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Abstract

CSP (Constraint Satisfaction Problem) is the problem of
finding an assignment of values to a set of variables such
that a set of constraints is satisfied. In this short paper,
we briefly describe how past CSP competitions were
conducted, present the main features of the new format
XCSP3, targeted to become a CP (Constraint Program-
ming) standard, and discuss about classification of in-
stances as well as ranking of solvers. In the context of
benchmarking and solver competitions, this position pa-
per aims at encouraging the cross-fertilization of ideas
and methods in both planning and constraint reasoning
domains.

Constraint programming (CP) is a general technology
providing simple, general and efficient models and algo-
rithms for solving combinatorial constrained problems. At
the heart of CP, we find the framework CSP (Constraint
Satisfaction Problem) that consists in solving problem in-
stances represented by Constraint Networks (CNs). A solu-
tion to a CN is obtained by instantiating its set of variables
so that its set of constraints is satisfied. This framework has
many derivatives, mainly extensions, as indicated in Figure
1: temporal CSP (TCSP), weighted CSP (WCSP), valued
CSP (VCSP), quantified CSP (QCSP), constraint optimiza-
tion problem (COP), Max-CSP, distributed CSP (DisCSP),
and so on.
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Figure 1: The framework CSP and some of its extensions.
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Systems for solving CP instances are called constraint
solvers. Several competitions have been organized over the
years to assess the different solvers or algorithms developed
in the CP community. A first series of competitions has fo-
cused on generic, black-box solvers that do not require hu-
man intervention to perform well. These competitions have
been organized in this spirit, using XCSP 2.1 as input for-
mat, in 2005, 2006, 2008 and 2009. They have contributed
to identify interesting techniques and to draw a fair picture
of state-of-the-art algorithms or heuristics (Lecoutre, Rous-
sel, and van Dongen 2010). On the other hand, every year
since 2008, another series of competitions has been run:
the MiniZinc challenge. Different solvers are compared on
common Minizinc/Flatzinc benchmarks, in particular so that
solver implementers can examine the detailed results and de-
termine the strengths and weaknesses of their system, and
problem modelers can judge which system might be prefer-
able for their problem (Stuckey, Becket, and Fischer 2010).
In the rest of the paper, we briefly describe how past CP
competitions were conducted, present the main features of
the new format XCSP3, and discuss about classification of
instances as well as ranking of solvers.

Constraint Solver Competitions
In this section, we succinctly present how the fourth inter-
national constraint solver competition (CSC), held in 2009,
was organized. There were three problems:
• CSP
• Max-CSP
• WCSP

The objective for CSP is finding a solution or proving that
no solution exists. The objective for Max-CSP is finding
an assignment of variables that violates as few constraints
as possible. The objective for WCSP is finding an assign-
ment of minimal violation cost (cost functions, instead of
hard constraints, are considered). CSP is a decision problem
whereas Max-CSP and WCSP are optimization ones.

There were two solver categories:
• complete
• incomplete

Complete solvers can determine if an instance is satisfi-
able or not (or can find and prove optimality for Max-CSP
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and WCSP) whereas incomplete solvers cannot prove the
unsatisfiability or the optimum.

The format used to represent problem instances was
XCSP 2.1; it is described in (Roussel and Lecoutre 2009).
Some tools were also provided:

• C and C++ parsers for XCSP 2.1
• A Java parser for XCSP 2.1
• A program to check the validity of problem instances in

format XCSP 2.1
• A program to check solutions

Execution Environment
Solvers were run on a cluster of computers using the Linux
operating system. They were run under the control of an-
other program that enforces some limits on memory and
CPU time. Solvers were run inside a sandbox that prevents
unauthorized use of the system (network connections, file
creation outside the allowed directory, among others). It was
required that two executions of a solver with the same pa-
rameters and system resources should output the same result
in approximately the same time (so that the experiments can
be repeated).

Of course, contestants were asked to provide the organiz-
ers with a command line for running their solvers. In this
command line, the following placeholders were replaced by
the actual information given by the evaluation environment:
• BENCHNAME replaced by the name of the file contain-

ing the instance to solve.
• RANDOMSEED replaced by a random seed which is a

number between 0 and 4, 294, 967, 295. This parameter
had to be used for initializing the random number genera-
tor (when the solver uses random numbers). It is recorded
by the evaluation environment, which allows to solve a
given instance under the same conditions if necessary.

• TIMEOUT represents the total CPU time (in seconds) that
the solver may use before being killed. May be used to
adapt the solver strategy.

• MEMLIMIT represents the total amount of memory (in
MiB) that the solver may use before being killed. May be
used to adapt the solver strategy.

• TMPDIR is the name of the only directory where the
solver is allowed to read/write temporary files.

• DIR is the name of the directory where the solver files are
stored.
After TIMEOUT seconds have elapsed, the solver first re-

ceives a SIGTERM to give it a chance to output the best
solution found so far (in the case of an optimizing solver).
One second later, the program receives a SIGKILL signal
from the controlling program to terminate the solver. Simi-
larly, a solver that used more memory than the limit defined
by MEMLIMIT was sent a SIGTERM followed one second
later by a SIGKILL.

The solver could not write to any file except standard out-
put, standard error and files in the TMPDIR directory. A
solver was not allowed to open any network connection or

launch external commands which are not related to the solv-
ing process.

Output Rules
The evaluation environment recorded everything that is out-
put by a solver on stdout/stderr (up to a limit of 1MiB) and
put a timestamp on each line. This can be very informative
to check how solvers behave on some instances.

Of course, solvers had to output special messages to the
standard output in order to check results. The output for-
mat was inspired by the DIMACS output specification of
the SAT competitions. Lines output by the solver had to be
prefixed by “c ”,“s ”,“v ”, “d ” or “o ”. Other lines were
ignored.

• solution (“s ” line) These lines are mandatory, start with
lower case s followed by space (ASCII code 32), and are
followed by one of the following answers:

– UNSUPPORTED
– SATISFIABLE
– UNSATISFIABLE (only used for CSP)
– UNKNOWN
– OPTIMUM FOUND

Note that UNSUPPORTED is used when the solver rec-
ognizes a constraint that is not implemented.

• values (“v ” line) These lines are mandatory and contain a
solution, i.e., a sequence of numbers, with whitespace as
separator.

• diagnostic (“d ” line) These lines are optional. A keyword
followed by a value must be given on such lines. For ex-
ample, a possible keyword is ASSIGNMENTS.

• comment (“c ” line) Such lines are optional and may ap-
pear anywhere in the solver output. They contain any in-
formation that authors want to output. They are recorded
by the evaluation environment for later viewing.

• objective cost (“o ” line) (for Max-CSP and WCSP, only)
These lines contain an integer value.

On the one hand, a CSP solver had to output exactly one
“s ” line and in addition, when the instance is found SAT-
ISFIABLE, exactly one “v ” line. On the other hand, since
a MAX-CSP or WCSP solver does not stop as soon as it
finds a solution but instead tries to find a better solution, it
must be given a way to output the best found solution even
when it reaches the time limit. There are two options de-
pending on the ability of the solver to intercept signals. The
first option can be used if the solver is able to catch the sig-
nal SIGTERM : when interrupted, it must output the best
found solution. The second option must be used otherwise:
a certificate “v ” line is output each time the solver finds a
solution which is better than the previous ones.

Ranking
For each problem (CSP, Max-CSP and WCSP) and solver
category, a ranking was computed for different categories of
instances, based on constraint arity (binary and non-binary
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constraints) and constraint representation (extensional, in-
tensional and global constraints). Solvers were ranked as fol-
lows.

CSP: Solvers claiming incorrect results in a given category
were disqualified from this category. Of the remaining
solvers, the solver solving the most problems were de-
clared the winner. Ties were broken by considering the
minimum total solution time.

Max-CSP/WCSP: Solvers with no incorrect results in a
given category were ranked as follows:

Incomplete solvers were ranked in increasing order of
their average relative error (i.e. the average normalized
difference between the cost of solutions found by the
solver and the cost of the best known solutions).

Complete solvers were ranked in decreasing order of the
number of instances for which a solution was proved
to be OPTIMUM (using average relative error as tie
breaker).

Minizinc Competitions
In this section, we succinctly present how the last Miniz-
inc competition, held in 2014, was organized. The language
used for representing problem instances in that competition
was MiniZinc (Nethercote et al. 2007) (version 1.6), and
its related low-level format FlatZinc. Entrants to the chal-
lenge provide a FlatZinc solver as well as global constraint
definitions specialized for their solver. A translator, called
mzn2fzn, is run on MiniZinc models using the provided
global constraint definitions to create FlatZinc files, which
are given as input to the contestant solvers.

An entrant in the challenge is a constraint solver that is
installed in a virtual machine (VM) provided by the organiz-
ers. The provided VM with an installed solver is run by an
executable file called fzn-exec that invokes a FlatZinc solver
handling FlatZinc version 1.6. The syntax is:

fzn-exec [<options>] file.fzn

where:

• the argument file.fzn is the name of a FlatZinc 1.6 model
instance to evaluate.

• the options are:

-a For satisfaction problems, the solver must output all
solutions, and for optimization problems, the solver
must output the first optimal solution and all found in-
termediate solutions.

-f The solver is free to ignore any specified search strat-
egy.

-p <n> The solver is free to use multiple threads and/or
cores during search. The argument n specifies the num-
ber of cores that are available.

There have been four competition CLASSES:

• FD search: solvers must follow the search strategy given
in each input file, and are disqualified when they do not
follow it.

• Free search: solvers are free to ignore the search strategy.

• Parallel search: solvers are free to use multiple threads or
cores.

• Open class: this class allows the usage of portfolio
solvers. Solvers are free to use multiple threads or cores
to solve the problem.

Output of solvers must conform to the FlatZinc 1.6 spec-
ification. For optimization problems, when the time limit is
exceeded before the final solution is printed then the last
complete approximate solution printed is considered to be
the solution for that instance. Each solver s is run on prob-
lem instance p and the following information is collected:

• wck(p, s) - the wall clock time used by s.

• solved(p, s) - true if p is solved by s

• quality(p, s) - the objective value of the best solution
found by s.

• optimal(p, s) - true if the objective value is proved opti-
mal by s.

Scoring Procedure The scoring procedure is based on
the Borda count voting system. Each benchmark instance is
treated like a voter who ranks the solvers. Each solver scores
points related to the number of solvers that it beats. More
precisely, a solver s scores points on problem p by compar-
ing its performance with each other solver s′ as follows:

• if s gives a better answer than s′ it scores 1 point,

• else if ¬solved(p, s) or s gives a worse answer than s′ it
scores 0 point.

• else (s and s′ gives indistinguishable answers) scoring is
based on execution time comparison: s scores wck(p, s ′)
/ (wck(p, s ′) + wck(p, s)), or 0.5 if both finished in 0s.

A solver s is said to be better than a solver s′ iff:

• for satisfaction problems, solved(p, s) ∧ ¬solved(p, s ′)
• for optimization problems,

solved(p, s) ∧ ¬solved(p, s ′)
∨optimal(p, s) ∧ ¬optimal(p, s ′)
∨quality(p, s) > quality(p, s ′)

From XCSP 2.1 to XCSP3
Although significant efforts were performed these recent
years, in the context of competitions of solvers, as shown in
previous sections, the Constraint Programming (CP) com-
munity still suffers from the lack of a standard low-level for-
mat for representing various forms of combinatorial prob-
lems subject to constraints and optimization. It is important
to note that we specifically refer here to the possibility of
generating and exchanging files containing precise descrip-
tions of problem instances (no model/data separation), so
that fair comparisons of problem solving approaches can
be made in good conditions, and experiments can be re-
produced easily. The two current proposals, XCSP 2.1 and
FlatZinc, have some drawbacks that certainly prevent them
from becoming such a “universal” format. For example, it
was not possible to deal with objective functions in XCSP
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2.1, and not possible to deal with weighted constraint net-
works in MiniZinc (and so, in FlatZinc), although a proposal
was made in (Ansotegui et al. 2011), but to the best of our
knowledge, never incorporated in official specifications.

In (Boussemart et al. 2015), the specifications for a major
revision/extension of the basic format XCSP 2.1 are intro-
duced. This new format, XCSP3, is a rather light language
that allows us to get integrated representations of combina-
torial constrained problems, by enumerating variables, con-
straints and objectives in a very simple and unambiguous
way.

Actually, here are the main advantages of XCSP3:

• Generality. XCSP3 allows us to represent many forms
of combinatorial constrained problems since it can deal
with constraint satisfaction, mono and multi-objective
optimization, preferences through soft constraints, vari-
able quantification, qualitative reasoning, continuous con-
straint solving, distributed constraint reasoning, and prob-
abilistic constraint reasoning.

• Completeness. A very large range of constraints is avail-
able, including rarely used variants and encompassing
practically (i.e., to a very large extent) all constraints that
can be found in major constraint solvers such as, e.g.,
Choco and Gecode.

• Understanding. We pay attention to control the number
of concepts and basic constraint forms, advisedly exploit-
ing automatic variations of these forms through lifting,
restriction, sliding, combination and relaxation mecha-
nisms, so as to facilitate global understanding.

• Readability. The new format is more compact, and less
redundant than XCSP 2.1, making it very easy to read and
understand, especially as variables and constraints can be
handled under the form of arrays/groups.

• Flexibility. It will be very easy to extend the format, if
necessary, in the future, for example by adding new kind
of global constraints, or by adding a few XML attributes
in order to handle new concepts.

• Easiness of Parsing. Thanks to the XML architecture of
the format, basically, it is easy to parse instance files at
a coarse-grain level. Besides, parsers written in Java and
C++ are made available.

• Dedicated Website. A website, companion of XCSP3,
will be open soon, with many models/series/instances
made available. This website will allow the user to make
sophisticated queries in order to select and download the
instances that he finds relevant.

The main novelties of XCSP3 with respect to XCSP 2.1
are:

• Optimization. XCSP3 can manage both mono-objective
and multi-objective optimization.

• New Types of Variables. It is possible to define 0/1, inte-
ger, symbolic, float, qualitative, set, and graph variables,
in XCSP3.

• Lifted and Restricted forms of Constraints. It is natu-
ral to extend basic forms of constraints over lists (tuples),

sets and multi-sets. It is simple to build restricted forms
of constraints by considering some properties of lists.

• Meta-constraints. It is possible to exploit sliding and log-
ical mechanisms over variables and constraints.

• Relaxed constraints. Relaxed cost-based constraints can
be defined easily.

• Reification. Half and full reification is easy, and made
possible by letting the user associate a 0/1 variable with
any constraint of the problem through a dedicated XML
attribute.

• Views. In XCSP3, it is possible to post constraints with
arguments that are not limited to simple variables or con-
stants, thus, avoiding in some situations the necessity of
introducing auxiliary variables and constraints, and per-
mitting solvers that can handle variable views to do it.

• Structure. It is possible to post variables under the form
of arrays (of any dimension) and to post constraints in
(semantic or syntaxic) groups, thereby, partly preserving
the structure of the models.

• Annotations. It is possible to add annotations to the in-
stances, for indicating search guidance and filtering pref-
erences.

<instance format="XCSP3" type="CSP">
<variables>
<array id="M" size="[3][3]">

1..9
</array>

</variables>
<constraints>
<allDifferent> M[][]</allDifferent>
<group>

<sum>
<list> %... </list>
<condition> (eq,15) </condition

>
</sum>
<args> M[0][] </args>
<args> M[1][] </args>
<args> M[2][] </args>
<args> M[][0] </args>
<args> M[][1] </args>
<args> M[][2] </args>
<args>
M[0][0] M[1][1] M[2][2]

</args>
<args>

M[2][0] M[1][1] M[0][2]
</args>

</group>
</constraints>

</instance>

As an illustration, let us consider the XCSP3 formulation
for the 3-order instance of the Magic Square problem, given
above. A magic square of order 3 is an arrangement of num-
bers 1, 2, . . . , 9 in a square grid, where the numbers in each
row, and in each column, and the numbers in the main and
secondary diagonals, all add up to the same number (15).



Classification
A recurrent issue in benchmarking is the classification of
instances. We can distinguish two common practices which
are not exclusive: qualitative classification and quantitative
classification. A qualitative classification gathers instances
according to some features (nature of the problems, random
generation, . . .). A quantitative classification gathers in-
stances according to their difficulty. The latter is frequently
used in other communities, but to our knowledge, only qual-
itative classification are publicly available for MiniZinc and
XCSP.

Quantitative classification We propose a simple classifi-
cation method based on the results of various solvers. For
example, these results may correspond to those obtained at
successive competitions.

The Virtual Best Solver (VBS) is a theoretical construc-
tion which returns the best answer provided by one of the
solvers. Similarly, the Virtual Worst Solver (VWS) returns
the worst answer provided by one of the solvers.

Easy instances are classified using the VWS: train-
ing (less than 10 seconds); or easy (less than 1000
seconds). Hard instances are classified using the VBS:
medium (less than 1000 seconds); challenging (no time-
out); or hard (timeout or memory exception).

These categories form a partition of the instances. Indeed,
an instance belongs to the first category above whose accep-
tance condition is met. For example, a medium instance is
solved in less than 1000 seconds by the VBS, but more than
1000 seconds by the VWS (otherwise, it would be an easy
instance).

Of course, such a classification attempt should also take
into account the experimental protocols followed for obtain-
ing the results (e.g., computing infrastructures)

Scoring Procedure
The main drawback of the scoring procedure in the CSC
competition is that solving times are only considered for
tie breaking for CSP and not considered at all for optimiza-
tion. On the other hand, the scoring procedure in the Miniz-
inc competition is based on the Borda count voting system,
as explained earlier. Unfortunately, the way points are dis-
tributed in case of indistinguishable answers does not cap-
ture user’s preferences very well. Indeed, if the solver s
solves the first n problems in 0.1 seconds and the n last prob-
lems in 1000 seconds whereas the solver s′ solves the first n
problems in 0.2 seconds and the n last problems in 500 sec-
onds, then both solvers obtain the same score (n) whereas
most users would certainly prefer s′.

To partially address this issue, we propose a scoring
variant. Let t and t′ respectively denote wck(p, s) and
wck(p, s′), i.e., the wall clock times of solvers s and s′ when
solving the problem p. In case of indistinguishable answers,
s scores f(t, t′) = t′÷(t+t′) according to the Borda system.
Here, we define g(t, t′) = g(t)+(1−g(t)−g(t′))×f(t, t′)
in which some points are given by contract g(t) = 1 ÷ 2 ×
(loga(t+1)+1) (a = 10) where g(t) is a strictly decreasing
function from 0.5 toward 0. The remaining points are shared

between the two solvers using Function f . Using Function
g in the previous example, solvers s and s′ are respectively
scored 0.81×n and 1.19×n points: s′ is therefore preferred
to s.

This idea arose because in competitions there is usually
a significant number of easy problems. Only using Func-
tion f introduces a bias toward solvers that solve easy prob-
lems very quickly. Besides, one of the main drawback of the
Borda count is that it does not satisfy the Condorcet crite-
rion, i.e., a solver who wins a duel against each other candi-
date is not always the winner of the competition.

In future competitions, it would certainly be relevant to
modify the scoring procedure, while being careful that it re-
mains consistent with the competition rules. For instance,
the Borda count does not satisfy the independence of clones
criterion, stating that the winner must not change when a
non-winning solver is duplicated (considered twice). So,
rules could impose that each contestant submit at most one
solver (contrary to previous competitions).

Conclusion
In this position paper, we have provided CP feedback on
benchmarking and solver competitions. We have also pre-
sented some innovative developments in terms of problem
representation format and competition rules. We hope that
this material may be useful to the organizers of the interna-
tional planning competitions.
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