

Suite de Fibonacci

Algo & Prog avec R

A. Malapert, B. Martin, M. Pelleau, et J.-P. Roy 11 septembre 2021

Université Côte d'Azur, CNRS, I3S, France firstname.lastname@univ-cotedazur.fr

Suite de Fibonacci

Définition

Le *n*-ème terme est défini ainsi :

$$\mathcal{F}_n = \mathcal{F}_{n-1} + \mathcal{F}_{n-2}$$

et $\mathcal{F}_0 = 0$, $\mathcal{F}_1 = 1$.

Premiers termes

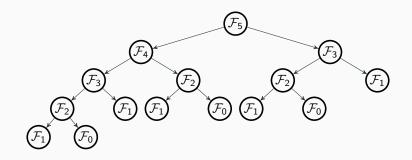
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, . . .

T
1
4

D'autres d'images de suites de Fibonacci harmonieuses.

Récursion simple (top-down)

```
F <- function(n) {
  if( n < 2) return(n)
  else return(F(n-1) + F(n-2))
}</pre>
```



Catastrophe! La complexité de l'algorithme est exponentielle! Plus de 15 secondes pour calculer F(35)!

Mémo-fonction

Programmer une fonction qui se souvient des calculs déjà effectués!

Exemple avec Fibonacci

- ▶ Je calcule \mathcal{F}_{35} qui demande le calcul de \mathcal{F}_{34} .
- ▶ Je calcule \mathcal{F}_{36} qui demande une seule addition si je suis capable de me souvenir de \mathcal{F}_{35} et de \mathcal{F}_{34} .

Comment?

- Nous allons gérer un dictionnaire privé à la fonction qui va contenir tous les couples (n, v) tels que $\mathcal{F}_n = v$ ait déjà été calculé!
- ▶ Ici, le dictionnaire est un vecteur tel que \mathcal{F}_n est à la position n+1.
 - les indices de la suite commencent à 0.
 - les indices du vecteur commencent à 1.
- Le dictionnaire joue le rôle de mémoire cache.

Portée des variables

Jusqu'à présent, dans plusieurs fonctions, nous avons introduit des variables qui n'étaient pas des paramètres de la fonction, souvent un compteur i ou un accumulateur acc.

- ► Une telle variable est dite locale à la fonction et n'a rien à voir avec une variable de même nom existant en-dehors de cette fonction!
- ▶ Une variable définie en-dehors de toute fonction est globale.

```
> i <- 42
> foo <- function() {print(i); i <- 33; print(i)}
> foo()
[1] 42 # globale
[1] 33 # locale
> i # globale
[1] 42
```

- Les modifications apportées à une variable globale sont locales!
- ► Conclusion : les variables introduites dans une fonction sont locales!
- ► Pourquoi R a-t-il fait ce choix? Pour décourager autant que possible l'utilisation de variables globales! Dont acte . . .

Modifier quand même une variable globale!

Opérateur «-

Les modifications apportées à une variable globale sont globales!

```
> i <- 42
> foo <- function() {print(i); i <<- 33; print(i)}
> foo()
[1] 42 # Globale.
[1] 33 # Globale aussi.
> i # Globale toujours!
[1] 33
```

Mémo-fonction de Fibonacci

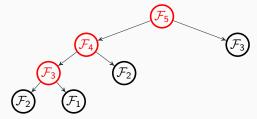
```
cache <- c(0, 1, 1)
F <- function(n) {
  if(length(cache) <= n) {
    cache[n + 1] <<- F(n-1) + F(n-2)
  }
  return(cache[n + 1])
}</pre>
```

```
> F(35) # Immédiat !

[1] 9227465

> F(30)

[1] 832040 # Déjà calculé!
```



Sauvé! Les complexités temporelles et spatiales sont linéaires! Le calcul de F(35) est immédiat.

Mémo-fonction : cacher le cache!

Le cache est public!

Modifions le cache juste après la définition de la mémo-fonction.

```
> cache <- c(5, 13, 34)
> F(3)
[1] 47
```

Utilisons un constructeur pour la fonction F

Une fonction renvoyant une fonction comme résultat!

```
> F <- MakeF()
> cache <- c(5, 13, 34)
> F(3)
[1] 2
```

Limites de la mémo-fonction de Fibonacci

En mettant de côté les dépassements de capacité,

```
> F(1000)
[1] 4.346656e+208
> F(2000)
[1] Inf
```

La récursivité pose toujours problème!

```
> F(10000)
Erreur : C stack usage 7969716 is too close to the limit
```

Suppression de la récursivité (bottom-up)

Il faut construire une itération calculant les termes par ordre croissant.

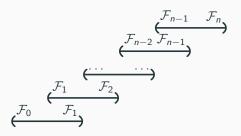
Suppression de la récursivité

```
F <- function(n) {
   cache <- c(0, 1, 1)
   if(length(cache) <= n) {
      for(j in seq(from = length(cache) + 1, to = n + 1)) {
       cache[j] <- cache[j-1] + cache[j-2]
      }
   }
   return(cache[n + 1])
}</pre>
```

Plus de problème avec la pile d'appels

```
> F(10000)
[1] Inf
```

Réduction de la complexité spatiale



La complexité spatiale est maintenant constante!

```
F <- function(n) {
  if(n < 2) return(n)
  x <- c(0, 1) # F(0), F(1)
  i <- 2;
  while(i <= n) {
    x <- c(x[2], sum(x)) # F(n-1), F(n)
    i <- i + 1;
  }
  return(x[2])
}</pre>
```

Matrice de Fibonacci

```
> library(expm) # pour les puissances de matrice
> mF <- matrix(c(0, 1, 1, 1), nrow = 2)</pre>
```

Exponentiation rapide

Les méthodes d'exponentiation rapide permettent d'atteindre une complexité logarithmique.

Formule de Binet

En 1834, Jacques Binet (1786-1856) publie une formule qui donne le énième nombre de la suite de Fibonacci sans avoir à calculer tous les précédents. Elle était connue d'Abraham de Moivre (1718), Daniel Bernoulli, et démontrée par Leonhard Euler (1765).

$$\mathcal{F}_n = \frac{(1+\sqrt{5})^n - (1-\sqrt{5})^n}{2^n \sqrt{5}}$$

Voir les explications.

```
F <- function(n) {
  x <- sqrt(5)
  return(((1+x)**n - (1-x)**n) / (2**n * x))
}

> sapply(seq(0, 12), F)
[1] 0 1 1 2 3 5 8 13 21 34 55 89 144
```

La complexité temporelle reste logarithmique, car on calcule des puissances (comme pour la matrice).

Questions?

Retrouvez ce cours sur le site web

www.i3s.unice.fr/~malapert/R