs) rendered from the pre-interventional 3D CT scan.
A cost function measures the similarity between the base image and the DRR; it is minimized in order to
find the best match. To achieve real-time tumor motion monitoring using intensity-based registration, this
procedure must be sped up to the update frequency of the device which is, in our case, SHz with the Elekta
Synergy suite.

Today, powerful graphics cards are commercially available at a low price. Thanks to high-level shading
programs, they are easily programmable and the scientific community can now use them as a parallel stream
processor. The computation time is thus drastically reduced, especially in the field of image processing
and medical imaging where voxels can often be processed independently. General-purpose computations
on graphics units (GPGPU) are particulary suited for DRR rendering and are essential to achieve real-time
2D/3D registration [4, 5]. In this paper we present high-speed 2D/3D registrations at a 1 Hz rate using a
GPGPU version of the rendering, the wobbled splatting algorithm [6] previously developped by our group,
with the merit function calculated on the CPU.

New Ax, Ay, Az, ®x, Dy, Dz

¢
\ 1

CT scan+| Rendering ™DRR

No
Yes

z Alignment
. Cost function teved

X-ray image

Figure 1: Framework for 2D/3D image registration.

MICCAI Page 7

2 Methods and materials

2.1 Wobbled Splatting algorithm

Wobbled splatting [6] has been proposed as a computationally efficient algorithm to render DRR while
conserving image quality. Splatting is based on perspective projection of translated and rotated voxel data
to the image plan and is mathematically defined by equation 1:

X =PVX (1)
with
I 0 0 0 oo Tor To2 Iy
_ 0 1 0 0 ro i o n2 l)» 5
P=loo o o ro ra o ra ot e
00 —-1/f 1 0O 0 0 1

where ¥ is the original voxel position and X}, is the rotated and translated voxel position projected onto the
DRR imaging plane, P is the projection to the X-Y plane alongside Z-axis with an X-ray focus at distance
z=f. rog.....r22 describe the components of the rotations and 1,.1, and ¢. give the translation of the voxel
coordinates. The main advantage is the fact that only pixels above a given intensity are effectively rendered;
this dramatically reduces the number of pixels being used by the algorithm. The drawback of the splatting
algorithm is the resulting aliasing effect. In the original version of the algorithm, a 3D Gaussian kernel
is calculated for each voxel and projected into the image plan [7]. The projections of the kernels (the so-
called footprints) are computed as a preprocessing step and stored in a look up table which is a very time
consuming step. Our approach consists in introducing blurring by stochastic Gaussian motion, either to all
voxels or to the focal spot, in the splatting process. Since the algorithm has already been described, the
reader is referred to [6] for more information.

2.2 GPU implementation

Wobbled splatting has been successfully implemented on the GPU [8] using a vertex shader program devel-
oped with the Cg language as a first approach. Certainly the code could be rewritten using CUDA library
and would further improve the velocity of the computation

The vertex shader program is provided in Figure 2. It performs the rotation and translation of the voxel
points and the splatting using the focus-wobbled method (Figure 2 lines 25-28). As no random generator
is provided for the shader program, a function given by equation (3) is used to introduce the pseudorandom
numbers [8] (Figure 2 lines 18-19).

r=Dsin(p; = p;)sin(py = py) 3)

where D is the maximum displacement of the focal spot and p; 4, is voxel coordinates and its intensity
value in varying condition.

In our algorithm the intensity values of the voxels projected into the same image pixel are summed using
the blending functionality of OpenGL. Blending is initially used to create effects like transparency fog or
liquid through weighted summation of two or more object color. In our application new fragments are first
scaled to the range [0 1]. They are subsequently linearly added to the values already stored in the frame
buffer using alpha blending. Since any pixel intensity in the frame buffer outside the range [0 1] is clipped
to that range, a second scaling applied to the the alpha channel is necessary to avoid that the sum of the pixel

MICCAI Page 8

2.2 GPU implementation 4

intensities exceed 1. In our case, the maximum number of voxels that can be potentially summed into the
same image pixel is the voxel number present along the diagonal dimension of the CT volume. In practice,

us!

ing the ratio of this number leads to poorly constrasted image. This ratio is thus multiplied by the square

root of the mean intensity in order to get an appropriate second scaling factor.

L R R R I N

9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
i3
34
35
36
37
38
39
40
41
42
43

In

void vs_main (//input parameter: vertex array and color array
in flecat3 vs_iPosition : POSITICON,
in float ws_iColor,
f//the following matrix is the transformation matrix (perspective projection,
f/rotation and translation of pixels
in uniform float4x4 TransMat,
//extremValues contains the scaling factors
in uniform float extremValues[3],
//Output of the vertex program: the pixel position and color
out floatd vs_oPosition : POSITION,
out floatd vs_oColor : COLOR)

{

//Matrix multiplication of rotation-translation matrix and projection matrix
floatdx4d wobbleMat;

float4x4 tmp = mul (parameterMatrix([l],parameterMatrix[0]);

//Calculate the parameters for focus wobbling

float vl = 1.0f * sin(vs_iPosition.y - ws_iColor) * sin(vs_iPosition.z + vs_iPosition.y);
float v2 = 1.0f * sin(vs_iPosition.z + vs_iColor) * sin(vs_iPosition.x - vs_iPosition.z);
float w0 tmp._m00 * vl + tmp._m0l * v2;

float wl = tmp._ml0 *vl1 + tmp._mll * v2;

float invF = tmp._m32;

//Calculate the new projection matrix

wobbleMat . _m00_ml0_m20_m30 = tmp._m00_ml0_m20_m30;

wobbleMat. _m0l_mll _m2l_m3l = tmp._m0l_mll_m21 m31;

wobbleMat. m02_ml2_m22_m32 = float4(tmp._m02+ invF * w0,tmp._ml2 + invF*wl, 0, tmp._m32);
wobbleMat. _m03_ml3_m23_m33 = floatd (tmp._m03+ w0, wl + tmp._ml3, 0 , tmp._m33);

//Calculate the position of the projected voxels and scale to the space in the range (-1 1]
float4 vs_pos = floatd(vs_iPosition.x,vs_iPosition.y,vs_iPosition.z,1.0f);

float4 tmpVek = mul (wobbleMat, vs_pos);

tmpVek = tmpVek / tmpVek.w;

float scale = 1.0£/128.0f;

vs_oPosition = floatd(tmpVek.x * scale, tmpVek.y * scale, 0.0f, 1.0f);

//Scale the color between 0 and 1 (only the red component is used in our implementation)

//and put appropriate scaling factor in the Alpha channel to avoid pixel overflowed.
vs_oColor = float4d((vs_iColor - extremValues[0]) * extremValues([l], 0,0, extremValues([2]);

return;

}

Figure 2: The vertex shader program for wobbled splatting algorithm

our code, the necessary scaling values for avoiding overflow of the final pixel intensities are stored in

the float table extremValues (Figure 2, line 7). extremValues[0] stores the minimum voxel intensity of the
CT volume. extremValues[1] stores the fraction 37——-%——: with MaxInt and MinInt the maximum and

MICCAI Page 9

2.3 Merit functions 5

minimum voxel intensity of the C'T volume respectively. This first two values are used to scale one projected
voxel intensity in the range [0 1]. Then. extremValues[2] stores Y= with MeanGray the mean intensity
of the CT volume and MaxVox the maximum number of voxels that can be potentially projected into the
same pixel. This second scaling avoid pixel overflow when adding the intensities on the frame buffer.

For the transmission of data from the CPU to the GPU, the voxel positions and intensities are stored as
point like element in two separate arrays. Each voxel position is described by a float triplet (x,y.z) and each
intensity by one unsigned short. Each array is linked to the corresponding Cg input parameter and enabled
in the OpenGL state using the Cg command cgGLEnableClientState(). The actual drawing is performed
by issuing the OpenGl command: glDrawArrays() with each vertex considered as one point. The blending
effect is previously switched on by calling the function glEnable(GL_BLEND).

2.3 Merit functions

In a context of real-time 2D/3D registration, not only the rendering but also the merit function should be
calculated in a short time and should feature good convergence property to achieve the best alignment as
possible. Differences in the intensities of the CT-scan and the X-ray image is an issue for the minimization of
the merit function. For example, Cross-Correlation (CC) [3, 9] supposes the existence of a linear relationship
between the intensities of the base and match images. Mutual Information (MI) [10] has been especially
developed for intermodal imaging data and is well-suited for 3D/3D registration but has been demonstrated
to fail in the case of 2D/3D registration due to sparse histogram population [11]. To overcome the problem
of differences in the image intensities, our laboratory has recently published a novel cost function called
Stochastic Rank Correlation (SRC). The idea of SRC is to assess a correlation between data not by using
their actual value but their ranks in an ordered list of intensities. Since this method requires the sorting
of data, a time consuming task, only a fraction of data point is actually employed in the merit function
calculation. The reader is referred to [11] for additional details on this technique. The merit functions are
implemented on the CPU.

2.4 Software, hardware and data-set

For initial testing of our 2D/3D registration based on the GPU, a software was developed in C++ using
gcc 4.3 under the Fedora 9 Linux distribution. User interfaces were programmed using Qt 4.3 toolkit. The
minimizer chosen for the optimization was the Downhill simplex algorithm and was taken from the GSL
package (Free Software Foundation, Boston, MA). As already stated, the GPU was programmed through
OpenGL interface and Cg language.

The programm was run on a personal computer mounted with a Intel-Core 2 Duo CPU of 3 GHZ each and a
NVIDIA GeForce 8800 GTS series graphics card with a memory of 640 MB and 96 streaming processors.
The CPU implementation did not exploit the 2 cores of the processor.

The CT-volume of a spine cord featuring 5 segments was used as a test set [12]. The data set had a dimension
of 196%256%196 voxels. The X-ray image was obtained using 120 KV energy. The intensities of the CT-
volume were scaled to grayscale values in the range 0-255.

2.5 Implementation evaluation
Our research effort aims at achieving on-line tumor motion using 2D/3D registration. Besides registration

speed, its accuracy is of crucial importance and both parameters must be compared for GPU and CPU
registrations. The accuracy of the registration depends mainly on the merit function, therefore two merit

MICCAI Page 10

functions: CC and SRC (with 1%, 3% and 5% of the image content called respectively SRC1, SRC3, and
SRCS in the following of the article) were also evaluated. Since the registration speed is also dependent of
the number of projected data points of the CT-scan different thresholds were tried out. The results obtained
with a threshold of 70 and 90, which were the more relevant, are reported in this paper.

The tests were conducted on a diagnostic CT-Scan of the spine. The starting points for the registration were
chosen in a displacement range of 5° for the rotations and 10 pixels for the translations. 100 registrations
were done. The distance between the final positions and the initial guess was computed and the mean and
standard deviation over all the registrations were estimated.

3 Results and discussion

3.1 Digitally Reconstructed Radiographs

Figure 3 shows two DRR obtained using CPU (Figure 3(a)) or GPU implementation (Figure 3(b)) and the
image of the difference (Figure 3(c)). With our data, the contrast of the two DRRs is obviously different.
The explanation of this result lies in the use of the scaling factor on the alpha channel, calculated before the
rendering in the GPU implementation, to avoid that final pixel intensity with intensity outside the allowed
range are automatically clipped. On the CPU, the voxel intensities are first added and the resulting image
is scaled afterwards to grayscale values in the range 0-255. Differences in the DRR intensity might lead to
differences in the registration accuracy depending on the employed merit function.

(a) CPU rendering (b) GPU rendering (¢) Difference image

Figure 3: Digitally Reconstructed Radiographs (DRR) rendered from the pre-interventional 3D CT scan.
Differences in the intensity of the DRR are evident between CPU and GPU rendering

3.2 Registration time and accuracy

Table 1 gives the mean and standard deviation of the number of iterations necessary to minimize the cost
function and the total registration time. With a threshold of 70, the GPU implementation divides the total
registration time by a factor of 8 for CC and SRC1. When the percentage of pixels used to compute the SRC
increases, the factor decreases to 7 (SRC3) and 5 (SRCS5).With a threshold of 90 the gain in computation
time is a factor of 5 to 3 because the number of pixels to be projected is lower. The matrix multiplication
performed on Figure 2, line 16, could be done once for all on the CPU to further speed-up the computation.
GPU greatly accelerates the rendering process [8] but the computation of the merit functions on the CPU, the
number of iterations and also the data transfer between CPU and GPU becomes the bottleneck of high speed

MICCAI Page 11

3.2 Registration time and accuracy 7

registration. However, in our experiment we achieve registration below 1Hz with the SRCI1 algorithm.
Regarding registration accuracy (Table 2), SRC merit function performs better than CC. Especially, CC
results are worst when GPU rendering is used whereas SRC does not show significant difference between
GPU and CPU implementation. Clearly, CC is more sensitive to difference among pixel intensity. With our
data, the SRC merit functions perform similar whatever the percentage of pixel used to calculate the ranks.
It is demonstrated here that accurate and fast registration (below 1Hz) is possible. Even if these first results
still need to be confirmed with further investigations and phantom studies, we believe that on-line tumor
monitoring based on 2D/3D registration shall be possible with further hardware and software development
and the help of a locally distributed environment.

Threshold Merit function

CcC SRC (1%) SRC (3%) SRC (5%)
70 Reg. Time 25.38+6.33 1747+3.87 21.05+4.84 22.58+5.58

CPU # lter. 82426 53+16 60+ 19 64121
% Reg. Time 7.50+£1.70 3.76+0.64 6.71+122 8.84+1.68

lter. 74420 49+13 54414 60+ 15
70 Reg. Time 3.02+0.92 1.98+040 3.04+0.63 4.90+1.20

GPU # lter. 96+ 34 58+ 16 66+ 18 74+23
% Reg. Time 1.33+0.40 0.89+0.15 1.80£0.33 3.48+0.66

Iter. 83428 51+13 61419 64+ 16

Table 1: Mean and standard deviation of the running time and number of iterations obtained with 100
registrations of an X-ray image of the spine to the diagnostic CT scan. Registration as a speed of 1Hz is
achieved.

Threshold Result scatter Merit function

CC SRC(1%) SRC (3%) _ SRC (3%)

() 1.82£202 2.16£2.18 2.02+193 1.95+1.80

70 AX —Y[mm] 331+261 2934207 3.00£2.14 3.07+2.20

CPU AZjmm] 216+1.82 1.96+1.61 1.90+1.53 1.92+1.71
A(0) T85E181 221£214 197£193 202£2.10

% AX —Y[mm] 2974227 2824197 2854202 293+2.03

AZ[mm] 201+£1.69 185+1.60 1.85+1.62 190+1.54

A(0) 2274384 209+206 189+1.90 2.09+283

70 AX —Y[mm| 4.19+485 2924219 2.79+2.04 3.04+2.59

GPU AZ[mm] 291+431 1874150 196+1.65 196+ 1.66
A(9) [94£193 226£205 196=1.83 2.04%1.96

90 AX —Y[mm] 3.11£246 290+2.11 298+2.15 298+2.17

AZ[mm) 206+£181 1.76+153 1.84+1.54 183+1.58

Table 2: Mean and standard deviation of the difference between final displacement and initial guess obtained
with 100 registrations of an X-ray image of the spine to the diagnostic CT scan. SRC is more robust than
CcC

MICCAI Page 12

4 Conclusion

In this paper we have investigated the speed and accuracy of intensity based 2D/3D registration using a GPU
implementation of the wobbled splatting algorithm and two merit functions, namely CC and SRC. Compared
to a CPU implementation, the GPU one was 3 to 8 times faster depending on the CT threshold and the image
content used to calculate the SRC algorithm. GPU and CPU implementations generated DRR with different
contrast but the SRC merit function provided same registration accuracy. The fastest registrations were
carried out in less than 1s which renders image-based intrafractional tumor motion monitoring within reach.

5 Acknowledgments

We acknowledge the financial support of the Austrian FWF Translational Research Program (Project P19931
and L503).

References
[1] L. A. Dawson and M. B. Sharp. Image-guided radiotherapy: rational, benefits, and limitations. The
Lancet Oncology, 7:848-858, 2006. 1

[2] H. Shirato, S. Shimizu, K. Kitamura et al. Organ motion in image-guided radiotherapy: lessons from
real-time tumor-tracking radiotherapy. International Journal of Clinical Oncology. 12:8-16, 2007. 1

[3] L. Lemieux, R. Jagoe, D. R. Fish et al. A patient-to-computed-tomography image registration method
based on digitally reconstructed radiographs. Medical Physics, 21(11):1749-1760, 1994. 1, 2.3

[4] M. Grabner, T. Pock, T. Gross et al. Automatic Differentiation for GPU-accelerated 2D/3D Registra-
tion. In Advances in Automatic Differentiation, 259-269. Springer, 2008. 1

[5] A. Kubias, F. Deinzer, T. Feldmann et al. 2D/3D image registration on the GPU. Pattern Recognition
and Image Analysis, 18:381-389, 2008. 1

[6] W. Birkfellner, R. Seemann, M. Figl et al. Wobbled splatting a fast perspective volume rendering
method for simulation of x-ray images from CT. Physics in Medicine and Biology, 50(9):N73-N84,
2005. 1,2.1, 2.1

[7] L. Westover. Footprint evaluation for volume rendering. In Proceedings of the 17th annual conference
on Computer graphics and interactive technigques, SIGGRAPH’ 90, 367-376. 1990. 2.1

[8] J. Spoerk, H. Bergmann, F. Wanschitz et al. Fast DRR splat rendering using common consumer
graphics hardware. Medical Physics, 34(11):4302-4308, 2007. 2.2,3.2

[9] G. P.Penney, J. Weese, J. A. Little et al. A comparison of similarity measures for use in 2D-3D medical
image registration. IEEE Transactions on Medical Imaging, 17:586-595, 1998. 2.3

[10] J. Kim, J. A. Fessler, K. L. Lam et al. A feasibility study of mutual information based setup error
estimation for radiotherapy. Medical Physics, 28(12):2507-2517, 2001. 2.3

MICCAI Page 13

References 9

[11] W.Birkfellner, M. Stock, M. Figl et al. Stochastic Rank Correlation - a robust merit function for 2D/3D
registration of image data obtained at different energies. Medical Physics, accepted for publication,
2009. 2.3

[12] E. B. van de Kraats, G. P. Penney, D. Tomazevic et al. Standardized evaluation methodology for
2-D-3-D registration. JEEE Transactions on Medical Imaging, 24:1177-1189, 2005. 2.4

MICCAI Page 14

A Parallel Annealing Method For Automatic
Color Cervigram Image Segmentation

Edward Kim, Wei Wang, Hongsheng Li, Xiaolei Huang

Image Data Emulation and Analysis Laboratory
Lehigh University

Abstract

The accurate and automatic segmentation of tissue regions in cervigram images can aid in the iden-
tification and classification of precancerous regions. We implement and analyze four GPU (Graphics
Processing Unit) based clustering algorithms: K-means, mean shift, deterministic annealing, and spa-
tially coherent deterministic annealing. From our results, we propose a novel parallel algorithm using
the CUDA programming language for digital cervigram segmentation and clustering. The first step of
our fully automatic method is to compute the number of modes in the feature space of a color cervigram
image using the mean shift clustering algorithm. Next, we use the number of modes in a novel spatially
coherent deterministic annealing optimization technique to produce an approximate optimal solution for
the clustering problem. Our GPU based methods perform approximately 38x (deterministic annealing),
134x (mean shift), and 276x (spatially coherent deterministic annealing) faster than an equivalent CPU
solution. Our implementation decreases the computational time of an annealing method on a 1280x872
pixel image from 5 hours 3 minutes to 72.12 seconds, enabling the use of this optimization method in
clinical settings and on large cervigram datasets.

Contents
1 Introduction
2 Compute Unified Device Architecture

3 Clustering Methods on the GPU

3.1 K-means and CUDA implementation
3.2 Mean Shift Mode Detection and CUDA implementation
3:3 Deterministic Annealing (DA): « :oc v s 5 wuow v @ s v 05w o & BN W 8w &% G 9
3.4 Spatially Coherent Deterministic Annealing (spatial DA)
3.5 DA and spatial DA CUDA Implementation
3:6: PMDAMEHodoIOBY: v v won % 5w w9 @59 9 sbom w0 o ¥ a0 waoe 5508 e

4 Experimental Results
4.1 Computational Speed and Analysis
4.2 ‘Optimality.of Cluster:Centers:: © 4 & ¢i'n &aw v e §5% & S8 00 % 6 o 9% 0 Fes gi
43 VAHAIY: < woov o v wnon ws @ 5 5 R BSGE SR B R BILE B0 N 06 9 W8 % BHOE B

5 Conclusion

MICCAI Page 15

1 Introduction

Clustering is an important technique in image segmentation. In consideration of an archive of 60,000 color
uterine cervix images created by the National Library of Medicine (NLM) and the National Cancer Institute
(NCI), we require a fast, accurate, and automatic segmentation method to analyze these images. Specifi-
cally in the area of cervigram image analysis, the most important observed area to segment is the Acetowhite
(AW) region, which is caused by the whitening of potentially malignant regions of the cervix epithelium.
The segmentation of this area and other tissue regions is particularly challenging due to high variability
where tissue color distributions frequently overlap with different classes [16, 7]. Segmentation using simple
clustering algorithms like K-means and fuzzy c-means [9], run quickly but are highly sensitive to initial-
ization. Mean shift [4] is a more advanced algorithm able to detect the number of modes in an image,
but similarly cannot guarantee a globally optimal clustering. Other more complex methods can achieve
a globally optimal clustering (e.g. deterministic annealing (DA) [13]), but are computationally expensive
and require many iterations, preventing their practical use in clinical segmentation or for processing large
medical image archives. Indeed, in image processing techniques, it is typical to have a trade-off between
complexity, robustness, automation, and speed [8]. Fast segmentation methods are often not sufficiently
robust or require large amounts of user interaction, whereas, complex methods are often robust, but are
computation and time prohibitive.

Thus, some researchers have explored parallelization of clustering techniques to achieve fast execution
times. Several implementations of a parallel K-means clustering [14, 5, 2, 15] have been analyzed and
have achieved good speed up results. Other research has attempted to exploit algorithmic parallelism of
mean shift [1, 15, 18] and deterministic annealing [12] on grid computing or SIMD architectures. On medi-
cal images, Gammage et. al [6] has used fuzzy connectedness to perform a segmentation using OpenMP on
a SMP system resulting in a speed up of nearly 50x using four processors. Although many grid or multi-core
implementations scale fairly well, they become power, cost, and resource limited at high speed up factors.
For instance, in [15], the speed up factor of several parallelized algorithms is linearly related to the number
of processors. On the other hand, K-means [14] and mean shift [18] have been analyzed on GPU archi-
tectures, but unanswered questions remain regarding the adoption of complex clustering algorithms on the
newest CUDA (Compute Unified Device Architecture) enabled GPU architectures.

In this paper, we use the CUDA [10] programming language and GPU infrastructure to implement four
clustering algorithms: K-means, mean shift, deterministic annealing (DA), and a novel spatially coherent
adaptive deterministic annealing method (spatial DA). Next, we analyze these methods to realize trends and
identify where computational bottlenecks exist. Finally, we combine several of these methods together to
produce a robust algorithm called Parallel Mode Deterministic Annealing (PMDA) and apply PMDA to
our cervigram image segmentation problem. The proposed approach uses a mean shift algorithm to detect
the modes of an image and a spatial DA method to render a globally optimal clustering, unaffected by
cluster initialization. Our method resembles [3], but incorporates spatial continuity features and exploits
the inherent parallelism of mean shift and spatial DA. Our spatial DA method has roots in [17, 9], but the
previous methods presented a spatial constraint that is either too general (single scalar for the entire image)
or oo specific (constrained to a small window). Thus, our contributions are to,

1. provide a comparative analysis of four clustering algorithms on the GPU using CUDA

2. utilize the massively parallel architecture of GPUs to produce results nearly 38x (DA), 134x (mean
shift), and 276x (spatial DA) faster than equivalent CPU implementations for a 1720x1172 pixel image

3. present PMDA, an unsupervised, automatic segmentation method for color medical images which is
able to achieve an accurate globally optimal clustering in a time frame suitable for clinical use and on
large scale medical image data sets

4. introduce an adaptive, spatially coherent clustering GPU extension to DA

MICCAI Page 16

2 Compute Unified Device Architecture

CUDA is a parallel programming model and software environment that is able to leverage the computational
power of the latest generation Nvidia GPU processors.

CUDA Hardware Model: A GPU is a collection of stream processors that can be thought of as a massively
multi-core processor. In the case of our experiment, one of the GPUs we used was a Nvidia Geforce 280
GTX. This card has a total of 240 streaming processing cores and 1 GB of total graphics memory. Each
stream processor executes the same instruction but on different areas of memory. Additionally, each mul-
tiprocessor has local register memory, fast shared memory. and unrestricted access to texture and global
memory. However, use of different types of memory incur different access times. One of the more recent
modifications for GPUs is the addition of 64-bit support which has shown to be crucial when dealing with
high precision algorithms (e.g. deterministic annealing).

CUDA Software Model: The CUDA software model and execution model can be most easily described from
the bottom up. The most basic computational elements are threads. A collection of threads, called a block,
runs on a multiprocessor and the block size is defined by the user. Threads within the block are able to
share resources such as registers and shared memory. The combination of all the blocks makes up the grid.
Typically, the grid covers the entire area of computation for your GPU program (in our case, the image
size). A single GPU program is called a kernel. Kernel programs are frequently launched by a standard
CPU program where many parallel operations can be executed. These kernel programs do the bulk of our
computation which we describe in detail in later sections.

3 Clustering Methods on the GPU

In this section we first describe our implementation of four clustering methods on the GPU. Then, we
present our proposed PMDA method for a fast, automatic segmentation of cervigram images. For all of our
clustering methods, we use L*a*b* color space because the L*a*b* space has been shown to be better for
clustering and classification [4]. Each color channel is stored in texture memory as a 2D texture. The reason
for using texture memory rather than global or constant memory is because rexture fetches, i.e. reads from
texture memory, can exhibit higher bandwidth. The GPU architecture is better able to hide the latency of
the addressing calculations and there is 2D spatial locality in texture fetches.

3.1 K-means and CUDA implementation

The K-means algorithm is a very popular clustering algorithm that is quite fast; however, it is sensitive to
outliers, initialization of cluster centers, and needs to be given a predetermined number of clusters.

K-means CUDA Implementation and kernel description: The K-means CUDA implementation begins with
a random initialization of cluster centers. Each pixel is assigned a thread on the GPU and each thread
belongs to the kernel grid. The dimensions of the grid for the K-means kernel encompass the entirety of the
cervigram image. The kernel is defined as,

1. over the entire grid, compute the distance of each pixel to each cluster center in feature space

2. choose the minimum distance centroid (cluster center) and store all width x height labels in a 1D GPU
global memory array of size width x height

3. on the CPU, update the centroids based upon the minimum distance labels

3.2 Mean Shift Mode Detection and CUDA implementation

The mean shift [4] procedure is a non-parametric density estimation method that finds the modes, or local
maxima of the empirical probability density function (p.d.f). This is a more complex clustering method that
has the advantage of not needing to know the number of clusters a priori. It uses a density distribution kernel

MICCAI Page 17

3.3 Deterministic Annealing (DA) 4

to shift a window of size & in the direction of higher density, where the direction is defined by the mean shift
vector. Thus, the kernel will eventually converge at the local density maxima in feature space. Our radially
symmetric profile at data point x is defined as,

2(x)= —%exp (—L\') x>0 (€))

Using g(x), the kernel used in our mean shift procedure, G(x) is defined as,
G(x) = cgag(|Ix|*) (2)

where ¢, 4 is the normalization constant. The mean shift procedure involves successive computation of the
mean shift vector my, (x) and translation of the kernel window G(x) by mj, ¢(x). This process repeats until
the magnitude of the mean shift vector converges to 0. Given n data points x;, i = 1....,n, and window size
h, the mean shift vector can be defined as,

" xig(l152]1)
my g(x) = % —-X 3)
e IED)

where x is the center of the kernel window.

Mean Shift CUDA Implementation and kernel description: The dimensions of the grid for the mean shift
kernel encompass the entirety of the cervigram image. Each pixel is assigned a thread on the GPU and each
thread runs the mean shift procedure to convergence;

1. over the entire grid, compute the mean shift vector my, (x) as in equation (3) and translation of the
kernel window G(x) in the color feature space

2. store all width x height modes in a 1D GPU global memory array of size width x height

3. on the CPU, merge all width x height modes within a provided bandwidth parameter, i

3.3 Deterministic Annealing (DA)

The DA method [13] is a globally optimal clustering method that introduces an element of randomness to a
clustering problem to avoid being stuck in local minima. Similar to simulated annealing, the procedure does
not always take the greedy decision and is able to jump out of local minima. The amount of jumping can
be thought of as the temperature and as the temperature cools and decreases the randomness, the clustering
should converge to a global minimum. The mass-constrained clustering DA method that is independent of
cluster center initializations is defined as the minimization of,

F=D-TH 4)

where H is defined as the Shannon entropy in equation (5), 7', temperature, is the Lagrange multiplier, and
D is the distortion in equation (6). H is defined as,

H(X.Y)= —ZZp(xA)')logp(.r.)') (5)

where x € X is the set of data points and y € Y is the set of clusters. D is the expected distortion,

b= ZZ‘,P(K-)‘)d(x-.\') = ZP(-\') ZP(,\‘IX)d (x.¥) (6)

Our distortion measure d(x,y) was defined as the Euclidean sum of squared differences between x and the
center of cluster y in each color channel. Similar to fuzzy membership, our x data points are associated with

MICCAI Page 18

3.4 Spatially Coherent Deterministic Annealing (spatial DA) 5

" SO

(a) Original (b) Deterministic Annealing

Figure 1: Example of DA clustering without (b) and with (c) spatial constraints. 6 = 1.0.

some probability to every cluster y with probability magnitude p(y|x). When 7 is a large value, the equation
maximizes the entropy; however, as T is lowered, the equation minimizes D. Given y; as the distinct cluster
center, the association probabilities are calculated by,

p(yj)exp (_"(_‘T‘L))

yjlx) = - (7
P Jl) 7
where Z, is defined as the normalization constant,
k d(x,y;
Z.=Y plyi)exp (_(T)> ®)
7

Here, k is the number of cluster centers. To minimize the distortion with respect to the cluster center, y, the
gradients can be set to zero, yielding,

d
ZP(X)/’(.\'II)d—vd(-\H.\’) =0 Wyey ®

3.4 Spatially Coherent Deterministic Annealing (spatial DA)

In many image clustering problems, including our cervigram application, regions of similar features tend to
appear together spatially [17]. However in the basic DA method, these spatial features are ignored in the
global optimization problem. To incorporate spatial coherency to the DA method, we introduce a weighting
function that influences the DA distortion measurement to incorporate the membership of the current pixel
as well as its surrounding 3x3 neighborhood. The idea is that neighboring pixels can influence the current
pixels’ cluster membership based on their feature space similarity. Thus, neighboring pixels with similar
features have a greater probability to belong to the same cluster. Let (r,s) represent a pixel location and
(7, 5,) represent the neighbor. The weighting function of the neighboring pixels on (r.s) is defined as,

|
o (22)

where u shifts A and is defined in equation (13), and 6, specifies the steepness of the sigmoid curve. The &
value is computed by,

A™(8) = (10)

8(rJJ.(r,,.A\',,) = (-fr.x =Xy Su)T(xr..\‘ ot -rr”..v") (1)
where x, is the feature vector and x,, ,, is the neighbors’ feature vector. This equation (11), computes the
Euclidean distance between the two feature vectors. We can now use the following distortion term as a
substitute for d(x.y) in equations (7).(8), and (9),

d'(xy) = 3
!

1 1
Yy [zl(xm..\')l,"l"_,:+d(.\',*,,.,\-413.)')(l—l,’;“.,:)] (12)
==1ll=-1

MICCAI Page 19

3.5 DA and spatial DA CUDA Implementation 6

1. Image Input 2. Mean Shift 3. Deterministic Annealing w/
(L*a™b* space Spatial Continuity

N

output: K

P

Figure 2: PMDA Method
where A7 = (8. (.-

Research presented in [17, 9], describes spatial constraints either too general (single scalar for the entire
image) or too specific (constrained to small window). Our method approximates g, while parameterizing a
Gaussian smoothing technique to encompass as large an area as desired. This term is able to be precomputed
and stored in texture memory for fast fetching on our GPU implementation. Our y is defined as,

Hirs) = I—HVGG:*I(I'..\)”: “3)

where our image is convolved with a smoothing Gaussian,Gg,. There is an inverse relationship between
pixel busyness and image gradient. If the gradient at a pixel is high, this can be thought of as high busyness
and thus the g would be small. The high gradient would be present in non-homogeneous regions and would
shift the weight influence on the center pixel to a smaller value. Given our parameterized method, we can
adjust the amount of spatial continuity desired at each pixel. Fig. 1 contrasts the results between the basic
DA method and the new spatial DA method.

3.5 DA and spatial DA CUDA Implementation

Because the framework of the DA and spatial DA methods differ only by their distortion terms, we represent
both methods in this section. At each temperature state, the DA algorithm consists of three steps,

1. fix the cluster centers and use equation (7) in a GPU kernel to compute the association probabilities.

2. fix the association probabilities and optimize the cluster centers using (9). The maximum association
probabilities are stored in a 1D GPU global memory array of size width x height, one array for each
color channel. The current individual cluster centers are stored in a 1D GPU global memory array of
size k.

3. use the CUBLAS libraries (CUDA Basic Linear Algebra) to compute the parallel reduction of the
arrays 1o find the final vector positions and probabilities.

This kernel is computed ¥y € Y until the cluster centers converge. Upon convergence, the cooling schedule
will determine the next value of 7" and will continue until 7" < .

3.6 PMDA Methodology

Our Parallel Mode Deterministic Annealing (PMDA) method is a combination of a mean shift mode detec-
tion followed by a spatial DA clustering algorithm. Since we cannot assume a fixed number of clusters for
our image segmentation, we use a mean shift algorithm to detect the number of color modes and we use this
characteristic, k, to initialize our spatial DA clustering method. The method consists of three steps (Fig. 2),

1. input the image in L'a*b* color space
2. compute the modes, k, of an image by a mean shift clustering algorithm.
3. compute the optimal clustering using spatial DA with parameter, k.

MICCAI Page 20

(a) Several image examples (b) Cervigram image (c¢) Feature space

Figure 3: (a) Example cervigram images used in our experiments depicting the high variability present in
the data set. (b) a sample image with the corresponding L*a*b* feature space plot in (c).

4 Experimental Results

For our experiments, we evaluate our method on 18 uterine cervix images obtained from the NLM/NCI
archive (Fig. 3). The hardware for these experiments consisted of several machines equipped with different
GPUs. Our first machine is an AMD 4600+ dual core with a Nvidia 8800 GTS. The second machine
is an Intel Xeon 3.0 Ghz dual core with a Nvidia 280 GTX. We evaluate our results on several aspects:
computational speed, analysis, optimality, and validity.

4.1 Computational Speed and Analysis

We present our timing and speed up results in Fig 4. Similar to the work by Cao [2] er. al, we find a
comparable speed up of 3-8x when implementing K-means on the GPU. With mean shift, we are able to
greatly outperform other parallelized methods [1, 15]. mainly because these methods are implemented for
multi-core CPUs. Because their performance scales linearly to the number of processing cores, to match the
speed up factor of our GPU implementation, these systems would need nearly two hundred cores (based on
a 1720x1172 image). Similarly with DA, the performance of [12] scales approximately linearly. Our GPU
based method dominates these other methods in performance because of the number of streaming processors
and high memory bandwidth that are present on GPUs.

K-Meass Compamen 2 Maan Sha companson Detemavesc Arveaing Campanson

S o 2 =
P e
g—4 ' §
" . £ olw
| 2 . + .
e o
3 %l
e of puse o the image ,; e o pisols i imoge p- rambes of ks inthe mage
[Ce—ovaw Fove © ORAI00OTS 0290 57X [e—oumo Posed ® ORI OTS 0P 200 OTX (o= v o 200 0T
(a) K-means performance (b) Mean shift performance (c) DA performance
Spees op facto o the erest methods

-
= 5 Spatially Coherent Determwenstic Anealing Comparison
R0 =
s e
g -
a0 -— 2>
3 3
£ olw 3
s o
5
§ ® .
% ° . .
£ 10 Are
s 0 05 1 15 2 25) 36 () 08 ' s 2 s 3 3

number of pixels in the image x10" namber of plxsls i the image o'
[Co—ouweo e i on] [Cois —~ & o4 Ty
(d) Spatial DA performance (e) GPU Speed-up

Figure 4: Execution times of the four clustering implementations when mean shift determined 11 modes,
k=11 for all other methods. (e) Speed-up factor determined from slowest CPU to fastest GPU.

MICCAI Page 21

4.2 Optimality of Cluster Centers 8

Next, we analyze each method at each stage of the execution in a 880x600 pixel image to identify where the
computational bottlenecks exist. The CPU and GPU execution times of the individual methods are compared
in Fig. 5(a). From our results, we can deduce several key observations when parallelizing these clustering
algorithms. First, it can be seen from the utilization graphs of both the mean shift and spatial DA methods
that when the GPU time is highly utilized, the algorithm is offloading more computations to the GPU and
can attain an overall greater speed up factor. Second, highly iterative methods can perform extremely well
on GPU architectures when data transfer between the CPU and GPU can be minimized. For example. in
our K-means implementation, this data transfer is unavoidable, which limits our speed up factor. Third, the
utilization of specific memory structures, such as shared memory and texture memory rather than global
memory can help in lowering the total execution time. We frequently benefit from texture memory in our
implementations but would like to explore shared memory in future work. A detailed breakdown of the GPU
executions is presented in Fig. 5(b).

e
H £
: 5
§]
3 5
H 06 g
s 8
H]
3 04 g
5 &
< -
g 02 :
2 S
g
=
Meanshift K-Means DA Spatial DA Meanshift K-Means DA Spatial DA
Global memor Texture memor,
WGPU time [BCPU time [JCPU <> GPU transfer time Worutime W7, oo "mey B e “mey Dcusas
(a) Comparison of Computation Time (b) Breakdown of GPU execution time

Figure 5: Percentage of execution time for each process

4.2 Optimality of Cluster Centers

We define an optimal clustering as the minimization of the Euclidean sum of squared differences (SSD)
between the pixel cluster assignment and location of the final cluster center in feature space. We compare
different clustering methods and present our results in Table I. From our mean shift clustering with window
sizes, by = 0.08, h, = 0.03.h;, = 0.03, we detect 17 modes in a 1280x872 cervigram image. In 250 K-means
trials we randomly initialized the cluster centers, set the k = 17 and the convergence criteria to € < 0.001.
For the DA method, we ran 50 randomized inputs, set the k = 17 and the cooling schedule to 0.87", and
computed the annealing steps until 7 < 5 x 103, We also ran our spatial DA method on 50 randomized
inputs with 6 = 0.25 and 6; = | to demonstrate its optimality. The presented SSD energy is slightly higher
than the spatial distortion energy, but for direct comparability, the SSD energy is reported.

Because the mean shift method takes every pixel as an input, there is no initialization randomization to the
method and the average energy is static. From our results, the simplistic K-means method has very high
variance, and is highly sensitive to its initialization as seen in Fig. 6(b). Conversely, our DA algorithm
always produces an approximate globally optimal result regardless of initialization (Fig. 6(c)).

Table 1: Energy comparisons between different methods, (¢ = standard deviation)

Method # of Trials Min Energy Max Energy Average Energy G =sd
Mean Shift n/a’ n/a n/a' 9,019.59 n/a’
K-means 250 1,521.43 10,824.08 3.325.92 1,695.15
Determinstic Annealing 50 884.51 1,264.13 1,044.14 86.28
Spatially Coherent DA? 50 1,276.59 2,780.63 1.791.61 375.01

"Mean shift is initialized with every pixel, thus, there is no deviation between trials
2Spatially Coherent DA distortion energy is calculated differently than the other methods. Basic SSD shown here.

MICCAI Page 22

4.3 Validity 9

(a) Original (b) K-Means (c) Spatially Coherent DA

Figure 6: K=13 for the different methods. (b) K-means result from a poor initialization. (c) Spatial DA
method with the same initialization as K-means but reaches optimal clustering.

4.3 Validity

To measure the validity of our clustering results, we compared selected AW tissue clusters with expertly
segmented ground truths obtained from the NLM/NCI. We evaluated the p and q (sensitivity and specificity)
and also the dice similarity coefficient (DSC) for 18 randomly chosen samples. The calculations of p, g,
and DSC can be found in Popovic et. al [11]. Depending on the variation within each image, the number of
modes detected by our PMDA method varied from 4 to 19. On average, our results are as follows: for the
basic DA method, p=0.711, q=0.892, and DSC = 0.726. When we applied spatial coherency, our averages
improved across all measurements. This was typically because the spatial method eliminated outliers and
better delineated boundary conditions as seen in Fig. 7(c)(d). The most significant improvement was a 5.2%
increase in the sensitivity. Our spatial coherent DA results were p = 0.748, q = 0.898, and DSC = 0.733.

5 Conclusion

In conclusion, we implemented and analyzed four clustering algorithms on the GPU using the CUDA pro-
gramming language. We combined several of these methods and introduced a robust method, PMDA, for
automatically segmenting cervigram images. We exploited the parallelism inherent in two algorithms, mean
shift and deterministic annealing, using the GPU to achieve significant speed increases. We were able to
achieve an approximate globally optimal clustering with relatively few resources (time and hardware). Also,
a new spatially coherent extension to the deterministic annealing algorithm was introduced. Although we
used cervigram images for our process, this clustering method can be extended for use on many different
applications (e.g. histology images). In our future work, we would like to extend our algorithm to auto-
matically classify cluster results and explore the use of a priori knowledge to more accurately segment and
cluster image regions.

References
[1] J.G. Allen, R.Y.D, Xu, and J.S. Jin. Mean shift object tracking for a SIMD computer. Third Int’l
Conference on Information Technology and Applications, 1:692-697, 2005. 1, 4.1

[2] F. Cao, A. Tung, and A. Zhou. Scalable clustering using graphics processors. Advances in Web-Age
Information Management, 4:372-384, 2006. 1, 4.1

[3] W. Cho, S. Park, and J. Park. Segmentation of color image using deterministic annealing EM. /5th
Int’'l Conference on Pattern Recognition, 3:646-649, 2000. 1

[4] D.Comaniciuand P. Meer. Mean shift: A robust approach towards feature space analysis. /EEE Trans.
Pattern Analysis and Machine Intelligence, 24:603-619, 2002. 1, 3, 3.2

[5] E. Gabriel, V. Venkatesan, and S. Shah. Towards high performance cell segmentation in multispectral
fine needle aspiration cytology of thyroid lesions. HP-MICCAI Workshop, 2008. 1

MICCAI Page 23

References 10

(a) Original (b) Ground Truth (c) DA result (d) Spatial DA result

Figure 7: (a) Original image with (b) ground truth and selected regions (c)(d) identified as Acetowhite.

(6]

[7

(8]

9

(10]
(1]

(12

[13]

[14]

[15]

[16]

(17]

(18]

C. Gammage and V. Chaudhary. On optimization and parallelization of fuzzy connected segmentation
for medical imaging. Int'l Conf. on Advanced Information Networking and Applications, 2:623-627,
2006. 1

S. Gordon, G. Zimmerman, R. Long, S. Antani, J. Jeronimo, and H. Greenspan. Content analysis of
uterine cervix images: Initial steps towards content based indexing and retrieval of cervigrams. /n
Proc. of SPIE medical imaging, 6144:1549-1556, 2006. 1

C. Kulikowski and L. Gong. Progress in high performance medical imaging. Int’l Conf. on Multimedia
and Expo, pages 284-287, 2007. |

A.W.C. Liew, S.H. Leung, and W.H. Lau. Fuzzy image clustering incorporating spatial continuity.
IEEE Proc. Visual Image Signal Processing, 147:185-192, 2000. 1, 3.4

Nvidia. Cuda: Compute unified device architecture programming guide. Technical Report, 2008. 1

A. Popovic, M. Engelhardt D. La, and K. Radermacher. Statistical validation metric for accuracy
assessment in medical image segmentation. Int’l Journal of Computer Assisted Radiology and Surgery,
2:169-181, 2007. 4.3

X. Qiu, G. Fox, H. Yuan, S. Bae, and G. Chrysanthakopoulos. Performance of multicore systems on
parallel data clustering with deterministic annealing. Int'l Conf. on Computational Science, 5101:407-
416, 2008. 1,4.1

K. Rose. Deterministic annealing for clustering, compression, classification, regression and related
optimization problems. Proc. IEEE, 86:2210-2239, 1998. 1, 3.3
H. Takizawa and H. Kobayashi. Hierarchical parallel processing of large scale data clustering on a pc

cluster with GPU co-processing. Journal of Supercomputing, 36:219-234, 2006. 1

H. Wang, J. Zhao, H. Li, and J. Wang. Parallel clustering algorithms for image processing on multi-
core CPUs. International Conference on Computer Science and Software Engineering, 2008. 1, 4.1

W. Wang, X. Huang, Y. Zhu, D. Lopresti, L.R. Long. S. Antani, Z. Xue, and G. Thoma. A classifier
ensemble based on performance level estimation. /n Proc. of the IEEE Int'l Symposium on Biomedical
Imaging (ISBI), 2009. 1

Z.M. Wang, Q. Song, and Y.C. Soh. MRI brain image segmentation by adaptive spatial deterministic
annealing clustering. In Proc. of the IEEE ISBI, pages 299-302, 2006. 1,3.4,3.4

L. Zhu, C. Wang, G. Zhu, B. Han, H. Wang, P. Huang, and E. Wu. Image spatial diffusion on GPUs.
Circuits and Systems, IEEE Asia Pacific Conference, pages 610-613, 2008. 1

MICCAI Page 24

Using GPUs for fast computation of functional
networks from fMRI activity

A. Ravishankar Rao, Rajesh Bordawekar, Guillermo Cecchi
IBM T.J. Watson Research Center

Yorktown Heights, NY 10598, USA
ravirao@us.ibm.com, bordaw@us.ibm.com, gcecchi@us.ibm.com

August 6, 2009

Abstract

The recent deployment of functional networks to analyze fMRI images has been very promising. In
this method, the spatio-temporal fMRI data is converted to a graph-based representation, where the nodes
are voxels and edges indicate the relationship between the nodes, such as the strength of correlation or
causality. Graph-theoretic measures can then be used to compare different fMRI scans.

However, there is a significant computational bottleneck, as the computation of the functional net-
work takes several hours on conventional machines with single CPUs. The study in this paper shows that
a GPU can be advantageously used to accelerate the computation, such that the network computation
takes a few minutes. Though GPUs have been used for the purposes of displaying fMRI images, their
use in computing functional networks is novel.

We describe specific techniques such as load balancing, and the use of a large number of threads to
achieve the desired speedup. Our experience in utilizing the GPU for functional network computations
should prove useful to the scientific community investigating fMRI as GPUs are a low-cost platform for
addressing the computational bottleneck.

1 Introduction

Research investigating the creation and analysis of fMRI imaging has grown dramatically in the past decade.
The application of brain imaging to clinical studies of patients is an important goal in this field. Indeed, Illes
et al., observe that “Nearly 2000 fMRI empirical studies of depression, bipolar disorder and schizophrenia
can be retrieved from Pub-Med today.” [9].

With the clinical applications of fMRI imaging in mind, we create the following list of desirable attributes
that a total f/MRI solution should have. By a total fMRI solution, we mean a combination of the right analysis
techniques on an appropriate hardware platform.

1. The fMRI solution should utilize analysis techniques that are applicable across a variety of experi-
mental protocols, spanning the range from block designs to resting state data.

2. The TIMRI solution should utilize analysis techniques that permit the measurement of relevant features
from the fMRI data that are useful in a clinical monitoring and diagnosis setting.

MICCAI Page 25

3. The computational performance of the fMRI solution should be near real-time to enable rapid analysis
and diagnosis, preferably while the patient is still in the scanner room.

4. The analysis technique should be implementable on low cost hardware, preferably such that the box
that performs the processing can be co-located with the scanner. This reduces data transmission needs,
and ameliorates patient privacy issues.

The main contribution of this paper is to present a promising approach that combines the advantages of
a functional network approach [5, 6] with that of a low-cost hardware realization to deliver an effective
solution that meets the above desirable requirements.

A recent approach that is gaining importance is the use of functional network based analysis, which is
an alternative to standard GLM-based methods. However, the computational load of functional network
based techniques is high. We overcome this by presenting an implementation of the delayed correlation
algorithm [4] on a GPU platform to compute a directional network from raw fMRI data. GPU architectures
are receiving increasing attention in many fields. Currently they’re being used mainly for image rendering
and visualization. However they can also be used for more advanced analysis of fMRI images.

Once the functional networks are computed, they can be subjected to different types of network motif anal-
ysis, which highlight statistical properties of basic network structures. A fruitful direction to explore is to
examine properties related to cycles in the networks, as done in [3].

We present an approach to parallelizing the computation on a GPU of a very basic operation, that of extract-
ing directed graphs from fMRI images. We highlight specific challenges that need to be addressed, such as
memory access considerations, methods of optimizing parallelization, and the appropriate use of the various
parameters offered by the GPU platform.

2 Background

The field of fMRI image analysis is dominated by techniques that use the general linear model, the GLM
approach. Grinband et al. | 7] identified 170 papers published in the first six months of 2007 on this approach
alone in leading journals. Though the GLM approach is useful and has resulted in many insights into brain
function, it has limited use in being applied across a wide variety of experimental protocols, especially in the
use of resting state data [10]. Hence, the development of functional connectivity-based methods has been
receiving increasing attention in the field [4,6, 10].

A useful direction is to explore the graph-theoretic properties of such functional networks. This approach [3,
6] is based on the analysis of the structure of pair-wise correlations between voxels in fMRI, resulting in a
graph structure whose nodes are the voxels and edges linking them are defined by the covariance exceeding
a threshold. Investigations based on this approach demonstrate [6, 18] that the resulting networks have
universal statistical topological properties, like scale-free connectivity and small-worldness [19], which are
also present in other biological networks. A similar approach has been used to analyze and discriminate a
variety of functional and dysfunctional brain states, confirming the utility of the functional network approach
[2,13.16].

The primary application of GPUs in brain imaging appears to be in the image acquisition and rendering
phases. Petrovic ez al. [14] present a GPU-based solution to rendering and visualizing whole brain diffusion
tensor tractography to allow interaction while maintaining visual quality. The system presented by [12]
computes plausible fiber tracts from DTI data using a probabilistic model implemented on a GPU. Stone et
al. [17] describe a method for improving image reconstruction quality in MRI.

MICCAI Page 26

Other applications of the GPU have been to speed up basic signal processing algorithms, such as the
FFT[15].

3 Experimental methods

In this section we describe the creation of functional networks from fMRI time series data. We discuss
GPU-specific implementation details that illustrate how such networks can be efficiently computed. We
higlight major differences between GPU environments and MPI (message-passing interface) environments.
(Further information about MPI is available at www.mcs.anl.gov/mpi/).

Both GPU CUDA threads and MPI threads are concurrent logical execution contexts that are mapped onto
physical processors. The GPU threads are designed to operate in a massively data-parallel manner and
conmmunicate via variables stored in shared address spaces. This makes them lightweight in terms of the
state they carry. Furthermore, GPU threads operate in a lock-step manner whereby multiple threads execute a
single instruction at every cycle. The thread scheduling algorithms are executed by the hardware. In contrast,
MPI threads are designed to operate independently in a distributed memory environment and communicate
via explicit messages. It is the user’s responsibility to coordinate the threads, involving scheduling and
synchronizataion. This requires MPI threads to carry more state. The lightweight nature of GPU threads
cnables one to run thousands of such threads on a single GPU device. In MPI, overheads such as the the cost
of communication increase with the number of threads. Hence it is not advantageous to use a large number
of MPI threads.

3.1 Creation of functional networks

We define a functional network by considering all functional voxels {v;} as possible nodes. Their covari-
ance determines whether a binary functional link, or edge, exists between them: ¢;; = ((vi(r) — v;)(v;(1) —
v;)O; '617 !, where v; = (v;(t)), and o7 = ((vi(t) — vi)2). such that if the correlation between 7 and j exceeds
a threshold, C7, a functional link is considered. and none otherwise: if ¢;; > Cr then d;; = 1, else d;; = 0.
This approach was extended by Cecchi e al.in [4] to determine a possible directionality for the edge by
considering the delayed or lagged covariance: ¢;;(t) = ((vi(r + 1) —vi)(v; (1) —v))0; lcj !, We reason as
follows: if there is a significant peak of the covariance between 7 and j at zero lag, then there is a potential
binary symmetric link between them, as before. However, if the significant peak is not at zero lag, then we
consider that the preceding voxel, and only it, has a directed link pointing to the succeeding one. That is, if
(.‘,'1'(1.' = 0) > CT then d,, = dji = l:else if(.‘,'j('[< 0) > CT then d,'j =1 and dj,' =0: else d,'j =),

In other words, two voxels whose activity is highly correlated and simultaneous are considered to be sym-
metrically linked. A voxel that is highly correlated with the future of another one will be considered as a
“source”, and the latter as a “sink™. Though this approach can break the symmetry of the covariance, it
cannot deal with the problem of transitivity as described in [4]. Nevertheless, this approach is useful in
identifying most of the directional links.

The construction of the graph network from fMRI data is described in Figure 1. The typical data measure-
ments consist of time traces of activity at each scanned voxel in the brain. This can be considered to be a
time series, as shown in Figure 1. In Figure 1, we show the time traces of three voxels, V1, V2 and V3. Both
V1 and V2 are driven by a common source, while V3 is driven by V1 with a delay. The right panel plots the
delayed covariance analysis, by applying the equations above. Through this plot, we determine that there is
a lagged correlation between V1 and V3.

MICCAI Page 27

3.2 GPU-specific implementation 4

s Correlation
activity

|
VA1 t"’x\ﬁ‘“f\”\v“\w\"‘w

1
|
f
o 20 40 60 80

V2 V\i‘w“«\‘i \v\\“ﬂ v“w\"v,. N“

0 20 40 80 80

0f—

J |
V3 e et AN
0‘ 2 20 40 80 80 “

t

Delay, 1

Figure 1: Illustrating the computation of the delayed correlation. The time traces of activities in three voxels,
V1, V> and V3 is considered. Their delayed correlation is considered for different values of the delay, t. In
this case, both VI and V2 are driven by a common source, while V3 is driven by V1 with a delay. This
makes the lagged correlation between V1 and V3 evident, as shown by the curve C13. Positive values of
7 are placed to the left of the origin, and negative values of T are to the right of the origin. The correlation
curve C13, indicates that the correlation between voxels 1 and 3 shows a significant peak at T= —2. We
compute the significance by comparing the correlation value with a threshold, which is C7 = 0.5. Ascan be
seen, only the curve C13 shows a significant peak at a nonzero value of T. Hence, we can assign a directional
link from voxel 1 to voxel 3.

3.2 GPU-specific implementation

The Nvidia GTX280 GPU (Graphics Processing Unit) has a 240-core system-on-a-chip processor with |
GB of off-chip, on-card device memory. GTX280’s 240 cores are arranged as a group of 30 cores, called
Symmetric Multiprocessors, with 8 processors cach. In addition to the global device memory, the GTX280
GPU also supports a hicrarchy of on- and off-chip memories, ¢.g., on-chip shared-memory, on-chip texture
cache, and off-chip local and constant memories. The GTX280 supports single-instruction multiple thread
(SIMT) programming model using its CUDA programming system. The CUDA programming language
enables users to develop parallel applications for a GPU-based hybrid system. A section of the CUDA
program executes on the host CPU whereas the computationally-intensive kernel is executed on the GPU
using hundreds of threads. The CUDA runtime system then schedules the GPU application threads on
30 symmetric multiprocessors (240 hardware threads). Threads executing on a symmetric multiprocessor
can share a 16 KB shared-memory. However, in practice, most applications have working sets larger than
16 KB, so majority of memory accesses are made to the global memory. Since accessing off-chip global
memory is expensive, any GPU application usually uses a large number of threads to hide memory latency
via overlapping computation and memory accesses.

Figure 2 illustrates the differences between parallelizing the correlation problem using massive data paral-
lelism on the GPUs and coarse-grained parallelism using MPIL. In the first approach, every column of the
matrix is assigned to a separate thread. Thus the total number of threads used in the application equals the
number of columns in the matrix (e.g., 36635 threads for a typical data set). The MPI application, in con-
trast, uses far fewer threads (16 to 32), where each thread processes a set of columns, The GPU application
uses the shared device memory to communicate among the threads, whereas the MPI threads communicate

MICCAI Page 28

36635 36635

- -—

I -~ -
4 -— -—
0 -— P B
0 — =
= -

= P R 3

= -—

9 1 2 36635 Thread 0 Thread | Thread2 Thread 3
(a) GPU Execution using 36635 threads (b) MPI Execution over 4 threads

Figure 2: In this Figure, the time series data are organized such that each column represents a voxel, and
contains a single time series over 400 time slices. The interval between successive slices is 2 seconds.
There are 36635 voxels shown. The horizontal arrows indicate that the delayed correlation operations are
performed between the i voxel and all the preceding voxels, from voxel number 1 to voxel number i — 1.
(a) Shows how the correlation is computed by using massive data parallelism on the GPUs. (b) Shows the
same computation being performed via coarse-grained parallelization using MPI. Each thread processes a
given set of columns, indicated by the shading.

via message-passing primitives.

Figure 3 shows a typical CUDA program, which consists of roles for both the CPU and GPU in performing
the required computations. A CUDA program is a hybrid application, where part of the code runs on the
host CPU and the compute intensive portion, called the kernel. executes on the GPU device. The CPU-
specific component reads the input data, performs the pre-processing to generate the time series elements
and stores them into data structures to be copied into the GPU device memory. Then it sets up the GPU
execution parameters, ¢.g., number of participating threads and their mapping, initializes and copies GPU-
specific data structures to the GPU device and invokes the GPU kernel. The GPU kernel first maps the data
structures on the threads, executes the per-thread computation and copies the results to the device memory.
Once the GPU kernel returns, the CPU component copies the data back to the host memory and returns.

4 Experimental Results

In this section we compare the results of applying parallel computation to functional network creation on
different platforms.

Figure 4 illustrates the performance of the parallel fMRI code developed using MPI as the number of pro-
cessors was varied from 1 to 8. As shown in Figure 4, the MPI version of the application demonstrates
linear scalability as the number of processors is increased from 1 to 8: the execution time is reduced from
794 minutes to 101 minutes.

Figure 5 shows the effect of varying the number of GPU threads on the performance of the fMRI CUDA
code on the Nvidia GTX280 GPU. The CUDA version of the fMRI code invokes the correlation function on
the GPU. As shown in Figure 5 as the number of threads is increased from 1145 to 36635 (the thread count
was chosen to match input image characteristics), the performance of the CUDA code improves from 1160
seconds to 348 seconds. As the input image data is large (around 200 MB), it has to be stored in the slower
global memory. As a result, using larger number of threads is beneficial as it helps in hiding latencies of
expensive memory accesses.

MICCAI Page 29

Read the image file

(Gcncmlc Time Series Elements)

Determine the number of GPU threads
Determine the GPU Thread Mapping

(Sclup the GPU device data structures)

Invoke the GPU kemel

Assign each thread to a column
Each thread performs Correlation
Store results in the device memory

(C opy the results to the host memory j/

Figure 3: This flowchart shows how the CUDA code is run both on the host CPU and the GPU device.

Performance of FMRI MP1 Code on a 8-core System
MPY Cod g on i $-corc ntel Liseax Machine with MPICH
T T T T

W Application Lyacution T

H
T
'

Tine o weutes
-
=
T
Il

(L

2 4
Number of MP| Frocosaon

Figure 4: Performance of the fMRI MPI Code. The code was written in C, and ran on an 8-core Intel Linux
machine that implemented the MPI (message-passing interface) standard. The specific implementation used
was MPICH. The plot shows that execution time decreases as the number of processors utilized is increased.

Effect of number of GPU Threads

PMRI CUDA Conke rurming on NVIDIA GTX2%0
oo = T T T T T T x|
I.16ga3 = GPU Kemel Lyacution tew
1000 - 4
g e od —
H
£ s -
2 4

! ! ! ! ! !
s 228 [Visx 15317 M3S
Number of GPU Throsds

Figure 5: Effect of number of threads on the performance of the f/MRI CUDA Code. Here, the CUDA code
is run on the GPU platform as shown in Figure 3

MICCAI Page 30

CUDA also allows users to organize the application threads into groups of thread blocks, where each thread
block executes on a different symmetric multiprocessor. Figure 6 illustrates the effect of arranging 36635
threads into thread blocks of sizes 64, 128, 256, and 512. In general, the more the number of threads in
a thread block, the more likely it is to hide expensive memory accesses. Hence, the best performance is
observed when the number of threads in the thread block equals 512.

Effect of Varying the thread Mapping

FMRI CUDA Code ruming on NVIDIA GTXI80
T, T T T

B GPU Kemel Execution Time

- B

Tarte 41 seconds.

150t g

64570 (1282%7) 5415 [LEE)
¥Threads = a Block ¥Thread Blecka)

Figure 6: Effect of varying thread mapping on the performance of the f/MRI CUDA Code. The execution of
the CUDA code is described in the flowchart in Fig. 3

To summarize, using a single CPU thread. and 36635 threads on an Nvidia GTX280, the CUDA version of
the fMRI application took about 6 minutes, whereas the MPI version, using 8 threads on a 8-core Intel Linux
machine, took 101 minutes. This translates to a 17x accelaration with the fMRI GPU CUDA code over the
MPI code. A single threaded version took 794 minutes, which gives the fMRI GPU CUDA code a 132x
accelaration. This demonstrates the significant speedup that is achievable with a low-cost GPU platform.

5 Discussion

In this section, we discuss ways in which the GPU architecture can be efficiently utilized. We specially
emphasize considerations in processing data loads typical of fMRI applications.

5.1 Memory intensiveness of fMRI applications

We define an fMRI kernel to be the block of code on the GPU that usually performs the correlation operations
on large matrices (typically of size 400x40000 floats, or 64 MB in size). The correlation operation is
implemented as a doubly-nested loop whose working set can match the entire matrix. The double-nesting
arises from the need to compute pairwise correlations between voxels over multiple time lags. This makes
the fMRI application memory-intensive. As the number of threads is increased, the application becomes
even more memory-dominant. One way to improve memory performance is exploit the read-only texture
cache of the GPU. Since, most of the arrays used in the fMRI kernel are read-only, they can be accessed
via the texture cache. Unfortunately, the size of the texture cache is also small, which requires that the
inner loop be carefully re-ordered to improve access locality. Furthermore, the correlation computation has
an unusual access pattern that can cause load imbalance among participating GPU threads. The effect of
imbalance becomes prominent when the number of GPU threads increases. As a result, the doubly-nested
loop needs to re-ordered as per the thread parameters (i.c., number of threads and thread mapping) to balance
the workload.

MICCAI Page 31

5.2 Impact of arithmetic precision on the computations 8

5.2 Impact of arithmetic precision on the computations

All NVIDIA GPUs with compute capability 1.3 (e.g., GTX280) follow the IEEE-754 standard for binary
floating point arithmetic with certain deviations, such as the absence of a dynamically configurable rounding
mode and absolute value/negation non-compliance. However, these issues do not affect the accuracy of the
single precision fMRI imaging computations. The most recent GPUs, such as the GTX280 that we used
in our experiments, also supports double precision floating point arithmetic. However, the gains in double
precision performance are not as significant as the gains achieved through single precision performance. We
expect that even when double precision is used, the GPU would perform significantly better than CPUs due
to improved computational capabilities. For further details, the reader is referred to Appendix A2 in [1].

5.3 Guidelines for efficient GPU utilization
We provide the following guidelines to enable the judicious development of GPU applications.

1. Identify a computationally-intensive kernel that can be ported on the GPU. Ideally. this kernel should
be computationally intensive and should have memory footprint that can fit into GPU’s device mem-

ory.

2. The kernel should use regular data structures (e.g., arrays) that are amenable to massive data paral-
lelism.

3. The kernel should be parallelized using the maximum mumber of (logical) threads possible.

4. The logical threads should be then mapped onto the GPU threads such that each symmetric multipro-
cessor (SM) uses the largest number of threads.

5. The computation should be reordered such that threads within an SM share data. The shared data
structures can then be stored in the shared memory in each SM.

6. The inner loops should be unrolled ecither explicitly or by using the # pragma unroll feature to hide
memory latencies.

7. Further performance improvement can be achieved by using the texture memory or the constant mem-
ory.

Overall, the performance of a GPU application depends on many inter-related parameters: number of
threads, thread mapping, application working set, memory access patterns, etc. To obtain best through-
put, the right parameters and configuration of the GPU need to be utilized. Our results show that appropriate
parameter selection is critical to achieving success, as the performance is adversely affected otherwise.

The results we have obtained should provide guidance to other researchers in achieving a similar perfor-
mance speedup on the GPU. For further documentation on developing GPU applications, the reader is
referred to www.gpgpu.org. For NVIDIA specific information, the site forums.nvidia.com is useful. The
CUDA SDK 2.1 in [1] has several sample applications.

5.4 Implications for future fMRI research

The development of fast GPU-based algorithms can signifcantly impact rescarch in the fMRI imaging field.
Functional network analysis techniques are promising, but are limited in practical applications due to their

MICCAI Page 32

5.5 Patient privacy issues 9

high computational cost. The techniques presented in this paper offer a cost-effective route to overcome this
limitation.

The results presented in this paper have been obtained by performing correlation analysis between voxels
in a single brain scan. This can be trivially extended to compute the correlation between voxels in two
different brains. Indeed, there is a growing need for such computations, as exemplified by the work of
Hasson et al. [8]. Hasson ef al. used movie sequences, and showed that there is an ordering of temporal
receptive field sizes for different cortical regions. In addition, their work brings up the issue of computing
inter-subject correlation matrices. In this light, our GPU based algorithm presented in this paper becomes
even more significant, as it can be used for inter-subject studies across large populations, as well as for
traditional intra-subject studies. The availability of fast, cost-effective implementations of the correlation
computations should enable such large population studies to be carried out efficiently.

5.5 Patient privacy issues

The heavy computational load associated with fMRI image processing poses special challenges. If a total
fMRI solution is desired, as explained in the introduction, patient privacy becomes an important issue.
As mentioned by Li er al. [11]. special care has to be taken in storing and transmitting medical images.
Typically, medical institutions are reluctant to transmit medical images to remote servers or compute farms.
This makes it necessary for the entire fMRI solution to be available on site, preferably co-located with the
scanner, so that the need for image transmission is climinated. A solution that achieves this will have the
dual advantage of solving patient privacy issues as well as having a smaller footprint in terms of physical
machine space. Indeed, the GPU solution that we have provided achieves this objective, as all it requires is
a small GPU card to be plugged into the host computer.

6 Conclusion

This paper demonstrates the significant potential of applying GPU-based computing to fMRI image analysis.
The combination of functional network analysis on the GPU platform meets several desirable requirements
of a total fMRI solution that is intended for clinical use. The versatility of functional network analysis in
handling data from a variety of fMRI experimental protocols can now be exploited on a low cost, high-
throughput hardware platform offered by GPUs. We have offered several useful guidelines towards optimiz-
ing the computation of functional networks on a GPU architecture. Our algorithm and implementation will
be useful for both inter-subject and intra-subject analysis of temporal fMRI sequences, and specifically for
functional network analysis approaches.

References

[1] Nvidia cuda programming guide, version 2.1. http://www.nvidia.com/object/cuda develop.html.

[2] S Achard, R Salvador, B Whitcher, J Suckling, and E Bullmore. A resilient, low-frequency, small-
world human brain functional network with highly connected association cortical hubs. Journal of
Neuroscience, 26(1):63-72, 2006.

[3] G.A. Cecchi, A. Ma’ayan, A.R. Rao, J. Wagner, R. Iyengar, and G. Stolovitzky. Ordered cyclic motifs
contributes to dynamic stability in biological and engineered networks. PNAS, 105:19235-19240,
2008.

MICCAI Page 33

References 10

[4] Centeno MV Baliki M Apkarian AV Chialvo DR Cecchi GA, Rao AR. Identifying directed links in
large scale functional networks: application to brain fmri. BMC Cell Biology, 8(1):S5, 2007.

[5] S Dodel. JM Herrmann, and T Geisel. Functional connectivity by cross-correlation clustering. Neuro-
computing, 44:1065-1070, 2002.

[6] V M Eguiluz, D R Chialvo, G A Cecchi, M Baliki, and A V Apkarian. Scale-free functional brain
networks. Physical Review Letters, 94(018102), 2005.

[7] Jack Grinband, Tor D. Wager, Martin Lindquist, Vincent P. Ferrera, and Joy Hirsch. Detection of
time-varying signals in event-related fmri designs. Neurolmage, 43(3):509-520, 2008.

[8] Uri Hasson and et. al. A hierarchy of temporal receptive windows in human cortex. J. Neuroscience,
28(10):2539-255, 2008.

[9] J. llles, S. Lombera, J. Rosenberg, and B. Arnow. In the minds eye: Provider and patient attitudes on
functional brain imaging. Journal of Psychiatric Research, 43(2):107-114, 2008.

[10] Kaiming Li, Lei Guo, Jingxin Nie, Gang Li, and Tianming Liu. Review of methods for functional
brain connectivity detection using fmri. Computerized Medical Imaging and Graphics, 33(2):131-
139, 2009.

[11] M. Li, R. Poovendran, and Y. Narayanan. Protecting patient privacy against unauthorized release of
medical images in a group communication environment. Computerized Medical Imaging and Graph-
ics, 29:367-383.

[12] Tim McGraw and Mariappan Nadar. Stochastic dt-mri connectivity mapping on the gpu. /EEE Trans-
actions On Visualization And Computer Graphics, 13(6):1504-1511, 2007.

[13] S Micheloyannis, E Pachou, CJ Stam, M Breakspear, P Bitsios, M Vourkas, S Erimaki, and M Zervakis.
Small-world networks and disturbed functional connectivity in schizophrenia. Schizophrenia research,
87(1-3):60-66, 2006.

[14] Vid Petrovic, James Fallon, and Falko Kuester. Visualizing whole-brain dti tractography with gpu-
based tuboids and lod management. /EEE Transactions On Visualization And Computer Graphics,
13(6):1448-1495, 2007.

[15] Thomas Sangild Srensen, Tobias Schaeffter, Karsten stergaard Noe, and Michael Schacht Hansen.
Accelerating the nonequispaced fast fourier transform on commodity graphics hardware. /EEE Trans-
actions On Medical Imaging, 27(4):538-547, 2008.

[16] CJ Stam, BF Jones, G Nolte, M Breakspear, and Ph Scheltens. Small-world networks and functional
connectivity in alzheimer’s disease. Cerebral Cortex, (Advanced Online Publ.), 2006.

[17] S.S. Stone and er al. How gpus can improve the quality of magnetic resonance imag-
ing. In Proc. Ist Workshop on General Purpose Processing on Graphics Processing Units,
http://www.gigascale.org/pubs/1175.html, 2007.

[18] M.P. van den Heuvel, C.J. Stam, M. Boersma, and H.E. Hulshoff Pol. Small-world and scale-free
organization of voxel-based resting-state functional connectivity in the human brain. Neurolmage,
43(3):528-539, 2008.

[19] D Watts and S Strogatz. Collective dynamics of small-world networks. Nature, 393:440-442, 1998.

MICCAI Page 34

A Self-Optimizing Histogram Algorithm for
Graphics Card Accelerated Image Registration

Tom Brosch! and Roger Tam?

August 6, 2009

'MS/MRI Research Group, Faculty of Computer Science, University of Magdeburg
2MS/MRI Research Group, Department of Radiology, University of British Columbia

Abstract

This paper presents a new method to speed up image registration using graphics cards. In recent years,
using graphics cards to implement image registration algorithms has become a reasonable way to reduce
the computation time. While transforming images on the graphics card is rather simple, the computation
of histograms as part of mutual information computation remains challenging. The performance of
most algorithms depends greatly on the gray value distribution and is optimized for a small range of
images only. In this paper a self-optimizing algorithm for histogram computation on the graphics card is
presented which uses distribution information of the input images gained during a previous calculation
step in order to adapt the histogram bin sizes to maximize the use of fast but limited local memory and
avoid access collisions during subsequent calculations. The proposed approach has been evaluated using
PD, T1 and T2 weighted MRI images of the brain revealing a four times speed-up on average compared
to other graphics card implementations.

Contents

1 Introduction 2

2 Method 3
2:1 ‘Histograms:onthe:GPU : : 5 vies wuw 5 ® s 9 Sew a0 % e B 58 % WEs 95 5 5 3
2.2 ‘Histograms with Adaptive Bin'Size . « v « ciow cv v sonw s 0 sinw e s s s e s ore 4
2.3 AIFOrhIDEIANS . . oo v s seem wtv o W AEAGE RSP PO Sie B AREE TR MG G 4
24 Calculating Mutual Information 7

3 Results 7

4 Summary 8

A Appendix 9

MICCAI Page 35

1 Introduction

Image registration is an important preprocessing step in medical image analysis. The task of image regis-
tration is to find a transformation 7" which applied to the floating image v, aligns the floating image with the
base image u. Viola and Wells formulated this problem as an optimization problem [6] defined as

T = argmax(u,7(v)) M

with / the mutual information (MI) between the base image and the transformed floating image. There are
several ways to compute mutual information[3]. One definition is given by

pagla.b)

e 2
pala)pg(b) @

1(A.B) =Y Y pasla.b)log
a b
where py4 p is the joint probability density function (PDF) and p4 and pg are the marginal PDFs. A good
way to estimate PDFs are histograms. Joint histograms are used to estimate joint PDFs. After calculating
the joint histogram, the histograms of image A and B can be computed by summing all bins along the rows
and columns of the joint histogram. Hence, it is sufficient to calculate the joint histogram only in order to
compute mutual information.

The optimization problem is solved by iteratively transforming the floating image and calculating mutual
information. Depending on the size and dimension of the images used and the number of degrees of freedom
of the transformation, registration can take several minutes up to several hours. Since image registration is
a time-consuming task it makes great demands on the underlying hardware.

In the recent decade, graphics cards have advanced to powerful processing units and have become well
accepted in the field of scientific computations — especially for complex simulations. This reduces the hard-
ware costs by reducing the need for large computer clusters, but the development of GPU programs has still
been labor-intensive. With the introduction of the Compute Unified Device Architecture (CUDA), NVIDIA
made it easy to use the computational power of today’s graphics cards for a large field of applications while
reducing the development costs. So GPU implementations have found their way into medical image pro-
cessing applications like image registration. Popular examples come from Shams, who presented in [4] a
method for image registration on the GPU, which is 25 times faster than image registration on a single same-
generation CPU. Other examples come from Chu [1]. He presented a method for non-rigid registration of
breast MRI images using an adapted version of Shams” method for calculating histograms. This way, a 40
times speed-up compared to the original CPU implementation has been reached.

With CUDA, NVIDIA provides a technology to perform general purpose calculations on their graphics
cards. The focus is to support the user in using this technique for highly parallel computing. The higher the
number of independent operations that can be processed in parallel the higher the performance. There are
also different memory units on a graphics card. The type of memory requiring the most consideration for
optimization is the shared memory, which is the fastest memory but typically limited to only 16 KB. The
remaining graphics card memory, that is usually refered to as global memory, is much larger (256 MB and
more) but slower. Detailed information about CUDA can be found in the “Programing Guide™ [2].

In this paper, a self-optimizing algorithm for computing a series of histograms, such as those used in im-
age registration, is presented. The algorithm uses the knowledge of previous calculations to speed up the
computation of following histograms by using the intensity distributions of the input images to adapt the
histogram bin sizes in order to maximize the use of shared memory and avoid access collisions. This way,
joint histograms can be computed up to five times faster on the GPU than other current GPU algorithms. In
the next Section, we give a brief explanation of Shams™ method [5], which is a recently proposed approach

MICCAI Page 36

for calculating histograms on the GPU. In Section 2 we present our approach, followed by a validation of
our method and results in Section 3. The last section summarizes our conclusions.

2 Method

2.1 Histograms on the GPU

The calculation of histograms without parallelization is simple. The first step is to initialize all bins of
the histogram to zero. Then for each pixel of the image the corresponding bin counter is incremented. A
principal algorithm for the GPU is very similar. Instead of looping through the image, one thread per pixel
is started which reads the pixel value and increments the corresponding bin counter. If two threads read the
same intensity value they will increment the same bin counter so these operations need to be synchronized.

There are two principal strategies to overcome this issue. The most obvious solution is to let each thread
calculate its own partial histogram. This method was first presented in [5]. After the calculation of partial
histograms is finished all partial histograms need to be summed up to get the final histogram. In order to
minimize slow global memory access all partial histograms should be placed in shared memory. The number
of bits b that can be used for each bin can be calculated with Equation 3 ([5]).

Seix X 32
b= —— 3
"= BxN, =
where $y,,x 1S the number double words that fit into shared memory, B is the number of bins of the histogram
and N, is the number of threads.

Most of todays graphics cards have a shared memory of 16 KB which would fit 4096 double words. To
maximize computational power the program should not have less than 128 threads, which corresponds to the
number of calculation units typically available. For accurate MI computation with most medical image data,
such as MRI, 128 bins per histogram would be considered a minimum, which would result in 128> = 16384
bins for the joint histogram. Thus, there is less than one bit available for each bin so the fast shared memory
cannot be used in a straightforward manner.

In order to maximize the use of limited memory, Shams presented a second method [5] where several threads
share one bin. This involves the need for synchronizing thread access of conjointly used memory, which
is not possible in general without synchronization primitives. However, since all 32 threads of a collective
thread unit, called a thread warp, perform the same operation at any time, it is possible to simulate a mutex
for groups of 32 threads. Every time a thread tries to write to shared memory the counter will be tagged with
the thread ID. After writing, the written value will be read back and by checking the thread tag, each thread
can check whether the writing operation succeeded and repeat it if necessary. The storage of tags reduces
the number of bits that can be used for the counter itself. To comply with the shared memory alignment
requirements, every bin is stored in a double word. Shams pointed out that the algorithms performs best
with eight thread warps each calculating their own partial histogram. With a shared memory of 16 KB
and eight histograms only 512 bins would fit into shared memory compared to 1282, which are needed
for accurate MI computation. To overcome this problem, only a specific bin range is calculated and the
algorithm calculates each bin range iteratively.

MICCAI Page 37

2.2 Histograms with Adaptive Bin Size 4

St —— S
Bin 0 Bin | Bin 2 Bin 3 Bin 0 Binl Bin2 Bin3
(a) Without adaptive bin size (b) With adaptive bin size

Figure 1: Comparison of histogram configurations with and without adaptive bin size. Histograms with adaptive bin
size use the available memory more efficient resulting in less thread collisions and less overflows.

2.2 Histograms with Adaptive Bin Size

Usually, the distribution of gray values is non-uniform. That means that some bins of the histogram need to
be incremented more frequently than others resulting in many overflows and global updates for bins that are
frequently used and many empty or nearly empty bins. Our algorithm adapts the histogram bin sizes to fit
the image data. Bins that are more likely updated are allocated more bytes than others. Bins that are nearly
never used are not cached in shared memory at all saving space for other bins.

This idea is illustrated in Fig. 1. In the example, a histogram is calculated with eight threads for an image
with eight pixels. The first case shows a histogram with equally sized bins. Each bin is allocated two bytes,
and each byte is filled independently. Because there are five pixels with the gray value zero, the threads
collide while updating bin zero. On the other hand the bins one, two and three each occupy one byte that is
not used. A histogram with adaptive bin size is able to balance bin updates much better avoiding collisions
and unused memory completely.

2.3 Algorithm Details

The algorithm can be divided into two major parts — the calculation of an optimal histogram configuration
and the calculation of histograms itself. The histogram configuration contains for each bin the number of
bytes that are used to cache it in shared memory. Since the calculation of an optimal histogram configura-
tion needs an estimate of the probability density function the first histogram calculation is not optimized.
The optimization of the histogram configuration is time consuming, but since the histograms typically do
not change very much during the registration process, the histogram configuration needs to be calculated
only once at the beginning. So when many histograms are computed in succession the costs for the first
calculation and histogram optimization amortizes well over the complete registration process. To facilitate
an explanation of the optimization process, we first describe how we calculate histograms with adaptive bin
sizes.

Calculate Histograms ~ An overview of the algorithm is given in Algorithm 1. The first step is to initialize
the histogram in global and shared memory. After initializing the memory the histogram is updated for
each pixel of the image, with the number of available threads determining the number of pixels that can be
processed simultaneously. Each bin has a logical bin position, which is determined by the gray value of
the current pixel and the number of gray values which fall into the same bin. Then, the bin parameters for
the current bin are read. These parameters specify whether a bin is cached in shared memory and if so how

MICCAI Page 38

2.3 Algorithm Details 5

many bytes are used to store it as well as the position in shared memory. In case a bin is spread over more
than one byte each thread group increments a separate byte which is identified by the bin parameters and the
current thread ID.

Before incrementing the bin it is checked for a potential overflow. The maximum value of the bin depends
on the number of threads that share a bin, because some bits of the bin are used for synchronization. The
more threads that share one byte the more bits are used for synchronization, reducing the maximum value
of the bin. If an overflow needs to be handled each thread writes zero to the bin and the incremented value is
updated in global memory, otherwise the bin is incremented in shared memory. A unique thread ID is also
written in the upper bit range. If two threads try to write to the same memory location only one thread will
succeed. After reading the written value the thread ID can be checked to test if the last writing operation
succeeded. If the write operation does not succeed the procedure is repeated.

Algorithm 1 Calculation of histograms with adaptive bin size
1: initialize all bins of the histogram to zero
2: for all p, p € image do {This loop is processed in parallel }
3: get logical bin position by of p and the corresponding bin parameters

4: if bin is cached then

5 get physical bin position b, depending on the bin parameters and thread ID
6: repeat

7 if bin by, is full then

8 try to set bin b, to zero

9 if last writing operation succeeded then
10: update global memory

11 end if

12: else

13: try to increment bin b,

14: end if

15: until last writing operation succeeded

16: else {bin is not cached}
17: update global memory

18: endif

19: end for

20: write cached values in shared memory to global memory

Histogram Configuration When incrementing a bin, each bin creates costs. The greatest costs are caused
by collisions in shared or global memory and by global memory updates. The aim of the optimization is
to minimize the expected costs. To achieve this, a bin level /; is calculated for each bin i. The bin level
indicates how many bytes are used for caching a bin in shared memory. A level of 0 indicates that a bin is
not cached at all otherwise the used bytes are given by b; = 2/~ !, The expected costs are defined as

ny—1
Costs = Z Cgu,i T Csei + Cgci @)

i=0
with 2, number of bins, ¢gy i costs caused by global updates of bin i, ¢ ; costs caused by collisions in shared
memory and cg; costs caused by collisions in global memory by bin i. The total costs of global memory
updates are estimated as the costs for one update cgy times the expected number of global updates and given

MICCAI Page 39

2.3 Algorithm Details 6

by

I .

Cour—— ifl;>0

"gu.i — BY b i - J (5)
couhi if;=0

with h; the value of bin i and by, ; the number of different values that can be stored in bin i. The maximum
number that can be stored in bin i depends on the number of bits that are used to store the bin counter. With
a bin level of 1 32 threads share one bin so log,(32) = 5 bits are used to store the thread tag leaving only
3 bits to store the bin counter. Hence, 23 = 2! x 2 differnt values can be stored in a bin with a bin level
1. Increasing the bin level by | doubles the number of bytes that are used to cache a bin and halves the
number of threads that share one bin reducing the number of bits used to store the thread tag by 1. Thus,
one more bit can be used to store the bin counter doubling the number of different values of the bin. From
this it follows that by ; = 2% x 22 = 2/i%2,

Next, we calculate the expected number of collisions in shared memory. Consider we are given n threads
which try to access the same bin i each with a probability of p. Then the probability u;; that exactly k
threads try to update bin i is given by

i =80k | pun) = () A1y B

The expected number of updates of bin i is

E[ui] = ziB(i | p.n) =np (7
i=0

This yields to the expected number of collisions given by

Elci] = i(i—)B(i| p.n)=np+(1—p)" =1 8)

i=1

The number of threads n which try to access the same bin depends on the bin level. With a bin level of 1
32 =25 = 26! threads share one bin. Increasing the bin level by 1 halves the number of threads that share
one bin, so n = 2°7"_ The expected costs of bin i with respect 1o its bin level /; is given by

9

s ('schsum"'l———‘L"”“;, i ifl; >0
7o ifl;=0

with hgym = ¥k and p = hi [hgym.

Finally, we need the expected costs caused by global memory collisions. Analogous to the costs caused by
collisions in shared memory these costs are given by

S iff; >0 it
BT | cpohaum EEEEEL =0

with n = n, the total number of threads, and p = h;/hgm. The costs caused by collisions in global memory
due to overflows in shared memory are negligible and therefore ignored.

In order to find an optimal histogram configuration, each bin level is set to zero and the expected costs of
each bin are calculated. The number of available bytes are set to the number of bytes used to store histograms

MICCAI Page 40

2.4 Calculating Mutual Information 7

in shared memory. Then the relative benefit defined as the expected decrease of costs divided by the bytes
that are needed to increase the bin level are computed for each bin. As long as there are bytes available, the
bin level of the bin which promises the greatest relative benefit is incremented and the number of available
bytes is decremented by the number of bytes used for the last optimization step. An optimal histogram
configuration is found when there are no more bytes available or all bins have reached the maximum bin
level 6 which means that no bins are shared by more than one thread.

2.4 Calculating Mutual Information

As outlined in the introduction, the computation of mutual information requires an estimate of the PDFs of
both images and the joint PDF. Histograms and joint histograms can be used to provide such an estimate.
In the previous section, we have shown a method to calculate histograms on the graphics card. Since the
calculation of joint histograms is separable in each dimension, this method can be used to calculate joint
histograms as well. Therefore, the 2D bin index of the joint histogram (x,y) is mapped to the ID index i
by i = w x y+ x where w is the width of the joint histogram. The PDFs themselves are given by dividing
each bin counter by the number of voxels of one image. Then, mutual information can be computed using
Equation 2.

3 Results

In this section, we present the results of two experiments, one to compare the overall registration speed
between our new algorithm and Shams”™ methods, and the other to analyze how much of the runtime of each
registration iteration is occupied by histogram calculation. For both tests, we used a data set consisting of
PD, T1 and T2 weighted MRI images of the brain of two patients with a resolution of 256 x 256 x 60 voxels.
All image pairs were formed using all combinations of images of the same patient. Between 300 and 400
iterations were necessary in order to register two images. Details about the graphics card that were used to
perform all tests are summarized in Appendix A, Table 1.

During the first test, joint histograms are calculated for different numbers of bins for all image pairs of the
test set using our approach and the two methods presented by Shams. Then, all results for the same number
of bins and the same method have been averaged to get the mean runtime depending on the number of bins
and algorithm. Since the first calculation of the method with adaptive bin size takes a lot more time (up to
three seconds) than all following calculations, the joint histogram is calculated twice and only the runtime of
the second calculation was taken into account. The results are summarized in Fig 2. The runtime of Shams’
first and second method increases with increasing number of bins, while the runtime of our approach is
nearly constant. With Shams’ first method, only a fixed number of bin can be calculated at a time. So with
more bins more iterations are needed to calculate the complete histogram resulting in a longer runtime. With
the second method, all bins are filled during one iteration, but the amount of fast shared memory that can be
used for each bin decreases with increasing number of bins, so the overall runtime increases t00.

Our proposed method performed best during this test. Because only one iteration is needed to calculate all
bins, it is faster than Shams’ first method. In addition, the shared memory is used much more efficiently than
with Shams’ second method resulting in a shorter runtime when many bins are calculated. The more com-
plicated calculation due to the interpretation of the bin configuration introduces some algorithmic overhead,
which could have led to a worse runtime. Our tests have proven that this overhead is small in comparison to
the benefit of an optimal histogram configuration so the algorithm is faster even with a very small number
of bins. However, the difference becomes much more clear as more bins are used.

MICCAI Page 41

—~e— Shams’ Method |
—+— Shams’ Method 11
300 « Adaptive Bin Size

e //
.

100 ——o " e

0 20 40 60 80 100 120 140 160 180 200 220
Number of bins in x>

Runtime in ms

o

Figure 2: Comparison of the time need to compute mutual information using different histogram algorithms for increas-
ing number of bins.

In the second test, we measured the proportion of the total runtime of the registration process required for
histogram computation, and compared it to that required by transformations and computation of mutual
information. Therefore, we registered each image pair of our data set using different histogram algorithms.
Each joint histogram was calculated using 240 x 240 bins. The optimization algorithm used to maximize
mutual information was a combination of Powell’s method which uses Brent’s method to perform the line
optimization step. During each optimization step, the floating image needs to be transformed according to
the new transformation parameters. Then the joint histogram of the base image and the transformed floating
image was computed as a part of the mutual information computation. For each step, three intermediate
times were recorded: 1) the time needed to calculate the joint histogram (this includes the time needed to
calculate the optimal histogram configuration in case of our method), 2) the time needed to calculate mutual
information including the time needed to calculate the joint histogram and 3) the two simple histograms
and the time needed for one complete optimization step including the time needed to transform the floating
image and to calculate mutual information. Then, for each method, the averaged time over all iterations and
all images to perform each of these steps has been calculated. The results are illustrated in Figure 3.

The first observation is that for all algorithms the total runtime is dominated by the time needed to compute
joint histograms. The time needed to compute MI excluding the time needed to calculate joint histograms
and the time needed to transform the images are nearly negligible when performing these operations on the
graphics card. In Section 2.3, we claimed that the costs for the first calculation and histogram optimization
amortizes well over the complete registration process. Figure 3 supports this claim because, even though
the calculation of the first histogram and the histogram calculation is included in the averaged histogram
time, it is much faster compared to Shams’™ methods. Simply by using our approach to calculate joint
histograms, image registration can be performed three to four times faster compared to other graphics card
implementations.

4 Summary

Other publications have shown that GPU implementations can greatly enhance the performance of image
registration compared to CPU implementations due to the vast computational power of today’s graphics
cards. While the calculation of transformations is rather simple on the GPU, counting and gathering al-

MICCAI Page 42

‘ Histogram

80 {8 Mutual Information
« JuMI + Transformation
g 60
E
= 40
E]
(<4

20

0 il

Shams I Shams II Adaptive

Figure 3: Averaged time to compute histograms, mutual information and one optimization iteration including the com-
putation of mutual information and transforming the image for different histogram algorithms.

gorithms like calculating histograms are challenging due to the lack of synchronization primitives. There
are some good solutions that depend greatly on the very limited amount of fast memory, and we have used
this previous work as a starting point for designing our new algorithm. As with Sham’s methods, our algo-
rithm also computes histograms and joint histograms on the graphics card. The main difference is the way
the shared memory is used. Shams used the shared memory to cache all bins of the histogram, no matter
whether they are updated frequently or not. Our new approach tries to overcome this issue by calculating a
histogram configuration based on a previously calculated histogram. Depending on the parameter difference
between different optimization steps, the histograms are very similar. In case of large initial misregistation,
a new histogram configuration calculation might be necessary after moving a specific distance in order to
have optimal caching even at the end of the registration process. However, our evaluations have shown that
for common registration problems such a resetting step is not necessary.

The difference in performance between CPU and GPU implementation is dominated by the differences in
the computational power of CPUs and GPUs so such a comparison might not be appropriate to judge the
quality of a GPU implementation itself. Therefore, we compared our implementation with other GPU imple-
mentations in order to provide informative results. We have shown, that it is possible to speed up common
GPU implementations by improving the memory usage. It is possible to calculate an optimal histogram con-
figuration, if a good estimate of the distribution is available. In common registration tasks, the calculation of
many similar histograms is required, therefore a previous histogram can provide a good estimate of optimal
memory usage for subsequent histogram calculations. Furthermore, we showed that calculating histograms
is the bottleneck of image registration using mutual information. Even though the calculation of an optimal
histogram configuration is very slow compared to the histogram calculation, the overall runtime could be
reduced significantly by reducing the computation time of histograms. So implementing the calculation of
an optimal histogram configuration on the GPU will further the reduce the runtime in the future.

A Appendix

MICCAI Page 43

References 10

Table 1: Graphics Card Specification

Model NVIDIA GeForce 9600 GT

Processor Cores 64
Graphics Clock 650 MHz
Processor Clock 1625 MHz
Graphics Memory 1024 MB

Shared Memory 16 KB
Max number of threads per block 512
Warp Size 32

References

[1] Mei Yi Chu. Mutual Information based Non-Rigid Image Registration using Adaptive Grid Generation:
GPU. PhD thesis, University of Texas at Arlington, 2008. 1

[2] C. NVIDIA. Programming Guide 2.0. http://developer.download.nvidia.com/compute/cuda/
2_0/docs/NVIDIA_CUDA_Programming_Guide_2.0.pdf, 2008. 1

[3] J.P. W. Pluim, J. B. A. Maintz, and M. A. Viergever. Mutual-information-based registration of medical
images: a survey. /IEEE transactions on medical imaging, 22(8):986-1004, 2003. 1

[4] R.Shams and N. Barnes. Speeding up mutual information computation using NVIDIA CUDA hardware.
In Proc. Digital Image Computing: Techniques and Applications (DICTA), pages 555-560, Adelaide,
Australia, December 2007. |

[5] R. Shams and R. A. Kennedy. Efficient histogram algorithms for NVIDIA CUDA compatible devices.
In Proc. Int. Conf. on Signal Processing and Communications Systems (ICSPCS), pages 418-422, Gold
Coast, Australia, December 2007. 1, 2.1, 2.1

[6] Paul Viola and William M. Wells III. Alignment by Maximization of Mutual Information. International
Journal of Computer Vision, 24(2):137-154, 1997. |

MICCAI Page 44

GPU-Based Elasticity Imaging Algorithms

Nishikant Deshmukh, Hassan Rivaz, Emad Boctor

Johns Hopkins University, 3400 N. Charles Street, Computer Science Department, 224 NEB,
Baltimore, Maryland 21218, nishikant@jhu.edu

Abstract. Quasi-static elastography involves estimating the disp nent field
of the tissue undergoing slow compression. Since elastography is
computationally expensive, many compromises have been made to perform it in
real time. Parallelized algorithms and impl ions for freehand palpation
elastography are proposed in this paper to speed the computation. We present
parallel implementations for Normalized cross correlation elastography
algorithm and for Dynamic programming elastography algorithm. Both
methods are implemented in CUDA® using Graphies Processing Unit (GPU).
We are able to achieve above 300 images per second for NCC and around 30
images per second for DP elastography algorithm.

Keywords: Dynamic Programming, Normalized Cross Correlation, GPU,
Parallelization, Ultrasound Elastography, Real time strain imaging.

1 Introduction

Elastography, the computation of the spatial variation of the elastic modulus of tissue,
is an emerging medical imaging method with medical applications such as tumor
detection [1].This paper focuses on static elastography, a well known technique that
applies quasi-static compression of tissue and simultancously images it with
ultrasound. Through analysis of the ultrasound images, a tissue displacement map can
be obtained [2, 3]. A least squares technique is then typically used to generate a low
noise strain estimate from the displacement map [3].

In Ultrasound Elastography we initially take RF data sample with Ultrasound probe
just above the surface of the tissue, we call this image as uncompressed image and the
next sample we take by compressing the tissue and we call this image as compressed
image. The resulting images are 2D matrices with columns representing the axial
direction along the path of RF waves emitted out of the probe: we refer to it as RF
lines.

In Normalized cross correlation (NCC) method we compare RF lines from
compressed and uncompressed images for displacement in axial direction, since the

MICCAI Page 45

2 Nishikant Deshmukh, Hassan Rivaz, Emad Boctor

pressure is applied in axial direction and also since resolution is superior in this
direction. We select a vectors of size /x » from RF line in uncompressed image and
vectors of size /% s from RF line in compressed image such that 5 > r. Each window
has 85% overlapping over each other along the RF line. These computations for small
windows are independent of each other and can be computed in parallel. After
calculating NCC we apply cosine fit interpolation, to get more approximate values, in
the same thread in which NCC was calculated reducing the need to spawn a separate
thread. The parallel algorithm will be discussed shortly.

Dynamic Programming (DP) is a numerical method for fast numerical optimization of
the algorithms which are computationally intensive and complex in implementation.
The most popular technique in DP is the top down and bottom up approach in which,
in terms of Finite Automata, the present state depends on the previous state. This
approach is particularly good for algorithms involving energy or cost functions which
depend on the result from the previous stage. DP is hard to parallelize because of its
dependence on the data from previous steps. With the introduction of many cores
GPU’s by NVidia and flexibility of NVidia CUDA programming environment it has
become increasingly easy to parallelize existing implementations by using these
environment. We thought of parallelization of NCC and DP Elastography on this
hardware and utilize the computation power of these fast emerging compute
capabilities and help the cancer research efforts in detecting and monitoring of tumors
in real time.

2 The Parallel Algorithms

2.1 Parallel Algorithm for Normalized Cross-correlation

In NCC, every search window for comparison of the # RF lines in uncompressed data
set (window size r) to the n RF lines in compressed data set (window size s) is
computed in separate threads on the GPU [5]. The number of sample points per RF
line is m. These threads since doing the same work are run in parallel. After applying
cosine [it method to get sub sample interpolation, the result is a single pixel which is
independent of other interpolation output pixel from other threads [5]. This output
data independence eliminates the need to perform thread synchronization which
makes the task highly inefficient [5]. The calculation of echo-strain, by applying
median filter and low pass filter, and strain estimation, using least square methods, is
calculated per pixel with every GPU thread assigned to every pixel and this method
again gives data independence in output data pixels which ensures that the write
operation can be done by each thread without interference [5]. To increase the

MICCAI Page 46

GPU-Based Elasticity Imaging Algorithms 3

throughput we performed volume rendering by processing multiple images at the
same time by combining them horizontally along the axial direction [5].

Depending on size of window and percentage of overlapping we get number of
samples & in output image. So we spawn & * n number of threads to calculate strain
which is also dimension of the output image. For volume rendering with p number of
images the number of thread becomes k& x n x p. We used fast Normalized cross
correlation [10] given by

y(u,v)=
5 [f(x,y) —= ',,_..lf(Jr —u,y-v)—1] (1)
X,y &U‘ [/.(x’ y)- _f...,_.‘]ZZxJ [I(x —u,y—v)— ’,]z }ls

where fis the image and sums over (x, y) under 7 which is the matching template and
" is the mean of template and /°,, is the mean of ffx, y) in the region under the
feature([10].

F/ K
r g /
< "'

Fig. 1. A is uncompressed image, B is compressed image and C is output image. The windows
in A and B are compared with each other giving out the pixel in C. All this comparisons are
carried out in parallel on separate threads of GPU.

2.2 Parallel Algorithm for Dynamic Programming (DP) Elastography

DP Elastography is a known technique for calculating 3D echo strain image in
medical imaging [4]. We focus on static elastography which applies quasi static
compression of tissue [4]. DP Elastography is important since it has several
advantages over the previous known elastography techniques. It reduces noise effect
due to signal decorrelation between precompression and post-compression images and
also reduces need for using large windows to reduce variance [4].

MICCAI Page 47

4 Nishik Deshmukh, H Rivaz, Emad Boctor

In 2D DP elastography [4] firstly we calculate the difference between two image
signals g (i) and g’ (i) along RF line and lateral direction.

AG, j.d,.d)=|g, (i)~ &',., (+d,)

Where o <d, <d, . is the displacement at sample / in axial direction (along the

a,min

RF line) and o,

1,min

(2)

<d <d, .. is the displacement in lateral direction, and j = 1 ton

and i = 1 to m, where m is the number of samples per RF-line and n is the number of
RF lines [4].

A cost function is defined as

C,(d, d,,i) =
C,(5,,8,i-1)+C, (8,6, 3
ming 000!)2+ £190%D | R, 5,81+ Md,di1)

Where R(d,.d,.d, .d,)=(d,-d,) +(d, —d,)’is an axial and lateral
direction smoothness regularization term. « is a weight for the regularization, j is the
sample number for i" RF line, 8, and 8, are values that minimizes the cost function

are stored for d,, d; and i. The cost function is minimized at i = m and the d; values
that have minimized the cost function are traced back to i = 1, giving the d; for all
samples. More information is in [4].

Our approach involves vertical partitioning of the input image of size m x n with
a specific width w. The width can be set arbitrarily depending on the degree of
parallelization needed. We prefer vertical partitioning since comparison is done along
RF lines between two images and compression is applied along the RF lines. After
dividing the image we get a new set of images which are (1/w) " size of the original
image or in other words we get [/ w|number of subsets. The starting RF line of
these subsets now acts as the pivot by applying independent cost function on them.
On these subsets we apply the DP Elastography. But applying this approach will
result in formation of straps like output since at the start of each subset; the
application of cost function which does not depend on previous cost function will
make an independent disparity from previous RF lines and these two disparities will
vary greatly. To reduce this effect we propose the following approach.

Stage I: We calculate the disparity until a fixed depth d for every subset and preserve
the cost function for this RF line.

MICCAI Page 48

GPU-Based Elasticity Imaging Algorithms 5

¢ ¢ ¢ ¢ ¢
—ei —a —t — —
m
.
D e s T
w w w w nefed)

Fig. 2. Shows the Stage I, wherein we do DP steps until depth d at every interval of width w.

Stage 1I: Now considering the RF line in Step I at depth d for every subset as a new
starting point and using its cost value as a pivot value we calculate disparity in both
forward and backward directions (separate steps). We can say our original subset in

Stage I got shifted right by distance d RF lines.

.
] S S—" | '\ \\
H ‘\ Pivet
- I e
: | P W -
3 .._---.-.'\
®3 ot
H | S S
i S E——
.
PO OGO

L » oped) “wed

Fig. 3. Shows Stage I of DP Programming, after we have determined the new pivot values
from Step I we apply DP algorithm forward and backward from these new points.

Stage 111: Excluding the first subset and last subset, the intermediate subsets have two

disparity values. We now calculate mean and weighted average of these disparities to
get a fair disparity.

By using this approach we have successfully divided the data into [,/ w number of

subsets giving us data independence. The forward and backward movement as in
Stage Il can be similarly run in parallel. The weighted average can be calculated

MICCAI Page 49

6 Nishik Deshmukh, H Rivaz, Emad Boctor

independently for each pixel for output disparity. Coming back to the DP algorithm,
the value of A(i, j,d,,d,)1s independent for every value of i and j, and hence can be
calculated in parallel with m x nx d,x d; threads. On GPU random memory access is
very expensive incurring 400+ clock cycles [11], this latency can be effectively hided
by spawning large amounts of thread. C(d,.d,, i) can be calculated for every j value
across all RF lines for i = 1 to m, we have to repetitively call the kenel in this loop
since cost function depends on cost function of i -1. Hence the number of threads
called by each kernel is n * [;1/ \r‘l % d, x dy. Finally the cost function minimization

can be done for each individual subset in parallel in rly/ w] number of threads. To

improve the performance we have used software managed caching feature of GPU.

To get maximum throughput we do multivolume processing of data by feeding
multiple images for processing. So if numbers of streams are p then the overall
threads will increase by multiplying p with number of threads in every stage.

3 Results and Discussion:

We are using NVidia Tesla C1060 GPU card for our experiments which has 240
Streaming Processor Cores and 4GB of DDR3 RAM.

3.1 Normalized Cross Correlation

In GPU the memory access is fastest in case of cached memory followed by
sequential access and then the random memory access [9]. NCC involves accessing a
window of size r and s in uncompressed and compressed image respectively along the
RF lines. Because of the availability of small cache inside GPU we decided to
approach this problem by performing serial access over the image. To do so we read
in the input image in transpose forms making the RF line a row instead of column. In
this way we perform serial access on the RF lines in each thread.

Table 1. Figure shows comparison timings of Normalized cross correlation method using
CUDA with corresponding C implementation for k = /39 samples, m=641 and n=73.

CUDA €

time/image* time* | time/image*
0.0035 0.0035 0.0324 0.0324
0.3776 0.0030 3.8171 0.0305
0.7696 0.0031 7.6362 0.0305
1.1267 0.0030 11.4495 0.0305
1.8251 0.0037 15.2657 0.0305
1.8723 0.0030 19.0773 0.0305
2.3079 0.0031 22.9005 0.0305

MICCAI Page 50

GPU-Based Elasticity Imaging Algorithms 7

*All timings in seconds

Table 1 shows there is approximately 8X to 10X performance improvements in
CUDA implementation compared to standard C implementation.

Table 2. Figure shows timing comparison for samples for corresponding number of frames.

| 1 125 250 375 500 625 750
0.0044 | 04977 | 0.9987 1.4934 | 2.0052 | 24910 | 2.9969
0.0047 | 0.5607 1.1313 1.6846 | 22937 | 2.8096 | 3.3883
0.0053 | 0.6353 1.2808 1.9121 2.6222 | 3.1576 | 3.8247
0.0035 | 0.3776 | 0.7696 1.1267 1.8251 1.8723 | 2.3079
0.0053 | 0.5696 1.1512 1.7001 2.5980 | 2.8279 | 3.4453
0.0077 | 0.8683 1.7581 25812 | 39171 43041 5.2716
*All timings in seconds, horizontal heading shows number of images p and vertical shows number of
samples(k).

6.0000

5.0000

4.0000 ——32
_ —-—61
v
%’ 3.0000 —tr—=69
£ ——139

2.0000 + —+—147

—o—192
1.0000 +
0.0000 +

1 125 250 375 500 625 750
No. of Images (p)

Fig. 4. Diagram shows plot for Table 2. We can see that we get optimal performance for & =
139 samples.

3.2 Dynamic Programming

GPU'’s global memory access is not through cache. So it incurs a memory access
penalty of 400+ clock cycles for every Random access to the global memory [11]. It
has a memory with small cache known as texture memory and additional constant
memory with cache. Access to this constant memory cache is very fast [11] compared
to the Global memory. Component R(d,.d,.d, .d,) o calculate C; is calculated

only once and is same for the whole image, according to (3) this component is used

MICCAI Page 51

8 Nishik Deshmukh, H Rivaz, Emad Boctor

extensively. Hence we copied this array into constant memory and achieved 1.5X
performance. We did not needed to read the input image in transpose form because
from (2) calculation of A(i, j,d,,d,) is performed in separate threads which masks the

memory access latency. We tested our program with CUDA profiler and found that
all of our kernels are performing 0 non-coherent reads which means all our
multiprocessors are accessing memory in coalesced form and all threads are accessing
consecutive memory locations [11] which means we have a very efficient kernel
design and configuration. More information on NVidia Cuda is in [8].

10

20
width (mm)

Fig. 5. On the right column, B-mode images of liver for two patients, and on the right column,
the corresponding elasticity images are shown (from [6]).

Table 3. Table shows running DP code for different number of images in parallel and we can
see that 200 images at an instance will give best performance.

0.5866 0.8003 0.8743 | 0.0707 | 2.3319 0.0466
0.9427 1.2511 1.3934 | 0.1242 | 3.7114 0.0371
1.7547 2.1969 2.5555 | 0.2565 | 6.7636 0.0338
2.9633 3.5530 4.2858 | 0.3830 | 11.1852 0.0373
4.0215 5.0171 5.9079 | 0.5035 | 15.4500 0.0386
5.0205 6.3884 7.3990 | 0.6519 | 19.4599 0.0389

We ran our code for image of size m=1000 and n=100 with d,= 20, d;= 2, width w =
15 and depth d =10 and the result is in Table 3. We ran the code for C implementation
for image of size m = 1000 and n=100 and the running is 0.2648 sec/image. From

MICCAI Page 52

GPU-Based Elasticity Imaging Algorithms 9

Table 3 we can see that CUDA implementation gives improvement of approximately
6X — 8X compared to the corresponding C implementation.

4 Acknowledgements

The author would like to thank Mr. Matthew Bolitho, Dr. Philipp Stolka and Dr.
Randal Burns for useful discussions.

5 Conclusion

GPU based parallelization provides opportunity for real time imaging and we have
shown that we can successfully parallelize the present known techniques of
Elastography for medical imaging. Sometimes it is important to expand the solution to
get more opportunity for parallelization as seen in the case of Dynamic Programming
Elastography. The results from Normalized Cross-correlation are encouraging with
300 images taking less than a second which is approximately 8 to 10 times the
corresponding C implementation and Dynamic Programming based Elastography is
having performance of 30 images per second which is 6 to 8 times the corresponding
C implementation. GPU provides promising results but we have take in mind that
memory access based computation can be performance degrading and special care
needs to be taken to improve the performance of GPU based implementations using
software managed caching and proper kernel configuration to get coalesced read.

6 References

[1] B. Garra, E. Céspedes, J. Ophir, S. Spratt, R. Zuurbier, C.Mag; and M. P
“Elastography of breast lesions: Initial clinical results,” Radiology. vol. 202, pp. 79-86,
1997.

[2] J. Ophir, S. Alam, B. Garra, F. Kallel, E. Konofagou, T. Krouskop, and T. Varghese,
“Elastography: Ultrasonic estimation and imaging of the elastic properties of tissues,” Annu.
Rev. Biomed. Eng., vol. 213, pp. 203-233, Nov. 1999.

[3] J. Greenleaf, M. Fatemi, and M. Insana. ““Selected methods for imaging elastic properties of’
biological tissues,” Annu. Rev. Biomed. Eng., vol. 5, pp. 57-78, Apr. 2003.

[4] Rivaz, H., Boctor, E., Foroughi, P., Zellars, R., Fichtinger, G., Hager, G., “Ultrasound

Elastography: a Dynamic Programming Approach”, IEEE Trans. Medical Imaging Oct.
2008, vol. 27 pp 13731377

MICCAI Page 53

10 Nishikant Deshmukh, Hassan Rivaz, Emad Boctor

[5] E. M. Boctor, N. Deshmukh, M. §. Ayad, C. Clarke, K. Dickie, M. A. Choti, E. C. Burdette,
“Three-dimensional heat-induced echo-strain imaging for monitoring high-intensity acoustic
ablation”, Vol. 7265, Medical Imaging 2009: Ultrasonic Imaging and Signal Processing.

[6] Rivaz, H., Fleming, 1., A peao, L., Fichtinger, G., Hamper, U., Choti, M., Hager, G.,
Boctor, E., “Ablation Monitoring with Elastography: 2D In-vivo and 3D Ex-vive Studies”,
Medical Image Computing and Computer Assisted Intervention, MICCAI, New York, NY,
Sept. 2008, pp 458-466

[7] J. Ophir, 1. Cespedes, et.al. Elastography: A Quantitative Method for Imaging the elasticity
of Biological Tissues. Ultrasonic imaging 1991; 13(2):111-34

[8] Cuda 2.2 Programming Guide and Reference Manual.
[9] GPU Gems 2, Chapter 32: Taking the Plunge into GPU Computing.
[10] 1. P. Lewis, Fast Normalized Cross-Correlation.

[11] Victor Adrian Prisacariu, lan Reid, fastHOG - a real-time GPU implementation of HOG,
Technical Report No. 2310/09

MICCAI Page 54

20-24 September

MICCAI 2009

London UK

MICCAI-Gric Workshop

Medical imaging on GRID, HPC and GPU Infrastructures
Interoperability Highlights on NeuroSciences

Part 2 — GRID-Based Image Processing

MICCAI-Grid Workshop
http://proton.polytech.unice.fr/MICCAI-Grid/

MICCAI Page 55

Automatic annotation of 3D multi-modal MR
images on a Desktop Grid

Curzio Basso!, Marco Ferrante!2, Matteo Santoro!- and Alessandro Verri'

August 3, 2009

'DISI, Universita di Genova, Italy
2CSITA, Universita di Genova, Italy
3CAMELOT Biomedical Systems Srl, Genova, Italy

Abstract

We present a distributed version of an algorithm recently proposed for the automatic annotation of 3D
multi-modal MR images. The implementation takes advantage of the extremely parallelizable nature
of the algorithm, both during the training and evaluation phases. Furthermore, the use of Python as
implementation language allowed for the implementation of a framework allowing the easy conversion
from the local, sequential version of the algorithm to the distributed one. The algorithm is deployed on
a Desktop Grid infrastructure shared by a group of universities, made up of commodity desktop PCs.

Contents

1 The Algorithm 2
1.l Rationale and/MAatEHANE . .« v w0 s vom s siace vim @ womos s ws v % e i e e N 3
1.2 Voxel Classification 0 e e e e e e e e e e e e e 3
1.3 Model Selection (Validation) and Testing, 4

2 Distributed Implementation 5
21 AQENCTRl FAMBWORK: o v s o 5o R0 WA BASS S R N SRS SRS GRS 8 5
2.2 . 'Application to'the Antomatic: ADDOIALION . <« o soeis wmom s o ame o wraie suim & srw e sus 6

3 Test-bed Infrastructure 7

4 Conclusion 9

In the last ten years supervised machine learning methods have proved considerably successful at tackling
diverse types of problems, as long as they can be framed as either classification (assign a label to a previously
unseen object x belonging to an input space X) or regression (assign a scalar value rather than a label)
tasks. The automatic annotation of medical images, that is the segmentation and classification of regions
corresponding to specific tissues or anatomic structures, can be posed as a voxel classification task, and is
therefore amenable to be approached with supervised learning methods. Some examples of these types of

MICCAI Page 56

works can be found in [4, 11, 15]. The key idea of supervised learning is to estimate a solution based on
known examples; in the classification setting, we are given a training set of N labeled data 7 = {(x;, 1)} |,
where x; € X are the data and y; the labels. During the training phase, the training set 7" is used to estimate
a solution f: X — 9" which maps new data to the most likely labels, thereby generalizing the examples
provided in 7.

The drawback of such methods is that, in order to provide bias-free solution and to avoid over-fitting, the
training has to be repeated several times with different parameters, thereby requiring a considerable amount
of computation. In the analysis of medical images this might be especially daunting, if more modalities
and/or 3D data are considered. The starting point of our work, is the observation that this procedure is
easily parallelizable, since it is a typical parameter sweep case, consisting of one or two nested loops of
cross-validation. In fact, in the case of automatic annotation also the evaluation phase is conceptually easy
to parallelize, since the classification of each voxel is independent from the classifications of all others.

We focus on an algorithm recently proposed in [3], aimed at the automatic annotation of inflamed synovia in
multi-modal 3D MR images of wrists. The algorithm was originally implemented and tested in Python, and
in this work we present its porting to a distributed environment. The distributed version of the algorithm has
been deployed on a Desktop Grid infrastructure shared by a group of universities, made up of commodity
desktop PCs.

Although conceptually easy, the actual adaptation of a pre-existing processing pipeline and its deployment
on a distributed infrastucture is, in practice, a challenging endeavour. Indeed, in a typical situation the
infrastructure and the pipeline have been developed in two different contexts. by two different research
communities, with different goals in mind, and under different constraints. One of our goals is to explore
mechanisms enabling a smooth and easy adaptation, under appropriate conditions, of legacy Python software
to distributed infrastructures, and possibly a transparent switch between different ones, even if this result in
a loss of functionality.

The software project that comes closest to satisfy our needs is PyMW [13], a Python module for parallel
master-worker architecture. Altough having similar goals, the architecture of PyMW in its first release was
quite different from the one implemented in our framework. Specifically, tasks to be distributed in PyMW
are generic Python scripts or functions, tasks are submited one at time, and input and output seem oriented to
primitive data types. Hovewer, latest version of PyMW, not yet available during our test, extends its feature
in a direction similar to ours and in future we might consider some form of convergence.

The work presented here, as well as being an example of how medical image analysis can benefit from
distributed computing, is also a proof-of-concept for a more general framework acting as a middle-layer
between Python legacy software and a generic distributed infrastructure.

1 The Algorithm

We consider the algorithm presented in [3]. The system is aimed at the automatic segmentation of the
inflamed synovia in multi-modal 3D MR images of wrists.

The whole pipeline is composed of four modules: multi-modal registration, intensity standardization, cues
extraction and supervised voxel classification. Although all the steps might gain from computation on a
distributed environment, our focus is on the last step, where we expect to reap the highest benefit. In this
section we will provide a general overview of the classification method, with a special attention to the details
most important for our topic, and refer to the original work for further details.

MICCAI Page 57

1.1 Rationale and Materials 3

1.1 Rationale and Materials

The system works on MR images of pediatric patients affected by Juvenile Idiopathic Arthritis (JIA), a form
of arthritis with unknown etiology. The segmentation of the inflamed synovia in volumetric images is a pre-
requisite for the quantitative measurement of its volume, which in turn is thought to be a marker of disease
activity and whose monitoring might improve the patients’ treatment and outcome.

The imaging protocol includes different modalities, all volumetric, performed with a Philips Medical Sys-
tems Achieva 1.5T scanner. Each MR study includes three T1-weighted 3D sequences: an FFE-SENSE
acquired without contrast, followed by the injection of a contrast bolus and the acquisition of two 3D SPIR-
SENSE, acquired at 3 and 10 minutes after the contrast injection respectively.

1.2 Voxel Classification

Due to the small number of positive voxels (belonging to the inflamed synovia) compared to the negative
ones, the classifier is implemented as a two-stage cascade. At the first stage, S1, the voxels are coarsely
classified based on their intensities and positions (threshold-and-trim); voxels passing the first stage are
further classified with S2, a more advanced classifier, based on a sparse set of image features, selected from
a large data-dependent dictionary of features.

S1 works by rejecting voxels not satisfying both of the following two conditions:

1. their intensities in the first post-contrast modality are higher than a lower threshold:

2. their position relative to the center of the image is within a given bounding box.

The optimal values of the parameters of S1, the lower threshold and the bounding box. are estimated during
the training phase. In order to limit the risk of false negatives of S1, the threshold is chosen such that, on
the training data, it achieves a 99.5% sensitivity, while the bounding box is chosen such that it includes all
positive examples in the training set.

The second stage of the cascade classifier is a function f(x) with positive values when a voxel x belongs
to the tissue of interest and negative values otherwise. In practice the voxel x is described by a set of k
image cues @/, possibly derived from more than one imaging modality: x= {@',..., ¢*}. As an example we
might have a simple two-modality setting with two cues ¢' and @2, being the intensities in each modality.
For the case at hand, the cues representing the voxels are: (1) the intensities of the voxel and the set of its
first neighbors: (2) the position of the voxel in millimeters, relative to the center of the acquisition volume;
(3) the multiscale 2-jets as defined in [10], computed by convolution with the appropriate derivative of a
Gaussian kernel: (4) the vesselness measure as defined in [12]. All cues except positions and vesselness are
computed from all modalities, resulting in 14 different cues per voxel.

As explained in the introduction, the optimal classifying function is learned from the examples, that is we
have access 1o a set of n exemplar voxels x; = {@]...., ¢f} for which we know the right labels y;, equal to
+1 if the voxel belongs to the inflamed synovia and —1 otherwise. We make the fundamental assumption
that the classification function can be represented, without loss of generality, as the linear combination of
k x n basis functions

K (x) =x/(¢/.¢)), (1)

where each /(x.x’) is a kernel function satisfying some basic condition ensuring that the result of the
training is well-behaved. A well-known example of such a function, and the one we used, is the Gaussian

MICCAI Page 58

1.3 Model Selection (Validation) and Testing 4

kernel

ch

: i — |12
ol gl i {_W ol } o

The set of basis functions can be seen as a data-dependent dictionary 9D of features: the training phase will
consist in the selection of the most relevant features in D, and in finding their optimal combination for
solving the classification problem.

Given the dictionary D, the discriminant function will have the form

k n
fxob)=Y ¥ a/K/(x)+b. 3)

j=li=1

where b is a bias term and the coefficients of the sum build the vector o.= (at!... o) € R¥, with each
subvector o/ holding the coefficients relative to the basis functions of the j-th image cue. To simplify
things, in the following we get rid of the bias term in (3) by assuming the data are centered.

Since the dictionary 9D is in general over-complete, we look for a method capable of selecting only a sparse
subset of the basis functions in order to build our classifier. Denote by y the labels vector y = (y;);_,, and
by K the n x kn design matrix

K=(K"-K"), “)

where each K is a cue-specific n x n design matrix with elements
K =x'(].9)). s)

The goal is to approximate y with Kot where o is sparse. There is growing literature on such methods, known
as feature selection or sparse signal recovery. We decided to use the Orthogonal Matching Pursuit (OMP)
algorithm, an iterative method which begins with o = 0, and then improves the approximation by adding the
basis function (a column of K) with the largest projection on the current residual; the algorithm stops when
it reaches the required number of basis functions. We refer to [8] for a detailed description of the algorithm.
The feature selection stage is used to restrict the set of basis functions used for classification. As suggested
in [5], in order to improve the classification performance we use the m selected basis to solve an ordinary
/-regularized least-squares problem. Denoting by K the n x m matrix obtained by discarding the columns
of K corresponding to null coefficients, and by 0. the m-dimensional vector of non-null coefficients, the
optimal classifier is estimated by solving the problem

1 San2 ~12
min — [y — K@|[3 + A |2. (©)
o n

1.3 Model Selection (Validation) and Testing

Both S1 and S2 depends on parameters estimated during training: the former requires the choice of the lower
intensity threshold and of the bounding box, while the latter the selection of a subset of the dictionary D
and the corresponding optimal coefficients @.. Clearly, the choice of these paramters depends on the training
data, and in order to evaluate the performance of the algorithm one has to test it on data not used for training.
This is done by performing a cross-validation procedure,

Normally, cross-validation is performed by splitting a certain number of times the training set, consisting in
our case of voxels. However, given the variability across the MR images, it might not be safe to consider

MICCAI Page 59

Algorithm 1 Leave-one-out procedure for model selection and testing. Stages 1 and 2 of the cascade are
denoted as S1 and S2.
1: for all patients i € {1...., N} do {outer test loop}
train S1 on {/;|I # i}
for all patients j € {1...., N}/{i} do {inner validation loop}
apply S1to {I;|l #i.j}
draw a random sample of positives and false positives from step (4)
forallme {...} and A € {...} do {selection and training}
select m features with OMP
train S2 by RLS with regularization coefficient A
validate S2 on /;
10: end for
11: end for
12: choose optimal parameters /n* and A*
13: apply Sl to {/;|l #i}
14: draw a random sample of positives and false positives from step (13)
15: select m* features with OMP
16: train S2 by RLS with regularization coefficient A*
17: testS2on/;
18: end for

Wy ov S N

the voxels belonging to two different images as drawn from the same distribution. Therefore, our cross-
validation procedure splits the training set patients-wise (so-called leave-one-patient-out scheme).

In order to obtain un-biased estimates, we need to adopt a slighly more complex schema. Indeed, the
parameters of S2 actually depends on the choice of other two parameters, the number of basis functions
m and the regularization parameter A, whose optimal values are unknown. This results in a further cross-
validation loop nested within the main one, which performs the selection and training procedure for S2 with
different values of the pair (m,A).

To summarize, each experiment is carried out with two nested cross-validation (CV) iterations, the outer
one for estimating the performance (test) and the inner one for estimating the optimal number of features
and the regularization parameter A (validation). Both CV loops iterates over the patients, leaving all data of
a patient aside for testing or validation, and using the others for training. This can be seen in algorithm 1.

2 Distributed Implementation

An important part of our work is the development of a light-weight Python-based framework that requires
only minor effort by the developer to adapt their software to distributed infrastructures. Our experience
showed that this is a valuable tool for the developers of client applications. The framework works under the
assumption that each task in a job is independent from the others.

2.1 A general framework

Our framework is based on two Python classes, Job and Grid, which take care of all the logic involved in
creating and launching jobs on the Grid infrastructures. What is left to the developer of the client application

MICCAI Page 60

2.2 Application to the Automatic Annotation 6

Algorithm 2 Leave-one-out procedure for distributed model selection and testing. Stages 1 and 2 of the
cascade are denoted as S1 and S2.
1: for all patients i € {1...., N} do {outer test loop}
2: train Sl on {/;|I # i}
3: for all patients j € {1...., N}/{i} do {inner validation loop}
4 apply S1to {I;|l #i.j}
5 draw a random sample of positives and false positives from step (4)
6
7
8

store the data for the task

end for

launch Grid job with N — 1 tasks, one for each validation step
9: end for
10: for all patients i € {1,..., N} do {outer test loop}
11: collect validation results
12: choose optimal parameters /n* and A*
13: apply Sl to {/;|l #i}
14: draw a random sample of positives and false positives from step (13)
15: select m* features with OMP
16: train S2 by RLS with regularization coefficient A*
17: testS2on/;
18: end for

is the implementation of a subclass of Job, mostly just a wrapper of the code to be distributed, and to insert
in the main function a few calls to methods of Job.

The methods implemented in Job are used to

e define per-task input data Job.add_task ()
e dump the data to a file Job.dump () in order to ship it to the nodes:

e create an archive with all Python modules the code depends on Job.pack_deps (), again for later
shipping to the nodes.

The dependencies of the Python code, have to be defined by the developer in the subclass.

The duty of writing a job description and of launching the job is demanded to the subclass of Grid specific
to the underlying infrastructure, through the methods Grid.write_description() and Grid.launch().
Note that due to the so-called duck-typing used in Python, there is no real need for a parent Grid class as
there would be, e.g., in C++ in order to exploit a polymorphism mechanism. However, there still might be
an advantage in sharing common functionalities between different Grid infrastructures.

The possibility of creating a job grouping a number of tasks, which is not implemented in PyMW, allows
our framework to rely on the capabilities offered by some schedulers to exploit data affinites or other opti-
mization strategies.

2.2 Application to the Automatic Annotation

The previous framework has been employed to take advantage of the Grid infrastructure. In the modified
version each single training step with a fixed pair of parameters (m.A) is executed as a single task on one

MICCAI Page 61

node of the Grid. In practice we substituted the selection and training loop starting at 6 in algorithm 1 with
the steps 6 and 8 in algorithm 2.

We subclassed Job into a SelectionTrain class, for which we also defined its dependencies. For each
single task we define as input data, via SelectionTrain.add_task (), the sampled positive and negative
examples and the parameters of the training process: the task input data were dumped to disk as soon as they
were added.

After having defined all tasks, the job object is passed as argument to Grid. launch (), in order to be submit-
ted to the Grid. The method takes care of writing the job description specific to the underlying infrastructure
and to submit the description for execution. In the case at hand, using the OurGrid infrastructure, the file
was written in JDF format, as the example we report here; the syntax is pretty similar to the one used by
other Grid software such as Condor. In this example X stands for the job id defined by the developer (we
used the index of the outer testing loop, 7 in algorithm 2), and we assume just two tasks corresponding to an
inner 2-fold validation loop.

job :
label : select_train
requirements : (os == linux && mem >= 1024)
init :

put select_train_data_X_0.dmp select_train_data_X_0.dmp
put select_train_data_X_l.dmp select_train_data_X_ l.dmp
put select_train.py select_train.py
put select_train_libs.tgz libs.tgz

final :
get output.log results/$JOB-$TASK-$PROC.stdout.log
get error.log results/$JOB-$TASK-$PROC.stderr.log
get results.tgz results/$JOB_$TASK_ result.tgz

task :
remote : python select_train.py select_train_data_X 0.dmp > output.log 2> error.log

task :
remote : python select_train.py select_train_data_X_l.dmp > output.log 2> error.log

Note that the code performing the selection and training is not already present on the nodes, and it is rather
shipped to them (file select _train.py in the init clause) together with the input data and other Python
modules which it depends on (packed in the 1ibs.tgz file).

The output of each single task is stored into a file which is shipped back to the client, named according to
the job and the task identifying numbers. All outputs are then collected (step 11) and the algorithm proceeds
as in the original version.

3 Test-bed Infrastructure

Our parallelization approach produces a set of indipendent tasks, suitable to run on an inexpensive, both in
terms of equipments and skills, Desktop Grid (DG) infrastructure, which harvests idle time of commodity
PCs such as the ones used in homes or in library/lab computer facilities [6]. Hovewer, the requirements of

MICCAI Page 62

the distributed version of the algorithm include the capabilities to deploy libraries on-the-fly and to execute
arbitrary applications or code fragments.

In well known free-to-join Volunteering Computing DGs the research tasks must coexists with the owner
activities, hence concerns about security and intrusiveness have suggested to limit the execution to trusted
code. Some DG services, expecially BOINC based ones [1], execute only a single specific reseach activity,
such as searching for prime numbers or protein folding simulations.

Few DG middlewares [14] [9] support the execution of arbitrary applications, under the assumption that all
the hosts are managed by a single or a trusted organization. As Grid middleware, we choose OurGrid [7]
since (1) it is multiplatform in both clients and computation nodes, (2) it can deploy applications on-the-fly,
(3) does not rely on a shared filesystem, and (4) is easy to setup. Nevertheless, OurGrid implements a very
common Grid architecture and present results could be extended to other middlewares with little or no effort.

OurGrid is used by the ShareGrid project [2], which involves several universities in the North-West Italy.
In this way, our implementation can exploit up to 50 PCs in the students lab in our department, and more
than 150 hosts in other partner sites. The exact number of available hosts can vary, and at the time of the
experiments an average of 54 PCs were available to us.

A common issue that prevents the use of DGs in many scientific projects is the lack of boundary in task
completion. The majority of DG client implementations execute the task during idle time only (usually
as the screensaver) and suspend or kill the execution when the local user preempt the console. In busy
environments such as student labs, this can result in tasks that frequently restart and never be accomplished.

To overcome this problem and security concerns, we developed a solution based on virtual machines. Each
PC hosts an installation of free available VMware server running as a low priority background service
[20]. As the majority of PCs produced in the recent past, the hosts are equipped with dual-core CPUs
but the software used for educational purposes usually does not exploit multithreading, hence one core is
usually underused and the impact on performance experienced by the local user is negligible. The guest
virtual machines are deployed by cloning a template virtual disk file, installed with a Debian-based Linux
distribution and provided with a base of familiar scientific software, such as GNU Octave, R, Python [16,
19, 18]. Scientific users can temporarily deploy other arbitrary scientific software inside virtual machines in
a completly transparent way to the host environment. Host and guest configurations are arranged to avoid
interference in either way, from local host user to the virtual machine and from the remote user of the virtual
machine to the local host. Guest machines are frozen and every modification persists until the reboot only.

Another challenge was posed by networking requisites. Commonly, Grid implementations assume that
node hosts are reachable from the public network. On the contrary, for several reasons, PCs in lab facilities
can usually access the Internet through a proxy but cannot be contacted from the outside of the lab local
network. OurGrid is based on a structured Peer-to-Peer network, where Grid nodes comunicate only with
a super-peer also for file transfer. In this way, only the super-peer needs to comunicate with the outer
networks. We decided to connect all virtual machines to the central super-peer using a Virtual Private
Network based on opensource OpenVPN [17]. OpenVPN provides mechanisms for NAT-traversal, traffic
encryption, mutual authentication and other techniques to deal with networking issues, so that the Grid
middleware does not need to implement these features. OpenVPN has also the capability of starting an
application, the node daemon in our case, once the VPN is estabilished. Since the virtual machines are
cloned between PCs, all of them stored the same certificate(s). Altought the most natural choice would be
to exploit the possibility offered by recent releases of OpenVPN to share a single X.509 digital certificate
between hosts, this approach cannot be pursued since it does not guarantee a persistent pairing of distinct
hosts with a network address. The problem can be solved by storing in the virtual machine prototype all the
possible certificates and then picking the right one at runtime depending on the host machine. This does not

MICCAI Page 63

decrease system security with respect to the solution with a shared certificate.

4 Conclusion

The implementation of the distributed version would have required writing the appropriate description files
for the given Grid infrastructure and modifying the legacy Python code. This process has been simplified by
the general framework described in section 2.1 and it boiled down to a relatively small amount of changes
in the code.

We first tested our system replicating one of the experiments normally performed to evaluate the results of
the annotation algorithm. A full experiment with 5-fold outer and 4-fold inner cross-validation, ran locally
on a quad-core Intel PC with 4GB RAM, took approximately 25 hrs and 45 min. Distributing the selection
and training subtasks to the Grid, the same type of experiment took approximately 16 hrs and 31 min (wall-
clock time). The distributed subtasks took virtually no time from the viewpoint of the client, since the results
where ready in a shorter time then it took the client to be ready to process them for the final training step.
Moreover, this last step was run in both cases locally on the client, and it took on average 11 hrs and 30 min;
then, issuing 20 selection-training tasks to the Grid reduced to less than a third (29.8%) the computational
time required for them.

Although this might seem a limited gain, it becomes definetely larger in experiments with more tasks.
As a demonstration, we ran an experiment with both cross-validation loops as leave-one-out, resulting in
15 x 14 = 210 tasks. In this case, distributing the selection and training tasks on the Grid took 13 hrs 24 min
wall-clock time, less than 10% of what we estimate (approximately 138 hrs) it would have taken to execute
it locally in a sequential fashion. Note how an increase of more than ten times the number of tasks, resulted
only in an increase of less than three times wall-clock time on the Grid infrastructure.

As a further remark, we note that most of the time has been spent in the sequential part of the algorithm that
prepares the data for the tasks. Indeed, examining the statistics of the task one realizes that they typically
took slightly less than one hour each. This would be the maximum performance in an optimal setting with
no bottleneck in preparing the data and a sufficient number of nodes, with a best-case gain reduction to less
than 1% of computation time.

In the experiments we ran, the percentage of tasks not completed because of the Grid workstations outages
was extremely low, and all jobs finished successfully. This is a fairly interesting result, since this type of
failures in Desktop Grids is quite common because of the non-dedicated nature of the workstations. We
argue that the main reason for such success is the use of virtual machines as a stable and isolated excecution
environment for the Grid nodes.

In the future we are interested in further exploit distributed infrastructures by also implementing the testing
part of the algorithm as Grid jobs. This will be easier thanks to the framework we developed.

Acknowledgments

The research has been supported by the EU-funded project Health-e-Child, IST-2004-027749.

MICCAI Page 64

References 10

References
[1] D.P. Anderson. Boinc: a system for public-resource computing and storage. pages 4-10, Nov. 2004. 3
[2] C. Anglano, M. Canonico, M. Guazzone, M. Botta, S. Rabellino, S. Arena, and G. Girardi. Peer-to-peer desktop
grids in the real world: The sharegrid project. pages 609-614, May 2008. 3
[3] C. Basso, M. Santoro, A. Verri, and M. Esposito. Segmentation of inflamed synovia in multi-modal 3D MRI. In
Proc. IEEE ISBI, Boston, MA, USA, June 28 - July 1 2009. (document), |
[4] P Bourgeat, J Fripp, P Stanwell, S Ramadan, and S Ourselin. MR image segmentation of the knee bone using
phase information. Medical Image Analysis, 11(4):325-335, Jan 2007. (document)
[5] E Candes and T Tao. The Dantzig selector: Statistical estimation when p is much larger than n. Ann Stat,
35(6):2313-2351, Jan 2007. 1.2
[6] Sunglin Choi, HongSoo Kim, EunJoung Byun, MaengSoon Baik, SungSuk Kim, ChanYeol Park, and ChongSun
Hwang. Characterizing and classifying desktop grid. pages 743-748, May 2007. 3
[7] Walfredo Cirne, Francisco Brasileiro, Nazareno Andrade, Lauro Costa, Alisson Andrade, Reynaldo Novaes, and
Miranda Mowbray. Labs of the world, unite!!! Journal of Grid Computing. 4(3):225-246, 2006. 3
[8] G Davis, S Mallat, and M Avellaneda. Adaptive greedy approximations. Constr Approx, 13(1):57-98, Jan 1997.
1.2
[9] Gilles Fedak, Cecile Germain, Vincent Neri, and Franck Cappello. Xtremweb: A generic global computing
system. In CCGRID '01: Proceedings of the Ist International Symposium on Cluster Computing and the Grid,
page 582, Washington, DC, USA, 2001. IEEE Computer Society. 3
[10] LMI Florack, BMT Romeny, JJ Koenderink, and MA Viergever. Scale and the differential structure of images.
Image Vision Comput, 10(6):376-388, Jan 1992. 1.2
[11] J Folkesson, EB Dam, OF Olsen, PC Pettersen, and C Christiansen. Segmenting articular cartilage automatically
using a voxel classification approach. /EEE TMI, 26(1):106-115, 2007. (document)
[12] AF Frangi, WJ Niessen, KL Vincken, and MA Viergever. Multiscale vessel enhancement filtering. In Medical
Image Computing and Computer-Assisted Interventation - MICCAI'98, volume 1496, pages 130-137, Jan 1998.
1.2
[13] Eric M. Heien, Adam Komafeld, Yusuke Takata, and Kenichi Hagihara. Pymw - a python module for parallel
master worker computing. Technical Report pymw_tech_2008, Hagihara Laboratory, Department of Computer
Science, Osaka University, 2008. (document)
[14] Michael Litzkow, Miron Livny, and Matthew Mutka. Condor - a hunter of idle workstations. In Proceedings of
the 8th International Conference of Distributed Computing Systems, June 1988. 3
[15] RA Ochs, JG Goldin, F Abtin, HJ Kim, K Brown, P Batra, D Roback, MF McNitt-Gray, and MS Brown.
Automated classification of lung bronchovascular anatomy in CT using AdaBoost. Medical Image Analysis,
11(3):315-24, Jun 2007. (document)
[16] GNU Octave. http://www.gnu.org/software/octave. 3
[17] OpenVPN. http://openvpn.net. 3
[18] Python Programming Language. http://www.python.org. 3
[19] R project. http://www.r-project.org. 3
[20] VMWARE. http://www.vmware.com. 3

MICCAI Page 65

jeudi 20a00t2009
11:26

A comparison between ARC and gLite for
medical image processing on Grids

Tristan Glatard', Xin Zhou?, Sorina Camarasu—Pop', Oxana Smirnova* and
Henning Miiller*?

August 19, 2009

! Creatis—-LRMN, University of Lyon, France

>Medical Informatics, University of Geneva, Switzerland

3University of Applied Sciences Western Switzerland, Sierre, Switzerland
*NDGF and Institute of Physics, Lund University, Sweden

Abstract

Medical imaging tasks often require large amounts of computing power or they could be improved if
more computing power were available. Many medical institutions do not have any dedicated computing
infrastructure for research and a way to cope with this is the use of computational Grids. These Grids can
be used internally if the data can not leave the hospital network or from external infrastructure providers.
Choosing/maintaining a Grid infrastructure can be a tedious tasks for researchers, as well as adapting
existing applications for parallel computation on the Grid. Based on medical imaging use-cases, this
article compares two widely-used middleware solutions, namely gLite and ARC (Advanced Resource
Connector). Interoperability is enabled at the application level and the resulting setup is demonstrated
on two use—cases combining resources from both Grids. In addition, experimental results show a simple
performance comparison of data transfers and job submissions.

1 Introduction

Medical imaging is an essential part of medical diagnosis and treatment planning but processing large
amounts of medical imaging data can be computationally very expensive. Only few medical institutions
currently have large-scale computing infrastructures destined for imaging research, which led to the use of
computational Grids in the medical imaging field [3, 15]. A variety of Grid middleware projects have been
conducted over the past 20 years, from Condor [11], to Globus [6], gLite [7], and ARC (Advanced Resource
Connector) [5]. For a rescarcher not familiar with computational Grids it is difficult to choose a particu-
lar middleware among the available solutions and most often the available resources determine this choice.
Middleware comparisons, in particular for a concrete task (in this case medical imaging) are rare.

On the other hand, there are many ongoing efforts currently targeting middleware interoperability, so jobs
can be exchanged. potentially easing the development of applications [20]. Regarding interoperability,
problems range from very low middleware layers (e.g. interoperability among batch queues to build Grids)
to higher levels (interoperability among Computing Elements to federate Grids [10]). At the application—
level, there are also several motivations for interoperability:

MICCAI Page 66

o Sharing of applications to limit the Grid porting effort. Applications ported to a particular Grid plat-
form can be run on another. In particular, this can be useful for widely adopted software tools.

e Sharing of data to enhance the accuracy of applications requiring large amounts of data for really
meaningful results (e.g. content—based image retrieval [14]).

e Sharing of resources without an additional maintenance cost (¢.g. 1o access very specific resources
such as large clusters or clusters of Graphical Processing Units (GPUs)).

This article presents our early attempts towards application—level interoperability between ARC and gLite.
Our goal is to provide a qualitative comparison for medical imaging applications. Experiments reported
here are run from execution environments aiming at facilitating Grid access to non—expert users, i.c. med-
ical image analysis researchers. Two specific environments are targeted, one being deployed at the HUG
(University Hospitals of Geneva') to interface with an ARC—cnabled Grid resource and the other being de-
ployed at CREATIS-LRMN (Centre de REcherche et d’Applications en Traitement de 1'Image et du Signal
— Laboratoire de Résonance Magnétique Nucléaire)® to give access to the EGEE Grid running gLite. In
addition to the facilities provided by ARC and gLite, both execution environments include a workflow man-
ager for application porting and an application—level job submitter. Execution environments and methods
for application—level interoperability are first presented in section 2. Experiments for data-sharing and job
submission are then reported in section 3.

2 Methods

One group (HUG) targeted data sharing and attempted to use data stored on EGEE from ARC resources
in a content-based image retricval (CBIR) application. A second group (CREATIS-LRMN) targeted re-
source sharing and attempted to run with ARC a radiotherapy simulation application originally ported to
a gLite-based environment. This section first presents the two exccution environments in 2.1. Setups for
interoperability are then detailed in 2.2 (for data) and 2.3 (for jobs).

2.1 Execution environments

Both execution environments are mainly composed of a workflow (WF) description tool and a workflow
engine enabling job submission, input selection, and data piping between jobs. Figure 1 summarizes the
components adopted by the partners and shows how they interact with the grid middleware. A more detailed
description follows.

HUG Grid setup

The HUG group has a particular Grid setup to assure that computation of data is also possible inside the
hospital itself to avoid the transmission of sensitive medical information. Thus a small setup inside the
hospital makes available computational power based on virtualization, Condor as computing node software
and ARC to manage the jobs [16]. To ease the creation of parallel applications and gridify them the Taverna
workflow system is used [17]. This also includes an ARC plugin to automatically submit the created jobs,
following XRSL (¢Xtended Resource Specification Language) [23]. Besides the use of internal submission

! hectp: //www.sim.hcuge.ch/medgifc/
:h:tp: //www.creatis.insa-lyon.fr/

MICCAI Page 67

2.1 Execution environments 3

MOTEUR

ARC plugin

XRSL Job

glite CE

LRMS
ecesnmmnnnn i glLite worker nodes gridFTP I

Figure 1: Overview of the Grid environments used by HUG (left) and CREATIS-LRMN (right).

interfaces the created applications can simply be submitted to external resources such as the KnowARC?
virtual organization (VO) of the NorduGrid* infrastructure using the exactly same submission interface.
In this case, jobs are handled by the ARC Computing Element (CE) and delegated to a Local Resource
Management System (LRMS) that eventually schedules them on computing resources. In/output data is
handled directly by the CE which pre-/post-stages files from/to storage systems. Supported file protocols
include gridFTP, Logical File Catalog (LFC) and the Storage Resource Management (SRM).

CREATIS-LRMN Grid setup

The workflow description in the second setup relies on the Scufl (Simple Concept Unified Flow Language)
language, generated using the Taverna workbench as a workflow editor [17]. Code is wrapped into work-
flow components using the Generic Application Service Wrapper (GASW [8]), which provides a basic
command-line description language enabling input file staging, parameter specification, output file naming
and transfer, as well as dependency specification. Workflows are then executed on gLite using MOTEUR [9]
that generates, submits and monitors jobs on gLite complying to the Job Description Language (JDL) as fig-
ured by plain lines on figure 1. The main difference with ARC regarding job submission is that in ARC
the site selection (matchmaking) is performed by the client whereas in gLite it is delegated to a global
matchmaker (called Workload Management System — WMS). gLite’s strategy is supposed to yield better
scheduling while ARC’s ensures better scalability. Moreover, with gLite, data has to be transferred by the
job itself once it reaches the computing resource. A comparison of ARC and gLite job life—cycles is reported
in [10].

Alternatively (dashed lines on figure 1), MOTEUR can also submit tasks to the DIANE pilot-job frame-
work [13]°, offering a pull execution model supposed to improve performance on high—throughput systems.

’h:tp://www.knowarc.eu/
*http://www.nordugrid.org
Shttp://cern.ch/diane/

MICCAI Page 68

2.2 Data interoperability for content-based image retrieval 4

In DIANE, tasks are no longer pushed to computing resources but generic pilots are submitted. Once run-
ning, pilots connect back to a central pool, fetching tasks when available and dying otherwise. Workflow
input files and results are graphically browsed and selected on Grid storage resources using the Virtual
Resource Browser (VBrowser) [18, 19]. Eventually, jobs execute on resources of the biomed EGEE VO,
external to the institution.

Data is stored on gLite Storage Elements (SE) equipped with the Storage Resource Management interface
(SRM) [1]. Data files are indexed in the Logical File Catalog (LFC), which maps application—specific logical
file names to their physical locations.

2.2 Data interoperability for content-based image retrieval

Part of the medical data sets used for imaging cannot be deported outside of the hospital network for privacy
reasons. On the other hand, CBIR relies on databases that can be stored on external resources, potentially
belonging to another Grid and VO. The goal of this subsection is to enable the execution of applications
developed on ARC with databases stored on EGEE servers.

Accessing the data stored on EGEE from the protected hospital network is not straightforward. Outbound
connections in the HUG have several constraints: connections can only use port 80 (HTTP/HTTPS) and
are always passing through a restrictive proxy server. Thus, communication with a Grid server outside
of the hospital is hardly possible by default. To help scientific projects we were allowed to circumvent
some of these restrictions by using a VPN (Virtual Private Network) connection towards the network of
the University of Geneva. This network then has much lower security restrictions. The group also has two
servers for data processing on the University network that are used for accessing other Grid networks.

The tested CBIR application can be divided into two parts: (i) downloading the data from the EGEE Grid
servers to the University network, and (ii) executing the medical image analysis application on the internal
hospital Grid. The latter is not related to data interoperability, we thus focus on the first step with the purpose
of evaluating feasibility and possible overhead. Two client tools are tested for data transfer: the Java LFC
client of VBrowser [18] and the ARC standalone client, which is also interfaced with LFC. Other related
candidate tools for evaluation include the Grid Storage Access Framework (GSAF)® and JavaGAT [22].

2.3 Resource sharing for radiotherapy simulation

Computationally expensive simulation experiments often require large amounts of resources that may not be
available on a single Grid at a given time. For instance, radiotherapy simulation [2] benefits from hundreds
(=300) of concurrent CPUs (Central Processing Units). The goal of this section is to enable the execution
of applications developed for EGEE on ARC resources. ARC resources under consideration are the ones
provided by the NorduGrid infrastructure.

Two solutions can be envisaged for this execution using the execution environment described in section 2.1:
(i) DIANE submits pilot-jobs to ARC (MOTEUR still submits tasks to DIANE), or (ii) MOTEUR directly
submits jobs to ARC (DIANE is not used). Solution (i) provides more interoperability since every applica-
tion relying on DIANE could then be executed both on gLite and on ARC. Besides this, the solution would
casily enable a joint exploitation of ARC and gLite resources for a single application. On the other hand, (ii)
provides better performance since the job generation can be adapted to a particular middleware. In practice,
implementing (i) raises several technical issues.

Shetp://grid.ct.infn.ic/cwiki/bin/view/PI282/GSAF

MICCAI Page 69

2.3 Resource sharing for radiotherapy simulation 5

Firstly, since tasks are only fetched when the job reaches a computing resource (so—called /ate binding),
pre—staging of files cannot be implemented ecasily in a pilot—job framework. As a consequence, files need to
be transferred onto the computing node by the task itself, which not only underexploits the features of ARC
but is also technically heavy to implement since neither the data transfer client nor the user proxy are present
on the computing node by default. In addition, it may lead to an unnecessary and uncontrollable overload
of the storage service.

Secondly, in all cases, task generation by MOTEUR has to be adapted to the execution on an ARC computing
node to accommodate, e.g., syntax differences in data clients. This is problematic given the late binding of
tasks provided by pilot—jobs.

These reasons led us to implement solution (ii). The GASW was extended to support submission to ARC
clusters. Beyond minor changes in job submission, monitoring, and status syntax, this required the adapta-
tion of the job description format (from JDL to XSRL) and of the job content (from explicit to automatic
data transfers).

Data transfers from EGEE to NorduGrid were performed using ARC’s support for LFC (LFC locations can
be specified in XRSL, the files being automatically transferred to/from EGEE resources). Because of the
numerous ambiguities, only non-DPM EGEE SEs (Storage Elements) could be used, though”. A more
important issue is that the VO-specific physical locations are not automatically generated by the generic
ARC client, whereas it is done by the gLite LFC client for the registered EGEE VOs. The SRM output
directory path thus has to be explicitly suggested in the configuration of the workflow manager that uses
ARC, while only the SE host has to be specified for the EGEE infrastructure. This is potentially problematic
in case of changes in the configuration of an EGEE SE (e.g. upgrade leading to change of the directory
hierarchy or permissions).

Authorization of an EGEE user on NorduGrid clusters was easily performed by registering the X509 cer-
tificate in the knowarc.eu VO. However, being a member of two VOs led to some technical issues when
information about the VOs is stored in the proxy itself (i.e. the proxy contains an extension obtained from
the VO Management Service — VOMS). Due to the lack of a relevant specification that would formalize
processing of multiple VOMS extensions, proxies containing two or more VOMS extensions are treated
in an arbitrary manner by SRM services, often leading to data transfer errors. Since submission to ARC
clusters does not require any VOMS extension, we coped with this issue by using a proxy with an EGEE
VOMS extension only.

It has to be mentioned that the ease of installation of the ARC client greatly facilitated this implementation.
The ARC client and gLite UI (User Interface) are easily able to be installed on a single Linux box. Well-
packaged distributions like the one maintained by the Dutch VL—e (Virtual-Lab for eScience) project®
now allow installing and configuring a gLite Ul in ca. 20 minutes, including download and configuration.
Because of its reduced dependencies, only 2 minutes were required for installation of an ARC client. This
process was also less invasive and several Linux flavors are supported.

7SRM standard currently does not allow to identify neither the transfer protocol, nor the necessary end-point details such as port
number, leading to incompatible implementations
Shetp://poc.vi-e.nl/

MICCAI Page 70

data on EGEE data on ARC
download upload | download upload
VBrowser 4523 1022 X X
ARC—client 4451 997 ‘ 4301 911

Table 1: Comparison of transfer speed (KB/s) to ARC computing resources for data stored on EGEE and
ARC clusters with a catalog service.

data on EGEE data on ARC
download upload | download upload
VBrowser 339 116 X X
ARC-client 361 110 ‘ 345 112

Table 2: Comparison of transfer speed (KB/s) to ARC computing resources for data stored on EGEE and
ARC clusters with Catalog service, using VPN in both cases.

3 Experiments and results

3.1 Evaluation of the access to data on EGEE and ARC clusters

The ARC standalone client is a Linux command line tool that offers not just ARC—specific job management
functionality, but also some fundamental data transfer commands. Its interoperability with various data
management services — either plain GridFTP servers, SRM or LFC — is demonstrated in [12]. However,
in HUG, users are used to Windows-like graphical interfaces. VBrowser provides such an interface for data
management. It also adapts necessary protocols to access the data on both gLite and ARC.

Two virtual organizations(VO) are used for this test: the Biomed VO based on the gLite middleware and
the knowarc.eu VO of the EU KnowARC project. The test file comprises 40MB of a compressed image
collection; physically it is located in Italy (the gLite server, Biomed VO) and Hungary (the ARC server,
knowarc.eu VO). Two different data indexing services were used: the Globus Replica Location Service
(RLS) [4] for ARC and the LFC catalog and indexing service for EGEE gLite. ARC can use both LFC and
RLS for data indexing, while gLite currently supports only LFC. Incidentally, VBrowser cannot deal with
RLS either, thus only the other interoperability possibilities were tested.

Tests are performed both on university network (Table 1) and using a VPN from the hospital network (Ta-
ble 2). Client tools are installed both on a server located in University of Geneva and a workstation inside
the HUG. For reasons explained beforchand, the communication from the HUG has to be through a VPN.
A VPN encrypts the communication in both directions, which reduces the download/upload speed. When
performing the tests from the university network the difference of speed is not significant and depends on the
network speed (EGEE sites are network-wise closer to the HUG than the ARC ones). It should be pointed
out that ARC offers a light-weight storage element named Smart Storage Element, which uses the HTTPS
protocol for the data transfer. This can help reducing the communication overhead.

Regarding the comparison between VBrowser and ARC client, no significant difference was detected in
terms of overhead. Comparison tests on larger data sets are part of our future work. Client tools with a
windows—like GUI are regarded as more user—friendly. The ARC client, though lacking a GUI, supports
more existing URL formats, which can be an advantage for users who want to access different storage
systems.

MICCAI Page 71

3.2 Joint execution of radiotherapy simulations on EGEE and ARC clusters 7

input archive GATE release GATE wrapper script | Output archive
size 1.6 MB 28 MB 7.9 KB 697 B
SE location DE GR NL BG

Table 3: GATE input/output file sizes and locations.

3.2 Joint execution of radiotherapy simulations on EGEE and ARC clusters

Using the setup described in section 2.3 we were able to execute on ARC resources a workflow initially
developed on EGEE. The underlying application is GATE, a Monte Carlo simulation code currently used
by more than 1000 users’ and used here for radiotherapy simulation as described in [21]. Such Monte Carlo
simulations are divisible-load problems, i.c. they can be divided into as many tasks as wanted. We here
consider a 3h49’-simulation (average on ARC and gLite clusters used for the experiment) split into 50 jobs.

Each of the 50 tasks requires 3 input files and produces | output archive wrapping all the results. The
job itself is wrapped into a script performing in/output data transfers (for gLite only), checking execution
correctness and writing monitoring information such as total run time in the job console. Four gLite SEs
spread all over Europe were used. File sizes and locations are reported in Table 3.

The experiment was repeated 5 times (experiments are coined batch 1 to 5 in the following). For each batch,
50 jobs were simultancously submitted to ARC and gLite. To have similar matchmaking conditions, job
submission was restricted to 3 NorduGrid sites and 3 EGEE sites. MOTEUR was configured to resubmit
failed jobs up to 3 times. It should be noted, however, that although matchmaking conditions were compara-
ble, ARC—enabled sites are voluntarily academic community contributions supported on a best—effort basis,
while gLite—enabled sites were of a professional HPC grade, offering higher levels of service.

For each successful job, the submission, matchmaking, queuing, input transfer, running, output transfer,
worktime and total round-trip times were measured as shown in Table 4. Some of the times were estimated
from the job status reported by the Grid Information System (IS) and others were obtained from job or
LRMS (Local Resource Management System) logs. In Table 4, the job states refer to the gLite'® and ARC!
user guides.

Because KnowARC and EGEE clusters used for the experiment have a different number of nodes and CPU
characteristics, the total round-trip times cannot be compared. In particular, job queuing and running times
are expected to be largely affected by those differences. Instead, we remove those two values from the
total round—trip time to define a comparable Grid overhead defined as {5} — ({3} + {4.b}) referring to the
notations of Table 4.

This comparable Grid overhead breaks down to the sum of the submission, matchmaking, input transfer,
output transfer and infrastructure overhead (1S0O). The latter measures the difference between the real job
worktime (i.e. obtained from the job and/or LRMS stdout) and the worktime given by the information
system, i.c., using notations of Table 4:

ISOgrite = {4} — ({4.a} + {4.b} + {4.c}) and 1SOpc = {4} — ({4.b} + {4.c})

Table 5 reports the comparable overhead of the successful jobs for the 5 batches and how it breaks down to
submission, matchmaking, in/output transfer and ISO. The latter accounts for the largest proportion of the

%hetp: //www.fgate.fr/
'Oh:Lp://g‘_i:e.web.cern.ch/g‘_ite/documen:ar_ion/userGuide.asp
Uhetp: //www.nordugrid. org/documents/ui . pdf

MICCAI Page 72

3.2 Joint execution of radiotherapy simulations on EGEE and ARC clusters

gLite ARC
Measured time Start state in IS End state in IS Start state in IS End state in IS
{1} - Sub Not submitted Successfully subm. Not submitted Successfully subm.
{2} - Matchmaking Submitted Scheduled not applicable
{3} - Queuing Scheduled Running Successfully subm. INLRMSR
{4.a} - Input transfer Job stdout LRMS stdout
{4.b} - Running Job stdout
{4.c} - Output transfer Job stdout LRMS stdout
{4} - Worktime Running Completed Running Finished
{5} - Total round-trip | Not submitted Completed Not submitted Finished
Table 4: Definition of measured times on ARC and gLite.
Batch 1 Batch 2 Batch 3 Batch 4 Batch 5
gLlite ARC gLite ARC | gLite ARC | gLite ARC | gLite ARC
Number of jobs 49 50 49 50 48 50 47 49 48 50
Subm. Mean (s) 37 15.5 3.6 148 - 16.1 43 144 38 13.8
Stdev (s) 0.87 12.2 0.86 99 0.97 13.1 1.6 10.3 1.1 10.4
Matchm. Mean (s) 26.6 0 637.4 0 279 0 252 0 28.8 0
Stdev (s) 6.8 0 862.7 0 74 0 6.5 0 6.5 0
In. trsf. Mean (s) 47.7 26.6 444 224 448 250 429 224 | 428 228
Stdev (s) 8.9 8.7 6.0 28 44 6.0 6.2 4.7 6.6 4.1
Out. trsf. Mean (s) 7.9 18.3 12.5 17.4 8.7 14.2 94 17 8.0 14.7
Stdev (s) 1.0 4.2 18.4 28 23 1.5 6.2 9.4 1.8 22
ISO Mean (s) 6343 12554 | 333.7 1280.6 | 523.5 12578 | 6942 1321 | 697.2 12423
Stdev (s) 635.3 X 516.0 X 531.4 X 610 X 537.8 X
Comp. over. Mean (s) | 719.9 12894 | 1032.1 13124 | 608 1288 776 1352 | 781 1270
Stdev (s) 7214 2374 700.1 202.5 | 5321 2739 | 6114 349 | 5362 2234

Table 5: Overhead comparison (mean and standard deviation values) between ARC and gLite on GATE
radiotherapy application. Each batch corresponds to a repetition of the experiment. The number of jobs
represents the number of successfully completed jobs (after up to 3 resubmissions) among the 50 jobs
submitted simultaneously for each experiment. °x” values are not available.

comparable overhead in both cases. In average, it is close to 10 minutes for gLite (576s) and 20 minutes for
ARC (1271s). Note that the ISO also varies significantly, as shown by the standard deviation values (for the
gLite infrastructure). If the infrastructure is overloaded, some jobs pass normaly while others suffer a very
high ISO. Data transfers have similar performance both on ARC and gLite, which confirms the ability of the
ARC client to efficiently handle files stored on EGEE, as shown in section 3.1. As explained in section 2.1,
ARC does the matchmaking on the client side, i.c., during the submission process, which explains why the
perceived submission time on ARC is higher than on gLite (about 4 times on average). However, the main
result is that in all cases, the sum of submission and matchmaking times on gLite are significantly higher
than on ARC. It shows that ARC’s strategy is globally less penalizing than gLite’s in our case. In particular,
batch 2 shows that an overloaded WMS dramatically penalizes the experiment, which could not occur on
ARC. On the other hand, one should keep in mind that gLite’s strategy may lead to better scheduling, thus
reducing the job queuing times in LRMS, which is not considered here. Moreover, ARC’s strategy may also
lead to scalability issues when several experiments are run from the same client.

MICCAI Page 73

4 Conclusions

In this work, we successfully implemented data and resource sharing between ARC and gLite. This allowed
us to (i) run a CBIR application on ARC resources using data stored on EGEE resources and (ii) casily
deploy on ARC an application developed for EGEE. This was tested in high—level graphical execution
environments targeting medical imaging researchers. Both ARC and gLite support such solutions that are
casy to use and can be of interest for researchers.

Scenarios are different for a research group that is inside a medical institution and resecarch groups being
on more open University networks, in particular concerning network connectivity. Data that can be treated
inside and outside of medical institutions might also be different. Secondary data use in general is not easy
as legal constraints often make it had to acquire data sets.

Beyond application—level interoperability, this setup enabled a comparison between ARC and gLite for
medical imaging. Concerning data sharing, the main results are that (i) ARC’s data transfer client manages
to reach similar performance as gLite’s to handle data stored on EGEE, (ii) the performance drop in using
the VBrowser Java driver is not significant, (iii) whether data is stored on EGEE or on ARC does not
significantly impact transfers and (iv) using VPN solutions to circumvent connectivity limitation in hospitals
dramatically penalizes the performance. Regarding resource sharing, results show that (i) both for gLite and
ARC, the infrastructure overhead accounts for most of the job latency and (ii) on the tested application,
ARC’s strategy of implementing matchmaking on the client side yields better performance than gLite’s. All
in all, this kind of study may be of importance in the current efforts for federating European Grids in a
common European Grid Initiative (EGI).

5 Acknowledgements

We thank Piter T. De Boer for technical support on the VBrowser LFC client and David Sarrut for the help
given to the porting of the GATE application on EGEE. This work has been funded (supported) by the
EGEE-III INFSO-RI-222667 European project. This work was partially supported by the EU 6th Frame-
work Program in the context of the KnowARC project (IST 032691) and by the Swiss National Science
Foundation (FNS) in the context of the Talisman-2 project (project 200020 118638).

References

[1] A. Sim, A. Shoshani and others. The Storage Resource Manager Interface (SRM) Specification v2.2. GFD-R-
P.129, 2008. 2.1

[2] J. Badel, L. Guigues, and D. Sarrut. ThIS : a Geant4-based Therapeutic Irradiation Simulator. In /st European
Workshop on Monte Carlo Treatment Planning, 2006. 2.3

[3] V. Breton, R. Medina, and J. Montagnat. DataGrid, Prototype of a Biomedical Grid. Methods of Information in
Medicine, 42(2):143-148, 2003. |

[4] A. L. Chervenak et al. Performance and Scalability of a Replica Location Service. In HPDC '04, pages 182-191.
IEEE Computer Society Press, 2004. 3.1

[5] M. Ellert, M. Gronager, A. Konstantinov, B. Konya, J. Lindemann, I. Livenson, J. Langgaard Nielsen, M. Ni-
inimiki, O. Smirnova, and A. Wiininen. Advanced resource connector middleware for lightweight computa-
tional Grids. FGCS, 23(2):219-240, 2007. 1

[6] 1. Foster and C. Kesselman. Globus: A metacomputing infrastructure toolkit. The International Journal of
Supercomputer Applications and High Performance Computing, 11(2):115-128, 1997. 1

MICCAI Page 74

References 10

[7] F. Gagliardi, B. Jones, M. Reale, and S. Burke. European DataGrid project: Experiences of deploying a large

[8]

191

[10]

[11]

[12]
[13]

[14]

[15]

[16]

[17]

[18]

[19]

[23]

scale testbed for e-science applications. In Performance Evaluation of Complex Systems: Techniques and Tools,
Performance 2002, pages 480-500, 2002. 1

T. Glatard, J. Montagnat, D. Emsellem, and D. Lingrand. A Service-Oriented Architecture enabling dynamic
services grouping for optimizing distributed workflows execution. FGCS, 24(7):720-730, 2008. 2.1

T. Glatard, J. Montagnat, D. Lingrand, and X. Pennec. Flexible and efficient workflow deployement of data-
intensive applications on grids with MOTEUR. IJHPCA, 22(3):347-360, 2008. 2.1

M. Gronager, D. Johansson, J. Kleist, C. Sottrup, A. Waananen, L. Field. D. Qing, K. Happonen, and T. Linden.
Interoperability between ARC and gLite . In eScience, pages 493-500, 2008. 1, 2.1

M. Litzkov, M. Livny, and M. Mutka. Condor — a hunter of idle workstations. In Proceedings of the 8th
international conference on distributed computing, pages 104-111, 1988. 1

M. Mambelli. OSG Storage Elements and ATLAS DDM, 2008. 3.1

J. Mosciki. Distributed analysis environment for HEP and interdisciplinary applications. Nuclear Instruments
and Methods in Physics Research A, 502:426429, 2003. 2.1

H. Miiller, N. Michoux, D. Bandon, and A. Geissbuhler. A review of content-based image retrieval systems in
medicine — clinical benefits and future directions. /nt. Journal of Medical Informatics, 73:1-23, 2004. 1

M. Niinimaki, X. Zhou, A. Depeursinge, A. Geissbuhler, and H. Miiller. Building a community grid for medical
image analysis inside a hospital, a case study. In MICCAI-Grid 08, pages 3-12, 2008. 1

M. Niinimaki, X. Zhou, A. Depeursinge, A. Geissbuhler, and H. Miiller. Building a community grid for medical
image analysis inside a hospital, a case study. FGCS, 2009. 2.1

T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger, M. Greenwood, T. Carver, K. Glover, M. Pocock, A. Wipat,
and P. Li. Taverna: A tool for the composition and enactment of bioinformatics workflows. Bioinformatics
Journal, 17(20):3045-3054, 2004. 2.1, 2.1

S. Olabarriaga, P. de Boer, K. Maheshwari, A. Belloum, J. Snel, A. Nederveen, and M. Bouwhuis. Virtual Lab
for fMRI: Bridging the Usability Gap. In e-Science '06. 2006. 2.1, 2.2

S. Olabarriaga, T. Glatard, K. Boulebiar, and P. de Boer. From “low-hanging’ to "user-ready’: initial steps into a
healthgrid. In HealthGrid'08, pages 70-79, 2008. 2.1

M. Riedel, editor. Int. Grid Interoperability and Interoperation Workshop. 1EEE, 2008. 1

D. Sarrut and L. Guigues. Region-oriented CT image representation for reducing computing time of monte carlo
simulations. Med Phys, 35(4), 2008. 3.2

R. van Nieuwpoort, T.Kielmann, and H. Bal. User-friendly and reliable grid computing based on imperfect
middleware. In SC'07,2007. 2.2

X. Zhou, H. Krabbenhéft, M. Niinimiki, A. Depeursinge, S. Méller, and H. Miiller. An easy setup for parallel
medical image processing: Using Taverna and ARC. In HealthGrid'09, 2009. 2.1

MICCAI Page 75

Plug—in Grid: A Fully Virtualized Grid Cluster

Release 0.00
Marko Niinimaki', Xin Zhou', Adrien Depeursinge', and Henning Miiller'+>

July 27, 2009

"Medical Informatics, University Hospitals and University of Geneva, Switzerland
2Business Information Systems, University of Applied Sciences Western Switzerland, Sierre, Switzerland

Abstract

Medical image processing is known as a computationally demanding and data intensive field. For par-
allelizing the processing of image data, Grid computing systems and methods have been successfully
applied. However, installing and maintaining Grid clusters is a demanding (and often non-rewarding)
task for researchers. In this paper, we describe a Grid system that can be deployed completely within
virtual machines on standard PC’s. The system consists of a Grid/Cluster server and a large number
of computing nodes. We discuss its features and demonstrate its performance with real-life tests using
several medical imaging applications. Impact of the virtual machine with the computing nodes on the
desktop speed are measured and compared on various computers and in various scenarios.

Latest version available at the Insight Journal [http://hdl.handle.net/1926/1338]
Distributed under Creative Commons Attribution License

Contents

1 Introduction 2

2 Methods 3
2:1 Bxishtig Hospital SavARORMENE + .o o wir s sro o e s wov o spws s S0 5 se § S S50 3
22 Gridsetupatthe HUG 3
23 ‘Bvahmtngafullyvirtoal'Gaid’ « s 5 on % 5 % a0 b &% % waid S5 % S 3 N R a%% i 4

3 Results 5
3.1 Peformance MEASUICINCNNE i & ioa s s @ o & d2els 0 008 &8 i e & WA s 5
32 IOPACLMCASUICIICNE o0 « wowoo siei siviy sv @ oy Shw i AN e G SSEIE SHELE SLe s 5

4 Applications 6
4.1 GIET fealureexttattion:, . . . o noc o s s sueis s ® sum s oo sus w SSon B e fadis eed 6
4.2 Lung tissuc analysis with the TALISMAN software 7
43 SIFT workflows with TAVERNAand ARC 7

MICCAI Page 76

5 Conclusions and discussion 7

1 Introduction

Modern hospitals produce ever-increasing quantities of data, much of it in the form of digital images,
including tomography slices [15]. Medical doctors, analysts and researchers struggle with such an influx
of data, particularly in hospitals where there are no dedicated computing resources for research, which is
most frequently the case. Cluster computing and combining clusters by so—called Grid middlewares have
potential in such environments, especially if the task at hand can be parallelized casily (sce [18, 14]).

Harnessing the power of an organization’s desktop PCs as a cluster is an intriguing concept, and imple-
mented often using the Condor cluster software [10] in projects such as Greedy [19]. However, a hospital
environment often has strict policies that prevent ad-hoc software installations on computers. To overcome
this difficulty, projects like Grid Appliance [20] and CoreGrid [11] use a Virtual Machine (VM) within
which the software is installed (also solving the problem that the process running in the virtual machine
does not have access to the potentially confidential data on the client). As emphasized by Figueiredo et al.
[5]. this design isolates the application environment from the host PC, improving stability and security. The
cluster software is, likewise, run inside the Virtual Machine. The KnowARC!' project’s GridFactory [17]
presents a different design, where a cluster software starts Virtual Machine instances in computers, installs
software and manages jobs in them. At the MedGIFT? research group of the Geneva University Hospitals
(HUG), we have tested both approaches using a medical image indexing task as a case [13, 15, 17].

The design presented in this paper follows the same principles as in [15] — namely:

e A cluster of standard hospital PCs is running identical Virtual Machines, containing a compact Linux
operating system with tools, applications, and a Condor worker node software (Software distribution
is fully automatic via the Microsoft Active Directory-based hospital solution).

e A central server in the hospital runs a Grid middleware, gets jobs from users, sends them to worker
nodes (using Condor), receives and stores the results. The results can then be retrieved by the user.

Contrary to our previous implementation, in the scenario described in this paper, we have isolated the Grid
server as well, and it is run in a virtual machine. The virtual machine physically resides on an external hard
disk, making the system fully portable. Morcover, due to the simple design of the Grid node VM image,
it can be copied to any standard hospital PC, thus adding another node into the Grid resources. Another
difference to the previous paper are the details tests of the impact of the virtual machine on the desktop
performance of the host machine.

The most obvious benefit of this system is that with it the researchers in the hospitals can run analyses
that would be impossible without a Grid/Cluster system (see Section Applications). The benefit for using
a Grid layer on top of Condor allows the users to run their analysis in another ARC (Advanced Resource
Connector) Grid outside of the hospital, if needed. The Taverna workflow engine [16] with its ARC plug—
in [8] provides the users with a generic graphical interface for designing analysis tasks, without the need for
detailed knowledge of the underlying Grid system.

'h:tp://www.knowarc.eu/
2hetp: //www.sim.hcuge.ch/medgift/

Latest version available at the Insight Journal [http://hdl.handle.net/1926/1338]
Distributed under Creative Commons Attribution License

MICCAI Page 77

The rest of the paper is organized as follows. In Section 2 the characteristics of the Grid nodes, the central
server and the environment are explained. Test scenarios for running performance and impact tests are
described. In Section 3 we present the results of these tests. Section 4 discusses applications that utilise our
Grid. Finally, Section 5 contains a short summary and discussion.

2 Methods

This section describes the environment and systems that are the basis for the work described in this paper.

2.1 Existing hospital environment

Like many medical institutions, the HUG do not have a dedicated research computing infrastructure. On the
other hand, a very large number of desktop PC’s is available, and the renewal cycle for these PCsis 4 to 5
years [21]. Currently (early 2009), around 6,000 computers are available, with the slowest ones containing
I GB of main memory and a single Pentium IV 2.8 GHz CPU. By mid-2009 around 5,000 of the PC’s
will have at least 2 GB of main memory and at a minimum 2.6 GHz dual core CPUs. The dual core CPU
supports virtualization in hardware, as well [7], leading to a much better performance.

As described in [15], 20 old hospital PCs in a seminar room were made available for us to create an intra—
hospital Grid. These computers became computing nodes by virtualization. In addition to these computers,
several desktop PC’s of the rescarchers are used as additional nodes in the same way. These are the new
generation dual-core PCs.

2.2 Grid setup at the HUG

Condor is used as the cluster software, NorduGrid's Advanced Resource Connector (ARC) [4] 0.6.5 is used
as the Grid middleware for job submission and management.

A Debian Linux based Virtual Machine image, called Grid node, and Virtual Machine Player (VMPlayer®)
are distributed in the hospital to a set of standard PC’s running Windows XP. VMPlayer starts the Debian
image when the PC is started, though the users of the PC can turn it off if they need more CPU power or
memory for a particular task.

The Grid nodes are configured to use 350 MB of memory and a maximum of 2 GB of disk space. They re-
ceive an IP (Internet Protocol) address by DHCP (Dynamic Host Configuration Protocol) from the hospital’s
server.

The Grid nodes communicate with a (pre—configured) central server that runs the Condor collector process
for sending jobs to and receiving results from Grid nodes. The central server also runs the ARC server.
The ARC server manages Grid jobs by getting job descriptions from the users, submitting them to Condor,
receiving the results, and storing the results to be retrieved by the user.

Figure 1 shows the overall structure of the infrastructure implemented in the hospitals. A central node stored
on an external hard disk as virtual machine is controlling the working nodes that are in different computing
rooms of the hospitals, also in virtual machines running Linux on standard desktop PCs.

‘h::p: / /www.vtware . com/products/player/

Latest version available at the Insight Journal [http://hdl.handle.net/1926/1338]
Distributed under Creative Commons Attribution License

MICCAI Page 78

2.3 Evaluating a fully virtual Grid 4

S T |

ER X

&£ b B e
________) P
333 ==
LB NT

&

——

Figure 1: Overview of the infrastructure implemented for a fully virtual Grid, including the central node
stored as virtual machine on an external hard disk.

2.3 Evaluating a fully virtual Grid

To test the system’s performance and its impact to the computers, we have performed the following tests. It
should be noted that here we test single tasks and their impact to individual computers. Section 4, however,
discusses the performance of the Grid system as a whole.

e Performance (speed) test: compare the execution time of an image analysis job in a virtual machine
with its execution time without virtualization.

e Impact tests on the desktop computers running the virtual machines:

— Run a benchmark on the host computer (1) when there is no virtual machine running (2) when
the virtual machine is running image analysis tasks. The benchmark program (with the virtual
machine in case 2) is the only application running in the host computer during this test.

— Compare the startup times of some typical applications in the host computer (1) when there is
no virtual machine running, (2) when the virtual machine is running but idle. and (3) when the
virtual machine is running image analysis at full capacity.

These tests were requested by the computer service of the hospitals to estimate the impact of the system
on desktop users. Moreover, they allow estimation what kind of desktops could potentially be used for our
internal Grid. We also measure network bandwidth and ways to limit this. The goal of this was also to
evaluate the impact of such a system on the entire network.

Latest version available at the Insight Journal [http://hdl.handle.net/1926/1338]
Distributed under Creative Commons Attribution License

MICCAI Page 79

Internet Explorer 7 Microsoft Office 2003

VM not running 2.7 2.8
VM running but idle 3.2 33
VM running analysis 5.8 8.1

Table 1: Startup times of some of the hospital’s frequently used applications on a single-CPU PC.

3 Results

This section details the results of the tests with the hospital Grid and its impact.

3.1 Performance measurements

As a simple but representative example, we have measured the execution time of one task in a virtual
machine and in a native Linux operating system (installed on an identical computer). The task contains
unpacking a rar file containing 100 images, compiling a feature extraction program, running the feature
extraction for cach of the images and combining the results in a sar file. This task is a very typical task for
image retrieval that is extremely simple to parallelize.

On a single-CPU Pentium IV computer (old desktops used for our Grid) with a native Linux operating
system this task takes 3 min 13 seconds, and on a Virtual Machine in the same computer 4 min 15 seconds.
Interestingly, on the dual-core CPU computer (researchers personal machines) the execution time is almost
identical in native Linux and in a virtual machine (1 min 43 seconds vs. | min 45 seconds).

3.2 Impact measurements

A criterion for the usability of the system in the hospitals has been that standard desktop PCs provided for
hospital administrative staff and nurses can run Grid nodes so that the users do not notice a large detrimental
effect on the performance.

With a single CPU system (our test Grid), this was not the case. Our measurements with the NovaBench*
benchmark software indicated that the performance of a five—year—old standard hospital PC without the Vir-
tual Machine was 35 MFLOPS (Million FLoating Point Operations per Second), 6.4 M integer operations/s.
With the Grid node running but idle, the figures were 34 MFLOPS and 6.3 M integer operations/s. When
the Grid node was running image analysis, the performance figures were 18 MFLOPS, 2.3 M integer oper-
ations/s [15]. In practice this meant that the startup time of the default WWW browser (Internet Explorer
7) degraded from 2.7 seconds to 5.8 seconds. The effect was even more noticeable in the startup times of
Office applications, though hardly noticeable in text processing and spreadsheet usage once the applications
were running. Table 1 shows the application startup times on a single CPU system.

With the new generation of dual-core processor PCs (90% of all PCs by mid 2009), Grid nodes run very
well in the virtual machine, and they have only a very limited effect on the perceived performance of the PC,
since they use only one of the processor cores. The startup times of the most commonly used application
software packages are shown in Table 2. The respective figures with the NovaBench2 benchmark were 62
MFLOPS and 34 M integer operations per second when the VM was not running, 60 MFLOPS and 31 M
integer operation when the VM was running but idle, and 56 MFLOPS, 28 M integer operations per second

*http://novabench. com/

Latest version available at the Insight Journal [http://hdl.handle.net/1926/1338]
Distributed under Creative Commons Attribution License

MICCAI Page 80

Internet Explorer 7 Microsoft Office 2003 Microsoft Office 2007

VM not running 2.7 24 42
VM running but idle 2.7 25 4.5
VM running analysis 2.8 3.0 6.1

Table 2: Startup times of some of the hospital’s commonly used applications on a dual-CPU PC.

when Grid node was running an analysis job. In reality these differences are not really noticeable for an end
user.

The improved performance of desktops has given us the possibility to run the central server inside a virtual
machine as well. ARC software is relatively lightweight: an analysis of ARC 0.6.5’s memory usage indicates
that it consumes about 90 MB of the VM memory in operation (grid infosystem: 20 MB, gridftp 11.5 MB,
grid manager 53 MB, scripts communicating with Condor 5 MB). However, staging jobs (copying data to
and from Condor and making it available for the user) can take large amounts of disk space. Thus, we have
prepared the Virtual Machine so that it can use disk space dynamically without limitations. The memory
usage is set to 1 GB (50% of the dual-core CPU PC’s physical memory). An inexpensive | TB external
hard disk is used for storage and is also hosting the virtual machine itself.

Grid middlewares usually rely on a certificate—based authentication and authorization framework [6]. For
a Grid server, the name of the computer (the fully—qualified hostname) must match with the subject of the
computer’s certificate — otherwise the communication with this computer is rejected by the Grid client
software. In the hospitals” DHCP setup, a specific Virtual Machine is always given the same IP address.
Naturally, the names of the computers are determined by the IP addresses. Therefore, we can physically
move the external hard disk, containing the Virtual Machine image, to another PC if needed. Thus, we are
creating a fully virtual intra-hospital Grid system, where the nodes as well as the controlling nodes can be
moved on the standard desktops casily and quickly.

4 Applications

In this section, we present the medical applications that have utilized our hospital Grid and profited from the
additionally available computing power. The current applications are limited to medical imaging but other
applications such as natural language processing or data mining can casily be adapted to this scenario.

4.1 GIFT feature extraction

The GNU Image Finding Tool (GIFT?) has been used as a benchmark for computation in papers by the
MedGIFT group as a scenario for content-based medical image retrieval [13]. The 50 0000 source images
are from the ImageCLEFmed 2007 collection ([3]®). For the computation, the collection is divided into
packages containing a fixed number of source images, and the image feature extraction software taken from
the GIFT software (GNU Image FindingTool). Previously, a 4-CPU local system was used for analysis,
with an execution time of 709 minutes. By using the cluster of rather old desktop computers (much slower
CPUs), an execution time of 240 minutes was achieved [15].

Shetp://www.gnu.org/sof tware/gift/
Shetp: //www.imageclef .org/

Latest version available at the Insight Journal [http://hdl.handle.net/1926/1338]
Distributed under Creative Commons Attribution License

MICCAI Page 81

4.2 Lung tissue analysis with the TALISMAN software 7

4.2 Lung tissue analysis with the TALISMAN software

TALISMAN (Texture Analysis of Lung ImageS for Medical diagnosis AssistaNce) is Java software with a
front-end GUI and back-ends for distributed analysis [2]. Two main tasks were griddified for TALISMAN:
feature extraction using wavelets, and image classification using Support Vector Machines. The source
images that are analysed are high resolution computed tomography (HRCT) images of the chest.

Finding features that reveal lung illnesses is computationally very demanding and thus a distributed solution
is much needed. In the analysis, the whole wavelet decomposition (convolutions) and feature calculation
(mean and variance of the wavelet coeflicients as well as grey level-histograms) were run on the Grid. The
features are currently extracted from regions of interest in the images only. The region of interest was
defined manually before the analysis (in our more recent version this is automatic).

In the application, we have done feature extraction for a series of images containing 30 slices (on average).
The dimensions of each slice are 512x512 pixels. 58 series were used in the test.

The execution time of analysis in a single computer was more than 6 hours. By using ARC and Condor
nodes in our cluster, the execution time was cut to 109 minutes.

Eventually, the features should be extracted on “per pixel” basis, creating a much larger need for computing
power, currently not even attempted but possible through the Grid.

4.3 SIFT workflows with TAVERNA and ARC

The Scale-Invariant Feature Transform (SIFT) method is often used for feature extraction from medical
images as well as for more general stock photography. A workflow process for this task was designed using
the Taverna workflow engine [16]. Taverna communicates with ARC using an integration plug-in from
the KnowARC project’” [8]. The implementation was adapted from ImageJ’s SIFT plug-in (see [1]). The
source images were sclected from the ImageCLEFmed 2007 collection. The running times in the cluster
varied between 3 to 5 hours (meaning that running the whole analysis as one process would have taken
more than 1 week). As SIFT features can have a large variety of parameters, which can largely determine
performance, it is important for us to perform this systematic testing. By being able to test new parameters
within hours instead of days we have many more options than beforchand. Potential end users of this system
are surgeons who contacted us regarding a project on fracture image retrieval. This technology aims at being
applied on fracture image retrieval that is described in [12] for a first pilot application.

5 Conclusions and discussion

In this paper, we demonstrate the feasibility of an internal Grid in a hospital environment using standard
hospital desktop PCs. The Grid system, including the server, is fully based on virtualization, and standard
hospital PC’s are used as computing nodes. The benefit of this setup, compared to our previous one, is that
is it very portable, does not require a specialized sctup in any node, and its performance is still good.

As of now, the system can be best described as functional prototype with a small but active set of users. In
order to present the system to larger user community, many political and technical problems would still need
to solved, among them providing intuitive interfaces for non—programmers (emphasized e.g. in [9]).

To summarize, the Grid system works as follows:

"hrtp: / /www.knowarc.eu/

Latest version available at the Insight Journal [http://hdl.handle.net/1926/1338]
Distributed under Creative Commons Attribution License

MICCAI Page 82

References 8

e The building blocks of the system are the Condor batch system and NorduGrid ARC grid middleware.

e The Condor execution nodes (Grid nodes) are run on standard hospital PC’s in a Virtual Machine
image. Currently, a test bed of 20 computers, and several researcher PCs are running the Grid nodes.
The images are identical and can be copied to additional PCs for expanding the cluster (a fully au-
tomatic solution exists using the standard hospital software distribution system based on Microsoft
Active directory).

e The Grid server runs in a virtual machine with large disk space, for staging Grid jobs. Like the Grid
nodes, the server can be moved to another location (another host PC) easily as only a single external
harddisk needs to be moved from one computer to another one.

We present use case applications and performance measurements of the implemented solution. The impact
of the Grid nodes on the performance of the host PC is measured by benchmarks and by startup times of
popular applications. In modern dual-CPU host computers, the impact is generally not noticeable by the
user. On five—year old desktop PCs on the other hand the performances degrades in an important manner
particularly for application startup times.

Our Grid applications consist of parallel image processing tasks for three differing applications. A notable
recent improvement for casing the creation of Grid-enabled applications is the use of the Taverna workflow
engine in designing and running the tasks. This system allows for a graphical way of combining application
blocks and does not require command-line based tools. Taverna’s ARC plug—in enables the user to run the
tasks in ARC-based Grids.

The experiences show that small Grids within medical institutions are possible and that virtualization tech-
niques work well on new desktop computers. A Grid node running in a virtual machine on a user’s desktop
does barely slow the use of standard desktop applications. On the other hand, research applications can
profit from the availability of more computing power allowing quicker tests of parameters and more com-
plex solutions.

Acknowledgements

This work was partially supported by the EU 6th Framework Program in the context of the KnowARC
project (IST 032691) and by the Swiss National Science Foundation (FNS) in the context of the Talisman-2
project (project 200020 118638).

References

[1] Wilhelm Burger and Mark J. Burge. Digital Image Processing, An Algorithmic Introduction Using
Java. Springer, 2008. 4.3

[2] Adrien Depeursinge, Jimison lavindrasana, Asmaa Hidki, Gilles Cohen, Antoine Geissbuhler, Alexan-
dra Platon, Pierre-Alexandre Poletti, and Henning Miiller. Comparative performance analysis of state—
of-the-art classification algorithms applied to lung tissue categorization. Journal of Digital Imaging,
2009-to appear. 4.2

[3] Thomas Deselaers, Thomas M. Deserno, and Henning Miiller. Automatic medical image annotation in
ImageCLEF 2007: Overview, results, and discussion. Pattern Recognition Letters, 29(15):1988-1995,
2008. 4.1

Latest version available at the Insight Journal [http://hdl.handle.net/1926/1338]
Distributed under Creative Commons Attribution License

MICCAI Page 83

References 9

(4]

(5]

(6]

(7]
(8]

[

(10]

(1]

(12]

(13]

[14]

(15]

(16]

Mattias Ellert, Michacl Gronager, Alcksandr Konstantinov, Balazs Kénya, J. Lindemann, 1. Livenson,
Jakob Langgaard Nielsen, Marko Niiniméki, Oxana Smirnova, and Anders Wiinanen. Advanced
resource connector middleware for lightweight computational Grids. Future Generation Computer
Systems, 23(2):219-240, 2007. 2.2

R. Figueiredo, P. Dinda, and J. Fortes. A case for Grid computing on virtual machines. In Proceedings
International Conference on Distributed Computing Systems (ICDCS), pages 550-559, 2003. 1

lan Foster, Carl Kesselman, Gene Tsudik, and Steven Tuecke. A security architecture for computa-
tional grids. In CCS '1998: Proceedings of the 5th ACM conference on Computer and communications
security, pages 83-92, San Francisco, California, United States, 1998. 3.2

Intel. Intel virtualization technology. Intel Technology Journal, 10(3), 2006. 2.1

Hajo N. Krabbenhofi, Steffen Méller, and Daniel Bayer. Integrating ARC Grid middleware with
Taverna workflows. Bioinformatics, 24(9):1221-1222, March 2008. 1. 4.3

D. Krefting, J. Bart, K. Beronov, O. Dzhimova, Falkner J., M. Hartung, Hoheisel A., T. A. Knoch,
T. Lingner, Y. Mohammed, K. Peter, E. Rahm, U. Sax, D. Sommerfeld, T. Steinke, T. TolsdorfT,
M. Vossberg, F. Viezens, and A. Weisbecker. Medigrid: Towards a user friendly secured grid in-
frastructure. Future Generation Computer Systems, 25:326-336, 2009. 5

M. Litzkov, M. Livny, and M. Mutka. Condor — a hunter of idle workstations. In Proceedings of
the 8th international conference on distributed computing, pages 104—111, San Jose, California, USA,
June 1988. 1

A. C. Marosi, P. Kacsuk, G. Fedak, and O. Lodygensky. Using virtualmachines in desktop grid clients
for application sandboxing. Technical report, CoreGrid, 2008. |

Henning Miiller, Phuong Anh Do Huang, Adrien Depeursinge, Pierre Hoffmeyer, Richard Stern, Chris-
tian Lovis, and Antoine Geissbuhler. Content-based image retrieval from a database of fracture images.
In Steven C. Horii and Katherine P Andriole, editors, Medical Imaging 2007: PACS and Imaging Infor-
matics, volume 6516 of Presented at the Society of Photo-Optical Instrumentation Engineers (SPIE)
Conference, page 65160H, San Diego, CA, USA, March 2007. 4.3

Henning Miiller, Nicolas Michoux. David Bandon, and Antoine Geissbuhler. A review of content—
based image retrieval systems in medicine — clinical benefits and future directions. International Jour-
nal of Medical Informatics, 73(1):1-23, 2004. 1, 4.1

Henning Miiller, Mikko Pitkanen, Xin Zhou, Adrien Depeursinge, Jimison Iavindrasana, and Antoine
Geissbuhler. Knowarc: Enabling Grid networks for the biomedical research community. In Healthgrid
2007, pages 261-268, Geneva, Switzerland, April 2007. 1

Marko Niinimaki, Xin Zhou, Adrien Depeursinge, Antoine Geissbuhler, and Henning Miiller. Building
a community grid for medical image analysis inside a hospital, a case study. In Silvia D. Olabarriaga,
Diane Lingrand, and Johan Montagnat. editors, Medical imaging on grids: achievements and perspec-
tives (Grid Workshop at MICCAI 2008), pages 3—12, New York, USA, September 2008. 1, 2.1, 3.2,
4.1

T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger, M. Greenwood, T. Carver, K. Glover, M. R.
Pocock, A. Wipat, and P. Li. Taverna: a tool for the composition and enactment of bioinformatics
workflows. Bioinformatics, 20(17):3045-3054, 2004. 1,4.3

Latest version available at the Insight Journal [http://hdl.handle.net/1926/1338]
Distributed under Creative Commons Attribution License

MICCAI Page 84

References 10

[17]

(18]

(19]

(20]

[21]

Frederik Orellana, Marko Niinimiki, Xin Zhou, Peter Rosendahl, Henning Miiller, and Anders
Widnénen. Image analysis on gridfactory desktop grid. In HealthGrid 2009, Berlin, Germany, July
2009. 1

J. M. Squyres, A. Lumsdaine, and R. L. Stevenson. A toolkit for parallel image processing. In Pro-
ceedings of the SPIE Conference on Parallel and Distributed Methods for Image processing, pages
69-80, San Dicgo, CA, July 1998. 1

M. Thiecmard and P. Jermini. Grid@EPFL — desktop grid using condor. In EGEE-06, Geneva,
Switzerland, September 2006. 1

D. I. Wolinsky, A. Agrawal, P. O. Boykin, J. R. Davis, A. Ganguly, V. Paramygin, Y. P. Sheng, and
R. J. Figuereido. On the design of virtual machine sandboxes for distributed computing in wide-area
overlays of virtual workstations. In Workshop on Large-Scale and Volatile Desktop Grids (PCGrid),
March 2007. 1

Xin Zhou, Hajo Krabbenhéft, Marko Niiniméki, Adrien Depeursinge, Steffen Moller, and Henning
Miiller. An easy setup for parallel medical image processing: Using Taverna and ARC. In Proceedings
of HealthGrid 2009, Berlin, Germany, 2009. 2.1

Latest version available at the Insight Journal [http://hdl .handle.net/1926/1338]
Distributed under Creative Commons Attribution License

MICCAI Page 85

A neuroscience Grid-enabled portal for the
Portuguese Brain Imaging Network

llidio Oliveira'?, Jodo Paulo Silva Cunha'?, David Pacheco'?, José Maria Fernandes'”,

Micael Pedrosa?, Luis Alves? and Anténio Sousa Pereira'?

June 5, 2009

'Dep. of Electronics, Telecommunications and Informatics, University of Aveiro, Portugal
*Institute of Electronics and Telematics Engineering of Aveiro (IEETA), University of Aveiro, Portugal

Abstract

The “Brain Imaging Network Grid” (BING) is a National initiative in Portugal to set up an e-Science network for collaborative
research in neuroscience. While dedicate IT infrastructure is being prepared to ensure the proper level of storage and
computational services, enabling BING to interface and extend to large-scale production Grids is appealing and an opportunity to
develop new collaborations. This paper describes the BING architecture and its early instantiation, including two key
components: the MAGI web portal and a Grid interfacing framework designed to integrate production Grid resources within the
BING project. The portal brings friendly interactions to end-users running brain imaging analysis, while the Grid enabled
framework address the bridging with gLite middleware.

Contents

1 Introduction 2
2 Overall BING architecture 3
3 Hardware and network layer 3
4 Grid-enabled medical image research oriented portal 4
SIGF: IEETA Grid Framework 6
6 Conclusions and Future developments 9

MICCAI Page 86

1 Introduction

Brain Imaging (BI) is supported by a growing R&D multidisciplinary community in Portugal, at the
intersection of medicine, biology, physics, mathematics and engineering. Answering a call for proposals
held by the Portuguese Ministry of Science, a consortium of universities comprising Aveiro, Coimbra,
Minho and Porto was chosen to implement the National Functional Brain Imaging Network
(www.brainimaging.pt). This network is the “embryo™ of a collaborative cyber-infrastructure composed
by a data provider (BI centre located at the University of Coimbra), two integrated data processing and
storage provider nodes (at the Universities of Aveiro and Porto) and a clinical neuroscience data access
client node (at the University of Minho). All four nodes will be clients of the resulting distributed cyber-
infrastructure and collaborative e-Science environment, having Coimbra and Minho a clinical profile and
Aveiro and Porto an engineering and physics contribution. The Bl center construction in Coimbra is
completed and a 3T Siemens Trio MRI machine is already in trial operation on site; the IT infrastructure
setup, globally named “Brain Imaging Network Grid (BING')” [10], is under way, offering the first
services to the Portuguese Bl scientific community.

BING use cases include typical e-Science workflows such as the cooperative acquisition of data, its
description and preservation, and ensuring advanced computing services to enable virtual, on-demand
neuroscience laboratories. While dedicate IT infrastructure is being prepared to ensure the proper level of
service, enabling BING to interface and extend to production Grids resources is appealing and a
promising path to connect the other neuro-related communities. Medical image processing has been
addressed in several Grid projects, to handle the demanding requirements of large images storage and
communication, and to enable complex analysis workflows [1-3]. A comprehensive state of the art can be
attained from [4]. These approaches provide the ability to seamless aggregate distributed computational
power, extensive storage resources and high-bandwidth networking to run on-deman experiments. In
addition, Grids also ensure a high security provisions, both at identity (digital certificates) and access
(Virtual Organizations management) levels. In the Brain Imaging (BI) area, and more broadly in
neurosciences, there are significant efforts to build e-Science infrastructures such as the Biomedical
Informatics Research Network (BIRN) [5], VL-e medical applications [6], NeuroGrid [7], NeuroLOG
[8] and NeuGrid [9].

In this paper, we present an architecture driven approach towards implementing the BING vision,
focusing on current status and early deployments, including the initial BING portal and its underlying
grid-interfacing framework, designed to integrate production Grids within the BING project. Domain
users, including clinicians and researchers, are able to seamless access Grid services, like storing, sharing
and running analysis algorithms on medical images, without having to worry about the underlying
complexity of the infrastructure. The current system have been designed primarily to work on top of the
gLite middleware [11] (although not restricted to) to harness the production Grids of EGEE [12] and
EELA [13], in which our group participates.

' The name was defined well before the announcement of Microsoft’s Bing search engine.

MICCAI Page 87

2 Overall BING architecture

The new BING infrastructure deploys a comprehensive set of resources, from computing infrastructure to
domain specific applications (Figure 1). To this end, a previous existing computing center and a newly
equipped one, and desirably existing production Grid resources from partner initiatives, should be
integrated.

A major challenge in the overall architecture is to provide a long-term, high-quality data repository to
serve current demanding data types, but also anticipating future value of subject cases. To enhance the
resilience of the solution along time, we have maximized the use of API. For example, data storage
services abstract the actual storage technology, allowing the integration of local and Grid storage as a part
of the BING data storage solution. With the same principle of separation of concerns, we propose to bring
Grid resources into the BING through the usage of a services API (the IEETA Grid Framework). This
allows several usage scenarios: a neuroscientist may use the BING by accessing a user-friendly portal to
BI applications (MAGI); multidisciplinary research teams may develop specialized modules to explore
the BING data catalog in new ways; the I'T/Developer may extend the Grid contribution building on the
normalized Grid interfacing APl (the IEETA Grid Framework - IGF). Still, there are specific
requirements for software packages (visualization, image toolkits, library dependencies, etc) that will
require a much profiled application environment. To handle these specificities, the concept of a “Brain
Imaging Workstation™ will be explored as an aggregate of the different tools. In this paper, we focus on
presenting the BING infrastructure and the Grid interfacing strategy. A pilot client, the MAGI portal, is
used to upload data sets and run simple algorithms upon the stored data, and an enabler toolkit, the IGF,
provides the Grid interfacing services.

Infrastructure Middleware Applications
Gigabit network MAGI Portal
(for neuroscience)

Advanced storage Data catalog & Virtual Brain

storage API Workstation
Supercomputing Multi-site cluster
(clusters) scheduler
Grid resources |EETA Grid Advanced
(external) Framework (IGF) visualization

Figure 1: BING building blocks (the shaded components are discussed in this paper).

3 Hardware and network layer

Collaborative e-Science environments build on high-speed networks and advanced IT resources. Such
infrastructure is being set-up for the BING and schematically presented in Figure 2. A private Gbps
V-LAN connects, through a dark fiber backbone operated by the Portuguese national research and
education network (NREN), the four nodes of the network where fiber routers manage data traffic. The
main data storage equipment is located at Aveiro node, a NetApp FAS3140, with an overall of 72 TB

MICCAI Page 88

storage space. A RAID-6 storage controller is implemented, offering a 5.5 TB fiber-channel storage and
47 TB of storage in SATA technology. In the same node, a 16 blade cage is installed holding 64 CPU
cores (on 8 blade computers at the moment). We plan to upgrade this equipment to hold up to 128 cores,
as the demand for computer power increases. The Internet access is secured by a “firewall” operated at
the Aveiro node.

FASITO CICUA
{ucgae de Sovphiner |

FAS320 Sevies. e

Aveiro
Figure 2: BING hardware architecture. A private Gbps V-LAN connects through a dark fiber
backbone the 4 nodes of the network where fiber routers manage data traffic. Different IT equipment is
available through Coimbra and Aveiro nodes. A pre-existing cluster operated by the University of
Porto will also be connected.

This new infrastructure will function as the core fore the Portuguese brain imaging network. Additional
services and specially connectivity to external partners, mapping existing collaboration links, are
expected to extend this nucleus.

4 Grid-enabled medical image research portal

Researchers in the BING community, scattered along the country and abroad, will share access to a
friendly interface to all the ICT layer features, including accessing datasets and run analysis on-demand.
The “portal” abstraction is an intuitive interface for end-users to harness from computing centers and Grid
services integrated in the network. Having this objective in mind, we designed a portal called MAGI
(Medical Applications Grid Interface). The MAGI offers a rich Internet application interfaces to
end-users, abstracting the details regarding the preparation and submission of jobs and input data and
results management, either to a Grid or to cluster systems included in the BING. Job submissions and
data transfer are triggered by the Portal usage and delegated in the Grid interfacing module, the IEETA
Grid Framework (IGF). IGF provides a stable basic API to the BING, allowing future extension to other
computational systems (e.g.: clusters, Globus middleware, etc) and storage resources (e.g.: DICOM
servers integration, custom storage, etc.), as contextualized in Figure 1.

MICCAI Page 89

Based on our previous work in BI, we were able to generalize basic use cases (Figure 3) and a simple
domain model (Figure 4) containing the base concepts to support medical researchers, specially with
respect to biosignal processing and medical imaging modalities.

Upload Dataset @ ccnmmiy

S
\

Download Dataset
Manage Subjec
Typical CRUD Doctot / Reseascher
operations | /

ssociate Subject with Study
Manage System Users Associate Dataset with Study
gt Administrator

Figure 3: MAGI Portal main use-case diagram.

Our present focus is on modeling common neuroscientist research requirements and support them in the
web portal. Consequently, the presented model is expressed at an high-level and while describing basic
dataset information, is also able support the datasets and subjects organization within a researcher
oriented perspective. The overall idea is that a researcher (User) belonging to a specific Organization
may be responsible for several Subjects that he can gather in one or more research studies (Study). Most
of his research activity is centered in analyzing Datasets of a specific Modality, correspondent to a
Subject, obtained using specific Equipment. For instance a User can create a Study® on, for instance,
“children with occipital epilepsy” and associate a selection of Subject and associated Datasets from the
BING repository. This schema can be easily extended to accommodate a wide set of views over the data
from personal perspective (e.g. “my datasets™) to BING level (e.g. “epileptic patients™ within BING).
This is useful to support several application scenarios, covering different research fields while
maintaining a common semantic.

Execute Research Algorithm

L Subject
Aeridutes
1D int

- Dataser = firstName : String responsibie for User
| Modality Aributes referste = lastame : String ke ot r_‘f;.;,—_
s - Name - String / - Address - String \ -10:int
~Name String | ! classified in *| = DesCription :String |, = Birthday - Date 1 |- Name: String
= Shared : boolean = Cender String - Username : String
- StorageiD - String - Phone : String - Password - String
obtalned with o~ - Observations : String = A

1 = 1

- P 1 Organization
Equipment . enrolied with oo
Aridutes . > -10:int

= Name String

~ Description : String I Study Name . String
Arridutes

= Name : String

= Description : String

= OwnerlD : int

Figure 4: Domain model supporting MAGI semantics.

*The meaning of Study is close to the concept Investigation and not related to DICOM world, in which a study is an
aggregate of series containing themselves images.

MICCAI Page 90

The MAGI web portal was designed to provide the researchers with the same level of productivity and
casy-of-use found in other modern on-line applications, avoiding the need to handle low level
idiosyncrasies. The portal already supports visual rich interactions, such as intuitive drag-and-drop to
perform associations (e.g.: drag files into the Grid, datasets into studies) hiding the implementation
details, like moving or copying files between specific file system/Grid location, while maintaining the
coherence of the semantic data model. Figure 5 illustrates the uploading of data file into the Grid: (1) the
user chooses to upload a file; (2) then he/she picks a local file to transter, (3) enters descriptive file
metadata and (4) “drags™ the file icon into to the Grid container (thus triggering seamlessly underlying
Grid operations). The portal can also be fed with “operators”™ to process the input data. These operators
are code fragments, described using XML files, dynamically loaded and listed in the Portal. The user can
“drag-and-drop™ the input data (in resemblance to the previous example) into these operators, triggering
the submission and execution of corresponding Grid jobs.

(1) 2
B Data Import
Aot Sep X Cluw A
af90_48ic0e_mosec ner
Done

g0 dsices muonec g

o
hming

(3) (4)
C oppa—
— e
e =] T SORA, W ey
, , e I
Yot o o o T e 20
PN) o o L™ R S
e FuONE Gamarc 2] Sedany e -1
== : Q
-—— —
v [~]

Figure 5: Web portal pages, demonstrating the data import use-case.

5 IGF: IEETA Grid Framework

IGF (IEETA Grid Framework) provides wrapping services to abstract the underlying Grid middleware
and is used by the MAGI system. It provides a Java programming framework, using high-level object-
oriented abstractions, and, at the present moment, focus specially on storing and sharing information on
the Grid. There are other objected oriented programming environments for gLite, but often unstable or
under-documented. We decided to isolate BING developments from specific programming frameworks
by designing an extensible Java library, able to wrap gLite and to be used in the future with other
execution environments (not necessarily Grid).

MICCAI Page 91

The package IGDM (IEETA Grid Data Middleware) contains services for data management like copying,
retrieving or searching files in the Grid. A Computing Services package is also available to provide the
basic services to submit, and monitor jobs: a Proxy Services package to start and destroy user proxies, and
a Security Package to provide a higher security layer for the data and computing operations.

IGF - IEETA Grid Framework
IEETA Grid Data Middleware N
=

-
~

‘ Proxy Services I
(Asynchronous Services]

P4

[m. e s s.m..]

N

l Security Services \ (Storage Services]
\ b,
W& Y

Figure 6: IEETA Grid Framework architecture

Computing Services

The Main IGF Components

The IGDM (IEETA Grid Data Middleware) package is the central to IGF and contains all the necessary
logic to hide the complexity from the Grid Storage environment. It is subdivided into three packages:

4 - Create Grid File,

Y g Grid File With the same AMGA schema as the folder
90~ 1. but with specific Tag values
&N v o
ee —g Y ¢

Tags

1- Create Virtual Gnd

Folder. with a defined

AMGA schema <

«— ¢ @
AMGA Schema

Virtual Grid Folder
2 - Create folder in 3 - Create collection
the file cata AMGA catalog

File Catalog Folder AMGA collection

tothe SE(s)

8 - Tags saved in
the collection

7 - File registered
in the catalog

Figure 7: Relationships between Virtual Grid Folder (VGF), Grid Files and Tags, and workflow
example of creating a VGF, followed by the copy of a file to that VGF.

Storage Services, Virtual File System Services and Asynchronous Services, each one of them providing a
top interface for their operations. The Storage Services package is responsible for dealing with both the
File Catalog and Storage Elements (SE) namely all the operations that involve file transfers to and from

SEs, and direct access to the File Catalog.

MICCAI Page 92

The Virtual File System (VFES) provides an higher-level approach to the Grid storage based on an
abstraction close to a regular file system. It allows integrated tagging of files with descriptive metadata.
The Virtual Folder concept abstract the coordinated use of real folder in the File Catalog, and a
Collection in the AMGA catalog [14]. As depicted in Figure 7, when a new Virtual Folder is created, the
user must define a set of Tags to associate with that folder (stored as a AMGA schema), which must be
supplied by files stored in that same folder. For instance, assuming we have a Virtual Folder called
‘Images’, and the defined schema for this folder is composed by two tags, 'pathology’ and 'project’, then
when storing a file inside this folder, the tags 'pathology’ and 'project’ must be defined. This approach
supports file classification for query services and supplies a folder description following the user defined
semantics. For some Bl dataset, besides the user defined tags, other tags can be automatically extracted as
the input data already includes metadata (e.g.: DICOM files tags containing acquisition specific
information). The query services rely on the AMGA catalog, to select the respective entries that match the
search.

Finally the Asynchronous Services package provides support to asynchronous execution of services either
in the Virtual File System or the Storage. As some of the Grid operations can suffer random delays due to
various factors, an asynchronous service provider enables the construction of interactive interfaces that do
not block on waiting for results from running operations. The asynchronous services associate each
individual method call to individual threads. When the corresponding thread finishes, it reports the result
of the operation to a controller class that observes the running/executed operations.

Using the IGF API

IGF APl was designed to be “lightweight” and “developer-friendly™; it is also supported with
documentation, an aspect sometimes disregarded in Grid programming environments. The framework
was written in Java language, and uses some well known software design patterns. The API provides
suitable error control, so that the developer can quickly debug the applications. To clarify the abstraction
level provided, Figure 8 presents an example (using Java pseudo-code) for a simple operation of copying
a file to a Virtual Grid Folder (assuming that the virtual folder was created previously).

// Creates the folder information
VirtualGridFolder vgf = new VirtualGridFolder();
vgf.setVirtualGridFolderPath("MAGIRoot/UserX");

//Grid File information

GridFile gfile = new GridFile();
gfile.setName(“TestFileName.img");

// sets the location of the temp file in the UI
gfile.setUi_location(“/tmp/TestFileName.img”);

AMGASchema schema = new AMGASchema();

schema.add(new Tag("Subject", "varchar", “John Doe”));
schema.add(new Tag("Modality",“varchar”,“fMRI"));
schema.add(new Tag("Date", "timestamp", now())):
gfile.setSchema(schema);

IGDMVirtualFSServices vfs =
IGFServicesFactory.factoryVitualFSServices
(IGFService.ASYNC_VIRTUALFS_SERVICES,
VFS_CONTEXT);
IGDMResult res =
vfs.copyFileToVirtualGridFolder(gfile,vgf,
StoragElementsList);

Figure 8: Using the IGF API to upload and describe a file.

MICCAI Page 93

6 Conclusions and Future developments

The BING is a virtual collaboration space to support both health sciences and engineering research
centers in four Portuguese Universities, to be extended, in the future, to new R&D centers, including
centers of excellence across Europe, to whom cooperation links are already in place.

BING shares some common goals with large e-Science infrastructures like BIRN [5] or CaBIG [16], but
instantiated at a smaller community. Unlike those initiatives, BING has no major legacy data repositories
to integrate; instead, a new scientific instrument (MRI scanner) is being shared and BING is applying
solutions to allow partner institutions to build a shared, “future-proof™ scientific repository, with emphasis
in extendibility. We see BING as a dynamic and evolving entity and for that reason the emphasis was on
creating a flexible and extensible architecture, allowing to support both closed (partners-only within the
private network) and public usage models (extending collaborations to Grid environments). This paper
describes the carlier stages of the already running and deployed BING network. Both MAGI and IGF
represent options crucial to ensure a clear and normalized separation between the presentation and service
layer (MAGI) and services and storage/computational resources through a extensible service API (IGF)
supporting a global virtual file system view - currently mapping Grid resources accessible through gLite.

The MAGI portal (a prototype system) is making the bridge between the users and the Grid. It provides
research domain-specific semantics and already makes possible to run basic brain imaging analysis. End-
users benefit from a rich web application interface paradigm to have their data and analysis tasks ran on
top-resources available from production Grids.

It was an initial option to maintain a limited common research semantics at this stage as we do not intend
to over-specify the BING semantics before throughout analysis involving both neuroscientist and IT is
performed. As in CaBIG [15] we plan to integrate an ontology layer between IGF and MAGI in order to
support more high level information that enables relating concepts and support more complex querying
for MAGI. This approach, could provide the abstraction that together with IGF will allow a transparent
integration of external data sources. Although BING is intended to support multimodal data repository,
either image (e.g. in DICOM, Analyze or NIFTI formats) or other sources formats (e.g. EEG, video)
currently only basic file management is performed. We plan to implement features extraction tools, in
order to automatically obtained metadata from the files inserted in the repositories. At this time the
management of such information is responsibility of the users of the information.

Currently the IGF middleware wrapper plays an essential role to address extensibility and VO
reconfiguration. It provides a developer-friendly, documented API to interface the glite middleware. It
does not aim at provide specific neuroimage Grid middleware (like in NeuroLog [9]). While the support
for modeling processing workflows is limited, the data operations are well covered. From the
implementation perspective, IGF doesn't intend to implement from the ground all the services needed by
BING but only define and provide a normalized API that provides gateway for such services. For
example, the catalogue and the VFS rely on AMGA [14]. From an IGF perspective, existing solutions
providing access to external sources (e.g. MDM to DICOM servers [18]) should be integrated in IGF as a
different implementations within the same API.

MICCAI Page 94

10

Acknowledgements

We wish to thank to Jodo Oliveira and Jilio Galvao from Siemens, Ricardo Martins from CICUA and to
the support of the Portuguese National Brain Functional Imaging Network (RNICF), namely M. Castelo
Branco, N. Sousa and A. Campilho. The present work was partly supported by FCT and FEDER, grants
GRID/GR1/81833/2006 and GRID/GR1/81819/2006.

References

(11
(2]
(3]
[4]

(5]
[6]

(7]

[8]

(9]

[10]

[11]

[12]

[13]
[14]

[15]
[16]
[17]

[18]

V. Breton, K. Dean, T. Solomonides, et. al, “The Healthgrid White Paper,” Studies in Health Technology
and Informatics, vol. 112, 2005, pp. 249-321.

J. Montagnat, F. Bellet, H. Benoit-Cattin, et. al, “Medical Images Simulation, Storage, and Processing on
the European DataGrid Testbed,” Journal of Grid Computing, vol. 2, Dec. 2004, pp. 387-400.

I. Espert, V. Garcda, and J. Quilis, *An OGSA Middleware for Managing Medical Images using
Ontologies,” Journal of Clinical Monitoring and Computing, vol. 19, Oct. 2005, pp. 295-305.
“Medical imaging on grids: achievements and perspectives. MICCAI-Grid Workshop Proceedings,”
2008 . Available from: http://www.i3s.unice.fr/~joha /MICCAI-Grid.

“BIRN - Biomedical Informatics Research Network™ , http://www.nbirn.net/ [accessed March 4, 2009].

T. Glatard, K. Boulebiar, and S. Olabarriaga, “Workflow Integration in VL-e Medical,” Computer-Based
Medical Systems, 2008. CBMS '08. 21st IEEE International Symposium on, 2008, pp. 144-146.

J. Geddes, S. Lloyd, A. Simpson, et. al, “NeuroGrid: using grid technology to advance neuroscience,”
Computer-Based Medical Systems, 2005. Proceedings. 18th IEEE Symposium on, 2005, pp. 570-572.

J. Montagnat, A. Gaignard, D. Lingrand, et. al. “NeuroLOG: a community-driven middleware design,”
Studies in Health Technology and Informatics, Global Healthgrid: e-Science Meets Biomedical
Informatics - Proceedings of HealthGrid 2008, 2008.

“neuGRID" , http://www.neugrid.eu/pagine/home.php [accessed May 26, 2009].

J.P.S. Cunha, J.M. Fernandes, 1. Oliveira, et. al, “The Portuguese BING Network: Towards a Brain
Imaging Grid Virtual Community,”

IberGrid, 2009.

“gLite, (Lightweight Middleware for Grid Computing)™ . http:/glite.web.cern.ch/glite/ [accessed
February 21, 2009].

“EGEE: Enabling Grids for E-sciencE phase I and II, FP6 European IST project, contract number
INFSO-RI-508833™ , http://www.eu-egee.org/ [accessed February 26, 2009].

“EELA-2 Project,” Mar. 2009 , http://www.eu-eela.eu/ [accessed March 6, 2009].

“AMGA: The gLite Grid Metadata Catalogue™ , http://amga.web.cern.ch/amga/ [accessed February 21,
2009].

“GEANT?2 website” , http://www.geant.net/ [accessed May 31, 2009).

K.K. Kakazu, L.W.K. Cheung, and W. Lynne, “The Cancer Biomedical Informatics Grid (caBIG):
pioneering an expansive network of information and tools for collaborative cancer research,” Hawaii
Medical Journal, vol. 63, Sep. 2004, pp. 273-5.

M. Russell, P. Dziubecki, P. Grabowski, et. ali, “The Vine Toolkit: A Java Framework for Developing
Grid Applications,” Parallel Processing and Applied Mathematics, 2008, pp. 331-340.

J. Montagnat, A. Frohner, D. Jouvenot, et. al, “A Secure Grid Medical Data Manager Interfaced to the
gLite Middleware,” Journal of Grid Computing, vol. 6, Mar. 2008, pp. 45-59.

MICCAI Page 95

Grid-enabled sentinel network for cancer
surveillance

Paul De Vlieger'?, Jean-Yves Boire’, Vincent Breton', Yannick Legré’, David Manset’,
Jérome Revillard®, David Sarramia' and Lydia Maigne'

June 12,2009

'LPC Clermont-Ferrand, Blaise Pascal University, CNRS-IN2P3, 63177 Aubiére Cedex, France
ERIM, Faculty of Medicine, P.O. Box 38, 63001 Clermont-Ferrand Cedex, France
“Maat-G, 74070 Archamps, France

Abstract

Recent developments of grid services for secured distributed data management open new perspectives for disease surveillance.
In this paper, we report on our initiative to develop a surveillance network for cancer in the Auvergne region. The network
gathers cytopathology laboratories, structures in charge of cancer screening and institutes in charge of cancer epidemiology. Data
stored in laboratories are queried through the grid for the purpose of second diagnosis and to produce statistical indicators.
The paper describes the network goal and design and discusses specific issues related to patient identification and security.

Contents

1 Introduction 1
2 Objectives of a grid-enabled surveillance network 2
3 Material and methods 4
4 Specific issues for prototype implementation 6
5 Conclusion 7

1 Introduction

Cancer is becoming the first cause of mortality in developed countries. In recent years, the number of
patients treated for cancer has been constantly growing while mortality has started to decrease, thanks to
the progresses accomplished in the treatment of this discase and to the development of cancer screening
programs [2]. These programs allow an carly detection of the malignant tumours which improves
significantly the medical prognosis.

MICCAI Page 96

In order to evaluate the public health policies, reliable statistical indicators are needed. In France, several
structures have been set up to collect epidemiological data on cancer such as CRISAPs (Centre de
Regroupement Informatique et Statistique en Anatomie et cytologie Pathologiques) which are like
regional data warchouses collecting anonymous data from anatomical pathology laboratories or from the
healthcare structures involved in cancer treatment. The extraction of data from laboratorics encounters
reluctance from the healthcare professionals because of cost and also because they lose some control over
the data they have produced.

Several projects in Europe have studied or are currently exploring the grid added value for addressing
cancer: the pioneer projects focused on breast cancer, particularly computer-aided diagnosis of
mammograms (e-Diamond [7] and MammoGrid [5],[6] projects). These projects have produced most of
the middleware bricks being used to build our cancer surveillance network: MDM (Medical Data
Manager) [10] and Globus Medicus [11] are some of them; and more recently, the Pandora Gateway
designed for the Health-e-Child project [4].

In this paper, we propose a very innovative approach to both cancer screening and epidemiology based on
grid technology. We describe how a ‘collaboration” grid federating the cytopathology laboratories
together with the screening associations and the institutes in charge of cancer epidemiology would
manage casily the patient data in a secure and reliable way.

2 Objectives of a grid-enabled surveillance network

Context

Most EU countries have launched a national program for breast cancer screening [2]. In France, breast
cancer screening is achieved through inviting women above 50 to have mammograms every 3 years.
When a woman is positively diagnosed with a risk of tumour, cancer structures are in charge of providing
a second diagnosis on the mammograms and have to follow-up on the anatomical pathology (or
cytopathological) data about the tumour which are stored by the laboratories. Presently, the patient data
are faxed on request or carried physically by the patient to the associations where they are recorded again.
This process is costly and errors prone as data have to be typed and reinterpreted twice.

The cytopathological data are also extremely important for epidemiological analysis. The INVS (Institut
National de Veille Sanitaire = Sanitary Surveillance Institute), French equivalent to (E)CDC' for the
(EU)USA, is in charge of publishing indicators about global health and particularly about cancer. To
produce its indicators, INVS relies on regional cancer registries (CRISAPs) set up to collect relevant
information to support statistical and ecpidemiological studies about cancer incidence, mortality,
prevalence and screening,

However, regional cancer registries have several drawbacks:

1. In any healthcare system, physicians are responsible of patient information. The pathologists
refuse to trust these systems as data is exported outside their databases, so patient identification

'(E)CDC: (European) Centre for Disease Prevention and Control

MICCAI Page 97

criterias cannot be attached to the file in order to disengage responsibility. In this way, neither
disambiguation nor patient linkage is possible, so statistics are biased. Effectively, only medical
information is carried out without patient identification. As a patient can undergo several biopsies
in different laboratories, the information about his cancer would be present twice in the register
without linkage.

2. Some pathologists refuses to export since this method requires losing control of the data produced
in their own laboratories which is like the fruits of their labor.

3. The current data gathering system needs physicians to export manually data from their software,
format it according to the Crisap specification, connect to the central repository and send their
file. This method is costly in time without any compensation.

Now, their usage is being questioned as the global quality of these repositories decreased and less and less
laboratories contribute to the registers.

Solution proposed

Our alternative is for the clients to query anatomical pathology laboratories databases directly on site. A
collaborative data grid, federating the laboratories, (see Figure 1) would provide a secured framework
cnabling the screening associations to query databases and fill their local patient file. No action is
required by physicians to push their data on the network. Thanks to the Grid Security Infrastructure (GSI)
[8], the pathologists are able to define and modify the access rights of the users querying their data.

T Kewowic pebaiogety

m-...‘i;
-~

:“i"‘
5y

A ey
erons

INTERNET , dn

Figure 1 Cancer surveillance network using Grid technologies.

MICCAI Page 98

If a sentinel network is able to federate anatomical pathology databases, it can be used by the
epidemiological services of the INVS and the regional epidemiological observatory to build
epidemiologic studies.

3 Material and methods

List of requirements

As shown in Figure 1, the main medical data providers are the cytopathology laboratories. These
different laboratories host different software systems and local databases for medical data management.
Radiology services are additional data providers for mammograms in a step futher. The data requesters
are the cancer screening associations and the different epidemiological structures in charge of producing
statistics on specific cancers at regional and national level. Contrary to cancer screening associations who
need to obtain the entire medical patient sheet, epidemiological structures need only anonymous medical
data to produce statistics but with disambiguation to avoid double counting of cancer patients.

In a near future, the network should be able to grant access to medical images like mammograms to the
cancer screening associations in order to ease the second diagnosis. The infrastructure design should offer
a good flexibility to case the entrance of new actors in the network.

The security infrastructure of the network needs to comply with French regulation on medical data
transfer and exchange. The pathologists need to control the access rights to their own data. The network
users must authenticate themselves using recognized accreditation tools like healthcare professionals
cards. The individual certificates used have to be delivered by a certification authority (CA) recognized
officially by the ministry of health and compatible with the grid infrastructure deployed.

Sentinel network infrastructure

The proposed dedicated grid architecture is built upon a central set of servers hosting security features and
core grid services as illustrated in Figure 2:

*+ VOMS is an authorization manager, which implements a PKI-based authentication with
certificates delivered by trusted authorities (CA) [3]. The usage of VOMS in this project is almost
mandatory as VOMS is part of the gLite [13] middleware and guarantees a robust access control
to the grid. Each user must own a certificate in order to log in. During the network development
phase, a local certificate authority will be created, but once the network is operational, only
official certificates for duly authorized healthcare professionals will be used to log in.

* The Pandora GateWay is a set of software designed as a Service Oriented Architecture (SOA).
It was developed by the Maat-G society for the Health-e-Child project [4]. The Pandora Gateway
is used to address medical data accessibility, exchange and processing while guaranteeing a high
level of security for sensitive data. The main added value of the GateWay, compared to a classic
SOA platform, is the high-level security. The GateWay Authentication Service is based on
several security checkpoints required for log in. The access point is a Two Factor Authentication
with user certificates and pin code followed by an authentication process using a VOMS Grid
Proxy creation.

MICCAI Page 99

* The AMGA (ARDA Metadata Grid Application) [1] server, which provides a way to access
and store metadata. Beside its high performance, the main advantages of AMGA are the full
implementation of the grid security infrastructure (GSI) as well as the integration VOMS. When
dealing with medical images, the use of metadata is mandatory and MDM (Medical Data
Manager) allows bridging DICOM servers and the gLite middleware through AMGA [10].
AMGA is a very attractive software to fulfill the strong security requirements and access right
management of medical data in a grid infrastructure.

« GridFtp server for data transfer [9].

» LFC server, for data management, included in the gLite middleware [13]

| Cytopathology LabA | Cytopathology Lab B
>

DB |] | 0B |

| Dgy
—_ 4 g a
Ipo'r 03\‘

~ N -

| I

AMGA
| AMGA |

GATEWAY ‘

GATEWAY
-4

Z - \l_
— 1_ ‘-._Clienl
LGATEWAY J
Core grid
Lvous UC | GRIOFTP services
7S
Sentinel Network

g T—

3 External Client (Statistical requests)

Figure 2 Service Oriented Architecture of the sentinel network.

If a client wants to use the system, he has to login through his local GateWay which authenticates himself
on the sentinel network. When he launches a request, his local GateWay calls the different available
AMGA servers on the network aggregate the responses and finally delivers the result to the client. In this
way, no information is exchanged out of the different GateWays, guarantying a high level of security and
casing data tracking. . Thanks to the Grid Security Infrastructure, authentication and credentials are
available in the whole Grid, through GateWays and AMGA server.

MICCAI Page 100

4 Specific issues for prototype implementation

Data specification and retrieval system

For a better readability of cytopathological data, data sheets standardization is used to simplify the
addition of medical records in the database without interfering with other data. Care must be taken at this
step not to lose data coherence and the ownership of medical diagnosis. The customer part of the
application hosts a grid server (under a firewall) to link patients” data in the network. For public health
centers, a computer with an Internet access is just needed to launch epidemiologic requests.

Patient identification and data linkage

Patient identification is one of the major issues of modern healthcare systems. How can a healthcare
system provide a way to identify surely his citizens while respecting their privacy?

As disambiguation and patient linkage is one of the central part of this project, patient identification is at
the core of the data linkage problem. Currently, due to the lack of global identifier, each patient is linked
to two different identification numbers (medical folder numbers) which are used inside each medical

structure (sce Figure 3).
C Cancer screening ’ } (Anatomic pathology Lab ’ :

Patient X Patient X
1292761 : ' ‘
Tame=Martin ame=hacon ‘
D=17/01/65 D=17/01/65
Data server ADOR= ADDR= —] Data server
-] ' =
~—— b

Figure 3 Patient identification problem.

Our solution requires an additional identifier for the sentinel network. This identifier consists in a random
number generated (uuid type as defined in the RFC 4122 [12]) for each patient. This identifier would be
created only for data linkage and would always be encrypted using different keys in each database to
protect patient privacy.

When a data provider downloads some new data from his local data server to the local grid server, the
Pandora Gateway is in charge of searching the patient in all the local databases respect to information on
the patient. It will produce a unique identification number corresponding to the medical data if two
identifiers are correlated to the same patient. With this procedure, we build a consistent network with
unambiguous usage as we provide statistical requests free of doubles.

MICCAI Page 101

Security issues: strategy

One important step in the analysis is to clarify all security aspects in the sentinel network. The usage of
SSL (Secure Socket Layer) and GSI will create a trusted network where data exchange and authorization
procedures will fit the security requirements. However, and in order to protect patient privacy, the
network access has to be restricted to authorized physicians or related staff only. The usage of Electronic
Health Cards seems to be the best solution to settle this issue. These cards exist in France® and also in
other European countries thanks to the EU framework’. Basically, these cards are smartcards containing
certificates on a chip and supports strong authentication, electronic signature and data encryption. As
bundled certificates are X509 formatted, they are intrinsically compatible with authentication on a gLite-
powered Grid. These cards are also a response for data holders (i.c. pathologists) to accept the sharing of
their data. As the sentinel network will be reachable only by physicians, the different queries will be
launched under the responsibility of the physician who launches the query. The pathologists are now free
to make available safely their data without any risk in case of wrong use.

Validation

Once the prototype is operational and upstream of the real exploitation phase, the next step will be
validation of epidemiologic queries in order to certify the coherence and consistency of the results
obtained. A comparison will then be possible with the earlier conclusions of epidemiological surveys
locally obtained with manual methods by the regional public health services.

5 Conclusion

The article describes the goals and design of a surveillance network for breast cancer in the Auvergne
region. The network will allow federating, in a fully secured way, cytopathology databases with cancer
associations. The cancer network will be used to improve cancer screening programs and to produce
reliable and theorically exhaustive cancer epidemiological indicators. Implementation of the sentinel
network has started. The aim is to deploy a first prototype by the summer 2009 between one of the 2
cancer screening associations in Auvergne and a cytopathology laboratory. The beta version of the
network will be operational by the end of 2009,

The integration of additional laboratories as well as the development of query interfaces for
epidemiological structures will be addressed in 2010. Extension of the network to other cancer types and
medical images sharing are foreseen within the framework of a new project to be funded by French
Research Funding Agency.

Acknowlegements

The authors wish to acknowledge numerous discussions with P.Bouchet, A.Gaillot, L.Gerbaud, M-
A.Grondin, A Lautier, P.Lonchambon and C.Mestre.

* www.gip-cps.fr
* www.hprocard.cu

MICCAI Page 102

The work described in this article was partly supported by grants from the European Commission (EGEE,
Embrace), the French Ministry of Research (GWENDIA) and the regional authorities (Conseil Régional
d’Auvergne, Conseil Général du Puy-de-Dome, Conseil Général de I"Allier). The Enabling Grids for E-
sciencE (EGEE) project is co-funded by the European Commission under contract INFSO-RI-031688.
The EMBRACE project is co-funded by the European Commission under the thematic arca “Life
sciences, genomics and biotechnology for health™, contract number LHSG-CT-2004-512092. Auvergrid
is a project funded by the Conseil Regional d”Auvergne. The GWENDIA project is supported by the
French ministry of Research.

Reference

[1] B. Koblitz et al, The AMGA Metadata Service, Journal of Grid Computing 6 (2008), 61-76.

[2] Cancer Screening in the European Union; Report on the implementation of the Council
Recommendation on cancer screening (2007).

[3] R. Alfieri, R. Cecchini, et al, From gridmap-file to VOMS: managing authorization in a Grid
environment, Future Generation Computer Systems 21 (4) (2005): 549-558.

[4] The Health-e-Child project: http://www.health-¢-child.org/

[5] R Warren et al, A Prototype Distributed Mammographic Database for Europe, Clinical Radiology
62.11 pp 1044-51 (Elsevier) (2007)

[6] R Warren et al, A Comparison of Some Anthropometric Parameters between an Italian and a UK
Population: “proof of principle™ of a European project using MammoGrid, Clinical Radiology Vol
62.11 pp 1052-60 (Elsevier) (2007)

[7] M. Brady et al, eDiamond: a grid-ecnabled federated database of annotated mammograms, Grid
Computing: Making the Global Infrastructure a Reality I Berman, G Fox and T Hey (eds), Wiley,
(2003).

[8] V. Welch et al, Security for Grid services, High Performance Distributed Computing, 12" IEEE
International Symposium on (2003), 48-57.

[9] V. Allcock ct al, The Globus Striped gridF'TP Framework and Server, ACM/IEEE conference on
Supercomputing (2005), 54-64.

[10] J. Montagnat et al, Bridging Clinical information systems and grid middleware: a Medical Data
Manager, Studies in health technologies and informatics 120 (2006), 14-24.

[11] SG. Erberich et al, Globus MEDICUS - federation of DICOM medical imaging devices into
healthcare Grids. Studies in health technologies and informatics 126 (2007), 269-78.

[12] P. Leach, M. Mealling, and R. Salz. A Universally Unique IDentifier (UUID) URN Namespace. IETF
RFC 4122 (2005), http://www.ietf.org/rfc/rfc4122.txt

[13] gLite Middleware : http://glite.web.cern.ch/glite

MICCAI Page 103

