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1. Introduction
Open-Shop problems are at the core of many scheduling problems involving unary resources
such as Job-Shop or Flow-Shop problems, which have received an important amount of
attention because of their wide range of applications. Among the many techniques proposed
in the literature, Constraint Programming (CP) is among the most successful.

In the Open-Shop problem (OSP), a set J of n jobs, consisting each of m tasks (or
operations), must be processed on a set M of m machines. The processing times are given
by a matrix P : m× n, in which pij ≥ 0 is the processing time of task Tij ∈ T of job Jj, to
be done on machine Mi. The tasks of a job can be processed in any order, but only one at a
time. Similarly, a machine can process only one task at a time. We consider the construction
of non-preemptive schedules of minimal makespan Cmax, which is NP-Hard for m ≥ 3 (see
Gonzalez and Sahni, 1976). Figure 1 shows an optimal solution of the problem where each
line/shade represents a machine/job.
A classical lower bound CLB

max for this problem is equal to the maximum workload over every
machine and every job given by: max

(
max1≤i≤m(∑n

j=1 pij),max1≤j≤n(∑m
i=1 pij)

)
. Three sets

of benchmark instances are available in the literature (Taillard, 1993; Brucker et al., 1997;
Guéret and Prins, 1999).
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Figure 1: An optimal solution of the instance GP03-02 with makespan equal to 1170.

The first exact method (Brucker et al., 1996) proposed for the Open-Shop problem is
based on the resolution of a one-machine problem with positive and negative time lags. The
second one (Brucker et al., 1997) consists of fixing precedences on the critical path of heuris-
tic solutions computed at each node. Although that last method is efficient, some problems
of Taillard benchmark from size 7× 7 remained unsolved.
Guéret et al. (2000) proposed an intelligent backtracking technique applied to the Brucker
branching scheme. When a contradiction is raised during search, instead of systematically
backtracking to the previous decision (chronological backtracking), the algorithm analyzes
the reasons for the contradiction to avoid questioning decisions that are not related to the
failure, and backtracks to a more relevant choice point. This approach significantly reduces
the number of backtracks, but can consume twice the CPU time in each node. They further
applied additional search tree reduction based on forbidden intervals, i.e. time intervals in
which no operation can start or end in an optimal solution (Guéret and Prins, 1998).
Dorndorf et al. (2001) improved the Brucker algorithm by using consistency techniques.
Instead of analyzing and improving the search strategies, they focused on constraint prop-
agation techniques for reducing the search space. Furthermore, they studied top-down and
bottom-up optimization procedures depending on the average workload of a problem instance.
The top-down procedure starts with a upper bound ub and tries to improve it. The bottom-
up procedure starts with a lower bound lb as target upper bound which is incremented by
one unit until the problem becomes feasible. Their algorithms were the first to solve many
problem instances to optimality in a short amount of time. However, some problems of Tail-
lard benchmark from size 15 × 15 remained unsolved, as well as some of Brucker instances
from size 7× 7.
More recently, Laborie (2005) proposed a bottom-up search for cumulative scheduling based
on the detection ofMinimal Critical Sets (MCS) and advanced propagation with self-adapted
shaving. A MCS is a minimal set of resource requirements on the same resource that would
over-consume the resource if executed simultaneously. A heuristic selects critical sets by
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estimating the related reduction of the search space. The approach closed the 34 remaining
open instances of Guéret-Prins benchmark and 3 of the 6 open instances of Brucker bench-
mark.
Most bottom-up variants differ by the way infeasibilities are resolved. Dichotomous variants
resolve infeasibilities by repeatedly dividing the makespan interval [lb, ub[ in half until it
becomes empty. If the subproblem [lb,

⌈
lb+ub

2

⌉
[ is feasible, then the current makespan pro-

vides a new upper bound. Otherwise, the value
⌈
lb+ub

2

⌉
is a new legal lower bound. As a

consequence, these variants begin with a legal lower bound and an initial feasible solution.
For instance, the first branch of the first iteration can provide an initial solution if no initial
constraint on the makespan is stated. In practice, it is often important to guarantee the
length of the initial interval since the number of subproblems depends on it. Therefore,
another approach consists in increasing the target lower bound by 2k from the previously
stored lower bound at the k-th iteration until finding a solution which provides the ini-
tial interval [2k, ub[⊆ [2k, 2k+1[. Dichotomous variants reduce the number of iterations from
Cmax − CLB

max + 1 to O(log2

(
Cmax − CLB

max + 1
)
).

Later, Tamura et al. (2006) applied a method to Open-Shop problems that encodes Con-
straint Satisfaction/Optimization problems with integer linear constraints into a Boolean
Satisfiability Testing problem (SAT). A comparison x ≤ a is encoded by a different boolean
variable for each integer variable x and each integer value a. Then, a simple constraint
model with deadline constraints and binary disjunctive constraints between two activities
belonging to the same job or machine is encoded as a SAT. They proved optimal results for
all instances including the last three open instances of Brucker benchmark.

Many metaheuristics algorithms have been developed in the last decade to solve the
Open-Shop problem. The most recent and successful metaheuristics are: Genetic Algo-
rithm (Prins, 2000), Construction and Repair (Chatzikokolakis et al., 2004), Ant Colony
Optimization (Blum, 2005) and Particle Swarm Optimization (Sha and Hsu, 2008).
Prins (2000) presents several specialized OSP genetic algorithms with two key features: a
population in which each individual has a distinct makespan, and a special procedure which
reorders every new chromosome.
Chatzikokolakis et al. (2004) proposed a general repair operator based on local search tech-
niques with a general cost function for evaluating partial assignments. Experimental results
improved many best-known solutions of the Guéret-Prins instances.
The basic component of Ant Colony Optimization (ACO) is a probabilistic solution con-
struction mechanism. Because of its constructive nature, it can be regarded as a tree search
method. Based on this observation, Blum (2005) hybridizes the solution construction mech-
anism with beam search. Beam search algorithms are incomplete derivatives of branch-and-
bound algorithms. It is an approximate method where a partial assignment is only extended
in a restricted number of ways (this limit is called the beam width). The approach improved
on the results obtained by the current best standard ACO algorithms.
Particle Swarm Optimization (PSO) is a population-based optimization algorithm, where
each particle is an individual solution, and the swarm is composed of many particles. Sha
and Hsu (2008) modify the representation of particle position, particle movement, and parti-
cle velocity to better fit to the OSP. They obtained many optimal solutions to the benchmark
problems.
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Finally, many heuristic methods quickly provide good solutions. Most of them are con-
structive methods and belong to three main families: priority dispatching rules, matching
algorithms (see Guéret, 1997), and insertion and appending procedures combined with beam
search (see Bräsel et al., 1993).

In this paper, we investigate the enhancements of top-down algorithms for Open-Shop
problems as it is important, in practice, to quickly provide good solutions. Our approach
relies on the use of strong propagation mechanisms of the unary resource and temporal con-
straint network constraints but also reasoning dedicated to the minimization of the makespan
such as the forbidden intervals method. Our main contribution is to show that randomiza-
tion and restart strategies combined with strong propagation and scheduling heuristics can
lead to a very efficient approach for solving Open-Shop problems. The proposed solving
technique outperforms other approaches published so far on a wide range of benchmarks.
This paper is organized as follows. Section 2 introduces our constraint model and Section 3
describes techniques that enhance the search of our top-down algorithm. Finally, Section 4
presents the experimental results we obtained and investigates the effect of each component
of the algorithm as well as the comparison against other approaches.

2. The Constraint Programming Model
Constraint programming techniques have been widely used to solve scheduling problems.
A Constraint Satisfaction Problem (CSP) consists of a set V of variables defined by a cor-
responding set of possible values (the domains D) and a set C of constraints. A solution
of the problem is an assignment of a value to each variable such that all constraints are
simultaneously satisfied. Constraints are handled through a propagation mechanism which
allows the reduction of the domains of variables and the pruning of the search tree. The
propagation mechanism coupled with a backtracking scheme allows the search space to be
explored in a complete way. Scheduling is probably one of the most successful areas for
CP thanks to specialized global constraints, which allow modelling resource limitations and
temporal constraints.

Constraint programming models in scheduling usually represent a non-preemptive task
Tij by a triplet of non-negative integer variables (sij, pij, eij) denoting the start, processing
time and end of the task such that sij + pij = eij. In Open-Shop problems, the duration
pij is known in advance and is a constant. The head of a task estij = inf(sij), denotes its
earliest possible starting time, whereas its tail lctij = sup(eij) is its latest completion time.

In this section, we present our constraint programming model to tackle Open-Shop prob-
lems. First, we present the unary resource global constraint which models the fact that a
single machine or job can be processed at any given time. Then, we explain how precedence
constraints are tackled in the decision and propagation process. We also state additional
dedicated constraints such as forbidden intervals and symmetry breaking constraints. Finally,
various branching schemes in constraint-based scheduling are detailed.
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2.1. Unary Resource
A unary resource constraint, also called disjunctive, models a resource of unit capacity. The
constraint holds if all the tasks of a collection that have a duration strictly greater than 0
do not overlap. One unary resource constraint is stated for each job and each machine. Let
T denote a set of tasks sharing a unary resource and Ω denote a subset of T . We consider
the three following propagation rules:

Not First/Not Last: This rule determines if task i cannot be scheduled after or before a set
of tasks Ω. In other words, it implies that i cannot be last or first in the set Ω∪{i}. In
that case, at least one task from the set must be scheduled after (resp. before) activity
i and the tail (resp. head) of i can be updated accordingly.

Edge Finding: This filtering technique determines that some task must be executed first or
last in a set Ω. It is the counterpart of Not First/Not Last.

Detectable Precedence: A precedence i ≺ j (see Section 2.2) is called detectable if it can be
discovered only by comparing the time bounds of its two tasks. Heads and tails of each
task can then be updated more accurately by the knowledge of all its predecessors or
successors.

Several propagation algorithms (Carlier and Pinson, 1994; Caseau and Laburthe, 1995; Bap-
tiste and Le Pape, 1996; Vilím, 2004) exist for these rules and the best of them have a
complexity of O(n log(n)). These rules rely on the computation of the Earliest Completion
Time (ECTΩ) of a set of tasks Ω ⊆ T . By denoting estΩ = minTij∈Ω{estij}, its earliest
completion time is given by: ECTΩ = max{estΩ′ + ∑

Ω′ pij, Ω′ ⊆ Ω}. We chose the imple-
mentation proposed by Vilím (2004) that relies on two efficient data structures: Θ-tree and
Θ-Λ-tree. These structures are based on a balanced binary tree and allow a quick computa-
tion of ECTΩ, especially at each addition or removal of a task in the set.
We also take advantage of the computation of ECTΩ to estimate a lower bound of the
makespan. In fact, the earliest completion time of a machineMi (resp. a job Jj) is estimated
by the value of ECTMi

(resp. ECTJj
). Thereby, the makespan is greater than the maximum

of the earliest completion times among all resources (jobs and machines).

2.2. Temporal Constraints
This section deals with the problem of managing quantitative temporal networks without
disjunctive constraints. Of course, temporal constraints could be handled by simply adding
the corresponding elementary constraints to the solver and by propagating them indepen-
dently. But, some efficient procedures are dedicated to this problem, known as the Simple
Temporal Problem (see Dechter, 2003). This problem involves a set of temporal integer
variables {X1, . . . , Xn} and a set of temporal constraints {aij ≤ Xj − Xi ≤ bij}, where
bij ≥ aij ≥ 0. Cesta and Oddi (1996) proposed algorithms to manage temporal informa-
tion that: (a) allow dynamic changes of the constraint set for both posting and retraction
(b) exploit the temporal constraint network for incremental propagation and cycle detection.

Let Tij ≺ Tkl denote a precedence constraint, i.e. a temporal constraint such that sij +
pij ≤ skl. A directed graph G = (V,E) is associated with these constraints where the set
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of nodes V represents the set of tasks and the set of arcs represents the set of precedence
constraints. Two fictitious tasks Tstart and Tend referring to the starting and ending tasks of
the schedule, are added to V . An arc is added in E between two tasks Tij and Tkl, if Tij
precedes Tkl (Tij ≺ Tkl). Initially, the only arcs of E are the ones originating at node Tstart
or ending at node Tend.

The structure efficiently handles arc insertions/removals and is restorable upon back-
tracking, i.e. it maintains a stack to record when a change is done on the graph. Cycle
and transitive arc detections have a constant time complexity as we maintain the transitive
closure of G. Frigioni et al. (2001) proposed an algorithm for maintaining the transitive
closure information in a directed graph which requires O(n) amortized time for a sequence
of insertions and deletions. In addition, we also maintain a topological order with the sim-
ple and efficient algorithm proposed by Pearce and Kelly (2006). Note that, the transitive
closure information reduces the overall complexity to maintain a topological order.

The branching strategy (see Section 2.4) adds arcs between tasks sharing a unary resource
until all these pairs are connected by a path. At the end of the search, the makespan Cmax
of a schedule is the length of a longest path between Tstart and Tend, i.e. a critical path. The
branching strategy exploits the transitive closure to avoid creating cycles in the network
or branching on transitive or satisfied precedences. Indeed, the precedence network G is
consistent if and only if it does not have any cycle. Then, a precedence can be easily
detected when it is inferred by the bounds of the tasks, but it is not necessarily the case for
transitive precedences. Since precedences satisfy the triangular inequality, if an arc (Tij, Tkl)
is transitive, i.e. Tij and Tkl are connected by a path in E\{(Tij, Tkl)}, then the precedence
Tij ≺ Tkl can be inferred.

Propagation of a set of precedences can be done in linear time, but a bad ordering
of awakes in the propagation loop can lead, in the worst case, to quadratic time before
reaching the fixpoint. Indeed, the longest path from Tstart to Tij, and from Tij to Tend are
computed to update the head and tail of Tij. Since G is a directed acyclic graph, all longest
paths originating from Tstart and ending at Tend are computed in a linear time with an
incremental version of the Dynamic Bellman algorithm for the Single Source Longest Path
problem (Gondran and Minoux, 1984). A topological order is an input of the algorithm and
our implementation avoids redundant computations by maintaining a dynamic topological
order. At each propagation, the algorithm considers only a subgraph of G inferred from tasks
for which heads or tails have changed since the last call. Note that the general algorithm
proposed by Cesta and Oddi (1996) has a O(|V | × |E|) complexity whereas our algorithm is
O(|E|).

2.3. Additional Constraints
In this section, we introduce additional constraints that improve the propagation by con-
sidering makespan minimization and basic symmetries. These redundant constraints are
dominance rules that are not mandatory for the model’s correctness, but improve its resolu-
tion. They can be propagated in constant time during the search contrary to complex lower
bounds or dominance rules used in other branching schemes (Brucker et al., 1999), as for
instance the Brucker branching scheme.
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Forbidden Intervals Forbidden intervals are a specialized filtering technique for OSP with
minimal makespan. Forbidden intervals are intervals in which in an optimal solution, tasks
can neither start nor end. Heads and tails can be strengthened based on this information
during search. When the head of a task is in such an interval, it can be increased to the
upper bound of the interval. This technique has been proposed by Guéret and Prins (1998)
and the computation of forbidden intervals is based on the resolution of m+ n Subset Sum
Problems. The Subset Sum Problem has an O(d× n) complexity where d is the capacity of
the knapsack, i.e. the maximal makespan (see Kellerer et al., 2004). Since these problems
are solved once and for all at the beginning of the search, heads and tails are updated in a
constant time.

Symmetry Breaking Many constraint satisfaction problems contain symmetries making
many solutions equivalent. Symmetry breaking techniques avoid redundant search effort, by
trying to ensure that whenever a partial assignment is shown to be inconsistent, no symmetric
assignment is ever tried. A solution of the OSP can be reversed considering the last task
of a machine as the first, the second to last task as the second and so on. This symmetric
counterpart of any solution is also a solution for the OSP. Once the algorithm has proven
that one ordering of the tasks is suboptimal, it is unnecessary to check the reverse ordering.
Breaking this symmetry can be done by choosing any task Tij and a priori imposing that it
starts in the first half of the schedule: sij ≤

⌈
eend−pij

2

⌉
. Our algorithm selects the task with

the longest processing time.

2.4. Branching Scheme
Branching strategies in scheduling can be divided into two main families: assigning starting
times or fixing precedences. The former leads to n-ary branching schemes whereas the latter
yields binary decisions.

In the first family, the most well-known strategy is referred to as setTimes (Le Pape
et al., 1994) and is an incomplete branching scheme. However, SetTimes is complete in
many specific applications including shop problems. At each node, it selects a task from
a set of unscheduled and selectable tasks, creates a choice point and schedules the selected
task at its earliest starting time. Upon backtracking, it labels the task that was scheduled
at the considered choice point as not selectable, as long as its earliest start has not changed.

The second family consists of fixing precedences between tasks. The n-ary branching
of Brucker et al. (1997) (denoted as Block) is based on the computation of one heuristic
solution at each node to decide which precedences to enforce. The tasks along the critical
path of this heuristic solution are selected and precedences are stated to question the cur-
rent critical path. This branching scheme can fix many precedences simultaneously while
remaining complete.
Beck et al. (1997) proposed a simpler binary branching scheme (denoted as Profile) where
two critical tasks sharing the same unary resource are ordered. The individual demand is
(probabilistically) the amount of a resource required by the activity at time t. To estimate
contention, the individual demands of each task are aggregated for each resource by sum-
ming the individual demand curves for that resource. This aggregate demand curve is used
as a measure of the contention for the resource over time. At each node, the resource and
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the time point with the maximum contention are identified, then a pair of tasks that rely
most on this resource at this time point is selected (it is also ensured that these two tasks
are not already connected by a path of temporal constraints). Once the pair of tasks has
been chosen, the order of the precedence has to be decided. This can be done using the
randomized value ordering heuristics known as Centroid (Beck et al., 1997). The centroid
is a real deterministic function of the domain and is computed for the two critical tasks.
The centroid of a task is the point that divides its demand curve equally. We commit the
precedence which preserves the ordering of the centroids of the two tasks. If the centroids
are at the same position, a random ordering is chosen.
More recently, Laborie (2005) proposed a branching scheme for general cumulative scheduling
relying on the notion of minimal critical sets (MCS). In disjunctive scheduling context, MCSs
are pairs of activities conflicting for the same unary resource. At each node, the branching
consists of (a) selecting a MCS according to an estimation of the related reduction of the
search space, (b) applying a simplification procedure on each MCS, and (c) branching on its
possible precedences in the children nodes until no MCS remains.

An example of each branching is given in Figure 2 to illustrate the various shapes of the
search tree. We implemented the Profile branching scheme because the use of randomized
binary decisions eases the integration of techniques detailed below.

T11 = 0

T12 = 25 T13 = 25 T23 = 0

T12 is not selectable

Critical path:

T12 ≺ {T11, T13}

SetTimes

subtree

T12 and T13 are not selectable

Block Profile/MCS

(T11, T12, T13, T33)

T13 ≺ {T11, T12}
{T11, T13} ≺ T12 {T11, T12} ≺ T13

T11 ≺ {T12, T13}

T33 ≺ T13

T11 ≺ {T12, T13}

T12 ≺ T22 T22 ≺ T12

T11 ≺ T12

Figure 2: The shape of the search tree for different branching schemes. From left to right,
SetTimes, Block and Profile/MCS branching schemes.

3. Solving the Open-Shop Problem
Using the model presented in Section 2, we now can solve the Open-Shop problem by using
a top-down search. This section describes the enhancements, with scheduling heuristics,
and randomization and restart of our constraint model based on the propagation techniques
of the unary resource, precedence network and additional constraints. The branching is
conducted by adding precedences using the Profile heuristics with randomized Centroid.
Preliminary experiments reveal two main drawbacks. First, propagation techniques are very
effective once a tight upper bound is known, but only slow down search otherwise. Second,
the slightly randomized version of Centroid shows a large variance both in solving time and
in quality of the first solutions found. Such a behavior suggests that decisions taken early in
the search tree are never questioned again leading to an important thrashing phenomenon
(the same failure can be rediscovered several times).
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We propose to apply a randomized constructive heuristic (without propagation) which
initializes the upper bound so that the selection and propagation of initial choices is improved
at the beginning of the complete search. Furthermore, we propose a restarting strategy
enhanced with nogood recording at each restart to prevent exploring the same part of the
search space again. Note that these two techniques can be used in any top-down approach
and with any branching scheme, although recording nogoods is made easier by using binary
decisions. We now give a detailed presentation of the overall approach and analyze its
parameters.

3.1. Main Procedure
Figure 3 summarizes a general algorithm for solving Open-Shop problems: the Randomized
and Restarts Constraint Programming algorithm for Open-Shop problem (RRCP). Possible
values of the relevant parameters are indicated in blocks 1 and 7, and are discussed in
Section 4.1. The top-down algorithm starts with a heuristic (blocks 1-2) and continues,
if needed, with a complete search (blocks 3 to 9) which incrementally improves the best
solution found so far. The heuristic computes an initial solution and provides the initial
upper bound CUB

max. We designed a simple randomized heuristic named CROSH, presented in
detail in Section 3.2. Then, an optimality test is applied (block 2) before going any further
and starting the search. In block 3, the CP model is created (see Section 2) and various
components are initialized.

The generic loop of the algorithm is contained between blocks 4 and 9. After propagation
and domain reduction (block 4), we may have either reached a solution, a contradiction, or
neither of those two cases. If a solution is found, it is recorded and the new upper bound on
the makespan is used to add a constraint as a dynamic cut (block 5) that is propagated upon
backtracking (block 6). If a failure is detected and all branches of the root node have been
fathomed, then optimality of the last solution found is proven and the algorithm terminates.
Otherwise, the algorithm backtracks (block 6). Then, at that point, a new branching step
is needed but before that, we examine the possibility of restarting.

Two different policies for restarting (Luby, Walsh) have been analyzed in our study as
shown on block 7 and discussed in detail in Section 3.3. In the case of restarts, we extract
nogoods (block 8) from the last branch of the search tree to avoid redundant work from one
restart to the next and keep track of the subproblems already proven to be suboptimal or
infeasible. A nogood is defined here by the current upper bound and the set of branching
decisions (precedences). Note that, the algorithm does not restart before a backtrack to
avoid side-effects of recording truncated nogoods or restarting at the root node. If no restart
is performed, then a search is undertaken using the Profile branching scheme in block 9
(see Section 2.4). Branching divides the main problem into a set of disjoint subproblems by
temporarily adding a precedence.

3.2. Initial Solution
As mentioned above, propagation techniques are very costly and only useful when applied
with a tight upper bound. Similarly, the branching technique is very sensitive to the quality
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Figure 3: General outline of RRCP. Ellipses are initial and final states. Rectangles are
procedures or actions. Diamonds are if-else conditions. Dashed rectangles are labels.

of the upper bound, as it relies on the demand curve of the resources. It is thus important
to provide a good upper bound at the root node in a short period.

We designed a Constructive Randomized Open-Shop Heuristics (CROSH) by combining
a randomization step with Priority Dispatching Rule (PDR) methods. Aside from being
generic and simple to implement, CROSH yields good results experimentally (see Section 4.2).
PDR methods are classical methods to construct a non-delay schedule by repeatedly ap-
pending tasks to a partial schedule (Kolisch, 1996). A schedule is called a non-delay if no
machine is left idle, provided that it is possible to process some job. Starting with an empty
schedule, tasks are appended as follows: (a) determine the minimal head t0 of all unscheduled
operations (at time t0, there exists both a free machine and an available job), (b) among all
available tasks, choose one according to a dispatching rule. The first iteration applies the
Longest Processing Time (LPT) rule. Following iterations uniformly select a random task at
step (b) instead of following a dispatching rule. The only parameter of CROSH is its number
of iterations. The complexity of one iteration is O(m2 × n2).
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3.3. Restart Strategy
Restart policies are based on the following observation: the longer a backtracking search al-
gorithm runs without finding a solution, the more likely it is that the algorithm is exploring
a barren part of the search space. Initial choices made by the branching are both the least
informed and the most important, as they lead to the largest subtrees and the search can
hardly recover from early mistakes. This can lead to thrashing situations where failures are
due to a small subset of early choices but discovered much deeper in the tree over and over
again.
To address this issue, shaving and intelligent backtracking techniques have been widely stud-
ied (Guéret et al., 2000; Dorndorf et al., 2001; Laborie, 2005). Shaving tries to assign a value
to a variable and applies a consistency filtering algorithm. If an inconsistency is found, then
the value can be safely removed from the domain of the variable. An intelligent backtracking
algorithm tries to compensate for the early mistakes of the branching by analyzing failures
and identifying the choices responsible for the current dead end.
We implemented restart strategies combined with randomization which is another way to
get rid of thrashing and bad initial choices. Such techniques diversify the search and require
less computation at each node than shaving or intelligent backtracking but explore more
nodes. Preliminary experiments have shown that shaving techniques are not useful in our
implementation. Note that, intelligent backtracking has not been experimented because it
requires the explanation of all domain changes as well as a deep integration into the search
algorithm.

Universal Restart Strategy Let A(x) be a randomized algorithm of the Las Vegas type,
which means that, on any input x, the output of A is always correct but its running time
TA(x) is a random variable. A universal restart strategy determines the length of any run
for all distributions on running time.
If the only feasible observation is the length of a run and there is no knowledge of the run-
time distribution of the solver on the given instance, Luby et al. (1993) showed that the
universal schedule of cutoff values of the form (1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 1, 1, 2, 4, 8, . . .) gives an
expected time to solution that is within a log factor of that given by the best fixed cutoff,
and that no universal schedule is better by more than a constant factor. The two parameters
that we consider are a scale factor s and a geometric factor r. The scale factor is the base
cutoff in a restart strategy. By denoting λk = rk−1

r−1 , the i-th term of the sequence is (s = 1
and r = 2 is the previous example):

∀i > 0, ti =

srk−1 if i = λk

ti−λk−1 if λk−1 < i < λk

s = 2 and r = 3⇒ 2, 2, 2, 6, 2, 2, 2, 6, 2, 2, 2, 6, 18, . . .

Walsh (1999) suggested another universal strategy of the form s, sr, sr2, sr3, . . . growing ex-
ponentially, contrary to the Luby strategy which grows linearly.
Wu and van Beek (2007) demonstrated the pitfalls of non-universal strategies both ana-
lytically and empirically, and showed that parametrization of the strategies improves per-
formance while retaining any optimality and worst-case guarantees. As restarting seems a
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key component of those problems, we evaluated the effects of scale and geometric factors to
identify good restart strategies.

Nogood Recording from Restarts Our branching scheme is only randomized when
ordering two tasks to state a precedence, and even in this case, the randomization only takes
place when Centroid is unable to identify a good order. This slight randomization of the
search is enough, as mentioned previously, to observe a large variance in solution quality.
Sometimes, only a few random choices are made and the same search tree is likely to be
explored from one restart to another. We apply a simple nogood recording technique similar
to Lecoutre et al. (2007) to compensate for this drawback.

In our context, a nogood is defined by the current upper bound ub and corresponds to
a set of precedences P , such that all solutions satisfying P have a makespan greater than
ub. The same set P of precedences can be met from one restart to another. Recording P
can avoid redundant work and provide more diversification across the restarts. We record
nogoods only when the search is about to restart (block 8 of Figure 3). At this point we record
all the nogoods representing the subtrees proven suboptimal following the idea of Lecoutre
et al.. All the work accomplished during this step is therefore recorded and the same part of
the search tree will therefore not be explored in latter runs. Since a nogood is extracted from
each negative decision of the last branch in a binary branching tree, only a linear number of
nogoods, with respect to the number of precedences, is recorded at each restart.

Nogoods are propagated individually in Lecoutre et al. using watch literals techniques.
We implemented the nogood store as a global constraint that achieves unit propagation on
the nogoods. Our implementation remains naive and could be improved based on watch
literals techniques. However, the number of nogoods remains quite small in practice as they
are only recorded at each restart and nogood propagation didn’t seem to be a bottleneck for
efficiency in our approach. Furthermore, we remove nogoods that are subsumed by others
when adding all the nogoods coming from a new restart.

4. Computational Results
Three sets of OSP benchmark instances are available in the literature. The first set consists
of 60 problem instances provided by Taillard (1993) (denoted by tai*) ranging from 16
operations (4 jobs and 4 machines) to 400 operations (20 jobs and 20 machines). This set of
instances is considered easy because no optimality proof is needed, i.e. the optimal makespan
is equal to the lower bound. Brucker et al. (1997) proposed 52 difficult instances (denoted
by j*) from 3 jobs and 3 machines to 8 jobs and 8 machines. Finally, the last set consists
of 80 benchmark instances provided by Guéret and Prins (1999) (denoted by GP*). The
size of these instances ranges from 3 jobs and 3 machines to 10 jobs and 10 machines and
the optimal makespan is always strictly greater than the lower bound. Note that, the lower
bound CLB

max is always equal to 1000 on Brucker and Guéret-Prins benchmark instances.
We perform several sets of experiments in order to: (a) configure the parameters (Sec-

tion 4.1); (b) study the impact of various components of the algorithm (Section 4.2); (c) com-
pare RRCP with state-of-the-art methods (Section 4.3). Two sets of independent experiments
were designed to achieve step (a) in a reasonable amount of time. Using the best parame-
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ters, we conducted a main set of experiments in order to complete steps (b) and (c). The
algorithm applied on the complete benchmark uses CROSH/LPT in a first step, and applies,
or not, a Luby/Walsh restarting policy with/without nogood recording. As the algorithm
is randomized, 20 runs were performed for each instance without a time limit. Solving time
includes the computation of the initial upper bound.

Our implementation is based on the Choco solver (Java) extended with scheduling objects
(tasks, resources, temporal constraints, and branching) and restarting policies with nogood
recording. Given that these features have been integrated in the latest releases (≥ 2.0.0),
our algorithm is easily reproducible. An additional package provides scheduling heuristics,
builds the model, and configures the solver.
All experiments were performed on a cluster of Linux machines, each node with 1 GB of
RAM and a AMD 2.2 GHz processor.

4.1. Setting the Parameters of the Algorithm
The parameters of our algorithm RRCP are presented in Section 3. An experimental study to
justify the choices made in the final set up of the algorithm is reported here.

4.1.1. Initial Solution

In this section, we discuss how to fix the number of iterations of CROSH outlined in block 1
of Figure 3. This set of experiments aims to determine the balance between the time spent
with the heuristics and the quality of the provided upper bound. Ideally, we wish to stop
the heuristic phase as soon as the CP search can improve the solution faster.

Therefore, we discretized the number of iterations into orders of magnitude 1, 10, 100,
1000, 5000, 10000, 25000. The maximum number of iterations was set to 25000 because a
timeout of 30 seconds was reached after 25000 iterations for large instances (15×15, 20×20).
In all instances, we applied the version of our algorithm that uses CROSH in a first step, and
does not include a restarting strategy. Twenty runs were performed for each instance with a
time limit of 180 seconds.

We deduce an estimated number of iterations for each problem’s size from the percentage
of solved instances and the average solving time. The instances until the size 6×6 are easily
solved by the constraint model and the number of iterations is fixed to 1000. Then, the
number of iterations is fixed to 10000 iterations until the size 9× 9, and to 25000 iterations
otherwise. The time limit of CROSH is fixed to 20 seconds.

4.1.2. Restart Policy Parameters

This section addresses how the restart policy parameters outlined in block 7 of algorithm 3
(scaling and geometric factors) are fixed. We selected a set of 23 instances from the size 6×6
to 20× 20 (8 GP*, 9 j*, 6 tai*) with different runtime distributions to identify good values
for the parameters. We report the effects of the parameters on the efficiency of the restart
policy measured by the number of problems solved to optimality as proposed by Wu and van
Beek (2007). The scale factor s is discretized into orders of magnitude 10−2, 10−1 . . . , 102

and the geometric factor r into 2, 3, . . . , 10 for Luby and 1.1, 1.2, . . . , 2 for Walsh. Then,
the scale factor is multiplied by the number of tasks n×m to take into account the size of
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the problem. Indeed, the scale factor is often related to the size, depth and width, of the
search tree. The multiplication balances the number of restarts for different problem’s sizes.
Twenty runs were performed on each instance of the set, with a time limit of 180 seconds
and an initial upper bound given by LPT (all runs start with the same upper bound).

The best parameter settings were then estimated by choosing the values that maximized
the expected number of instances solved. Ties were broken by considering the average
amount of time needed to solve an instance. Table 1 shows the results of the experiments
for the two restart policies with nogood recording. The percentage of solved instances, the

Luby Walsh

(s, r). % t̄ n̄ (s, r) % t̄ n̄

Best (1,3) 82.6 43.1 10055 (1,1.1) 82.6 43.0 9863
Average (*,*) 75.5 58.6 16738 (*,*) 76.2 54.6 11359
Acceptable (1, *) 82.0 44.5 10347 (0.1,*) 80.2 48.0 10973
NotAcceptable (0.01, *) 72.9 67.4 31676 (100, *) 70.5 67.1 12600

Table 1: Identifying good parameters for the restart policies with nogood recording.

average amount of time and number of nodes visited during search are given for different
sets of parameters. The symbol * represents all possible values for a parameter. The Best
line reports results of the two pairs of selected parameters. The Average line reports average
results over all parameters settings. The Acceptable and NotAcceptable lines respectively
report average results for scale factors leading to significant performance improvement and
degradation. As expected, estimating good parameters (Best and Acceptable) settings can
give quite reasonable performance improvements over unparametrized universal strategies
(Average, NotAcceptable). Many parameter settings obtained similar results where their
quality was highly depending upon the value of the scale factor (Acceptable and NotAccept-
able). Using their best parameters, the equivalence of Luby and Wash policies with nogood
recording is experimentally shown in Section 4.2.2. Therefore, other sections report only the
results obtained with Luby policy with nogood recording.

4.2. Sensibility Analysis
We report here an experimental study on the influence of the techniques introduced in
Section 3 and justify their use experimentally. We only report the results of instances with
size greater than 6×6 because the short solution times of small instances are not significant.
Let recall that 20 runs were performed for each instance as the algorithm is randomized.

4.2.1. Initial Solution

In this section, we study the impact of CROSH on different benchmarks, and compare CROSH
versus LPT, i.e. its first iteration. Preliminary analysis, not detailed here, showed that CROSH
can execute 10000 iterations in less than 1 second for instances of size up to 9× 9 (inclusive)
and 25000 iterations in less than 5 seconds for the size 10× 10. For large Taillard instances,
"easy" instances are most often solved optimally within a few seconds, reaching 20 seconds
to achieve 25000 iterations in a few cases.

14



Let CUB
max be the initial upper bound given by CROSH. The optimality gap is the ratio of the

difference between this upper bound and the optimal makespan, on the optimal makespan:
(CUB

max − Cmax) ÷ Cmax. The left graph of Figure 4 illustrates the relation between the
average optimality gap of CROSH and the solving time of RRCP (given on the horizontal axis).
Each point represents one instance and its x coordinate is the average solving time of RRCP
(logarithmic scale), whereas its y coordinate is the average optimality gap of CROSH. The
initial solution quality is satisfactory because the gap never exceeds 4% and is optimal or
near-optimal in many instances. The solving time of RRCP is not clearly related to the
optimality gap, especially for the Taillard benchmark. However, gaps increase on hardest
Guéret-Prins and Brucker instances, whereas they decrease on largest Taillard instances.
Further analysis, not detailed here, showed that CROSH gives the optimum at least once
for 28 of 40 Taillard instances, whereas it happened respectively for 6 of 40 Guéret-Prins
instances, and for 3 of 26 Brucker instances. Furthermore, all runs gave the optimum for 10
large Taillard instances (15× 15, 20× 20).
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Figure 4: Optimality gap for the initial upper bound and impact of CROSH on RRCP.

Let CLPT
max ≥ CUB

max be the upper bound given by LPT, the first iteration of CROSH. The
gap improvement of CROSH over LPT is estimated by calculating the ratio of the difference
between the initial bounds given by LPT and CROSH over the optimal makespan: (CLPT

max −
CUB
max)÷ Cmax. The average gap improvement is only 5.7% on Taillard benchmarks because

LPT provides tight bounds on these instances. But, it grows until respectively 10.6% and
25.8% for Brucker and Guéret-Prins benchmarks because LPT obtains weaker results.
The right graph of Figure 4 shows the impact of CROSH on our algorithm. Each point
represents one instance solved with a Luby restarting policy with nogood recording. Its x
coordinate is the ratio (logarithmic scale) of the average solving time using an initial bound
given by LPT over the average solving time using an initial bound given by CROSH whereas
its y coordinate is the average gap improvement. The 67 instances strictly greater than size
6× 6 and solved at least once with an average time between 2 seconds and 1800 seconds are
considered to plot this graph. All points located on the right of the line (x = 1(= 100)) are
instances improved by the use of CROSH. Solution time improvement seems related to the gap
improvement with the exception of Taillard instances. In spite of similar gap improvements,
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some Taillard instances are solved more than 10 times faster using CROSH whereas a few
instances located on the left of (x = 1) are degraded.

4.2.2. Restart Strategy

In this section, we study the impact of restarting strategies and demonstrate experimentally
the equivalence between Luby and Walsh strategies with nogood recording in context of
OSP. Using the best parameters for Luby and Walsh given in Table 1, we show the interest
of restarting strategies as well as the effect of enhancing them with nogood recording on the
two graphs of Figure 5. The 61 instances strictly greater than size 6× 6 and solved with an
average time between 2 seconds and 1800 seconds are considered to plot those graphs. The
initial upper bound is given by CROSH.
The left graph analyzes the effect of the restarting strategies. Each point represents one
instance and its x coordinate is the ratio of the solving time without restarts over the solving
time with restarts, whereas its y coordinate is the ratio of the number of nodes without
restarts over the number of nodes with restarts. Notice also that both scales are logarithmic.
All points located above and on the right of the point (1,1) are instances improved by the
use of restarts (top-right quadrant). On the contrary, all points located below and on the left
of the point (1,1) are instances degraded by the use of restarts (bottom-left quadrant). As
expected, all points are around the diagonal as the number of nodes is roughly proportional
to the time (top-left and bottom-right quadrants are empty). Restarting globally improves
the solution and some instances are even solved approximately 100 times faster using restarts.
However, the performances over a number of instances located below (1,1) are degraded.
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Figure 5: Impact of restart policies (left graph) and nogood recording over restart policies
(right graph).

Similarly, the right graph shows the gain offered by nogood recording over the use of restart
policy (the coordinates of each point present the ratio of time and nodes of the restarting
strategy alone over the restarting strategy with nogood recording). One can see that nogood
recording improves the restarting policies by a factor between 1 and 10 in the large majority
of instances.
Finally, when combining restarting policy and nogood recording, we obtain the results plotted
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in the left graph of Figure 6 (the coordinates of each point present the ratio of time and
nodes without restarts over the restarting strategy with nogood recording). Thus all the
negative results of the restarting policy of Figure 5 have been eliminated, while keeping the
positive effects of the restarts.
We have shown here that restarting alone can greatly improve the solution of Open-Shop
problems but lacks robustness. Restarting basically helps to find good upper bounds quickly,
but once those are known, longer runs are eventually needed to prove optimality. The
balance between restarting quickly to improve the upper bound and searching more to prove
optimality is difficult to achieve. Enhancing the restarting policy with nogood recording
compensates for this drawback and improves the resolution significantly, as shown by the
left graph of Figure 6.
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Figure 6: Impact of restart policies combined with nogood recording (left graph) and equiv-
alence of restart policies with nogood recording (right graph).

Finally, the right graph of Figure 6 shows that Luby and Walsh policies with nogood
recording are equivalent when using their best parameters. For each benchmark, and for
each policy, the percentage of solved instances is drawn as a function of solution time. The
two curves belonging to the same benchmark are represented with the same line pattern and
the area between them is filled in grey if the Wash policy performs better than the Luby’s
policy, and is left blank otherwise. In our context, Luby and Walsh policies are equivalent
as their two curves nearly coincide for each benchmark. Furthermore, the graph indicates
an order of difficulty between the benchmarks: Guéret-Prins ≺ Taillard ≺ Brucker.

Table 2 summarizes solution times (hour:minute) and numbers of nodes (millions of
nodes) obtained on the three hardest instances (solving times are greater than 1800 sec-
onds). RRCP uses the initial upper bound given by CROSH. We first note that the strategy
without restart performs better as it is necessary to explore many nodes to provide a proof
of optimality. Nogood recording is a critical issue for restart strategies on these instances, as
it cuts the runtime by two thirds. Without nogood recording, all runs between the discovery
of the optimum and the last are useless since proven infeasibilities are forgotten from one
restart to another. Despite of nogood recording, the significant number of restarts, espe-
cially with the Luby policy, tends to increase slightly the solution time as the selection and
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propagation of initial choices are repeatedly performed. The Walsh strategy with nogood
recording yields slightly better solution time than the Luby’s policy. However, its efficiency
heavily depends on nogood recording as it performs longer runs.

Restart Nogood Recording

Instance No Restart Luby Walsh Luby Walsh

Name Opt t̄ n̄ t̄ n̄ t̄ n̄ t̄ n̄ t̄ n̄

j7-per0-0 1048 1:43 1.21 5:56 4.66 18:10 12.76 2:10 1.57 2:03 1.25
j8-per0-1 1039 2:13 1.16 10:22 5.95 23:12 12.29 3:07 1.65 3:00 1.38
j8-per10-2 1002 1:03 0.56 8:46 5.11 8:50 4.72 1:17 0.68 1:13 0.57

Table 2: The average solution time t̄ (hour:minute) and number of nodes n̄ (millions of
nodes) for the given alternatives applied to the three hardest instances.

4.2.3. Robustness

Lastly, we analyzed the robustness of RRCP for the Luby restart policy with nogood recording
and the initial upper bound given by CROSH. Robustness refers, in our case, to the sensitivity
to the initial upper bound and to the randomized decision process, from one run of RRCP to
another. For each instance, we compute the ratio of the standard deviation on the average
runtime: std(t̄)÷ t̄. Then, we compute the average ratio for each benchmark. The Taillard
benchmark gives the highest average ratio equal to 62% because no optimality proof is
needed. Solution times largely differ according to the optimality of the initial upper bound
from one execution to another. The instance is closed without branching if the initial bound
is optimal, otherwise starting a complete search leads to an increase in solution time. At
the contrary, our algorithm is more robust on Guéret-Prins and Brucker benchmarks with
average ratios of 16% and 9%. Indeed, it spends more time to prove optimality than to reach
an optimal solution because the proof requires the exploration of many nodes.

4.3. Comparison to Other Approaches
In this section, we compare results of our algorithm without time limit, using the Luby
restarting policy with nogood recording and the initial bound given by CROSH, to other ap-
proaches. Tables 3, 4 and 5 summarize the results of different approaches on the Taillard,
Brucker and Guéret-Prins benchmarks. The tables include the best results obtained by the
genetic algorithm (GA-Pri – Prins, 2000), the ant colony algorithm (ACO-Blu – Blum, 2005),
the particle swarm algorithm (PSO-Sha – Sha and Hsu, 2008), the branch-and-bound with
intelligent backtracking (BB-Gue – Guéret et al., 2000), the branch-and-bound with consis-
tency tests (BB-Do – Dorndorf et al., 2001), and the transformation into SAT of (SAT-Ta
Tamura et al., 2006). The papers cited above sometimes report several results obtained with
variants of their approach, and we have quoted the best of them in Tables 3, 4 and 5. The
column Opt gives the optimal makespan for each instance. The value of a reported objective
is in bold when it is equal to the optimal makespan.
We report the objective value after a unique run of GA-Pri and do not report its solving
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time. ACO-Blu and PSO-Sha results were obtained by 20 runs on each problem using PCs
with AMD Athlon 1.1 GHz CPU running under Linux, and PCs with AMD Athlon 1.8 GHz
running under Windows XP respectively. For each of these approaches, the average objective
value (Avg) and average solving time t̄ are given. The best objective value (Best) is also
given when it is not equal to the optimal makespan for all instances. The best objective
value of PSO-Sha is marked with a † if the decoding operator is not hybridized with beam
search.
We report only the objective value of BB-Gue as it reached often the limit of 250 000 back-
tracks (about 3 hours of CPU time on a Pentium PC clocked at 133 MHz).
We report the solving time t of BB-Do, which has been tested on a Pentium II 333 MHz
in an MSDOS environment with a time limit of 5 hours, since it identified many optimal
solutions. The symbol – indicates that the bottom-up algorithm was stopped before finding
a solution, whereas the final upper bound is given in brackets when the top-down algorithm
was interrupted.
Solution times of SAT-Ta using Intel Xeon 2.8GHz 4GB memory are reported with the ex-
ception of the experiments on j7-per0-0 and j8-per0-1 problems which were done using
10 Mac mini machines (PowerPC G4 1.42GHz 1GB memory) running in parallel and by
dividing each problem into 120 subproblems. Optimal solutions were found and proven for
both instances within 13 hours (marked with M in Table 4).
(CNR-Cha – Chatzikokolakis et al., 2004) interrupted their search after 120 minutes and
only if the time elapsed after the last improvement exceeded 30 minutes. CNR-Cha did not
report either solution times, or makespan.
MCS-Lab applied their bottom-up algorithm with a time limit of 5 seconds for each sub-
problem and ran experiments on a Dell Latitude D600 laptop, 1.4 GHz. If the time limit
was reached on a given subproblem, then the search was stopped without returning any
solution. MCS-Lab did not report solution times but it is possible to estimate an overall
runtime for each instance. A bottom-up algorithm solves Cmax − CLB

max infeasible subprob-
lems and a single feasible subproblem giving the optimum. The number of subproblems
depends on each particular instance despite CLB

max is always equal to 1000 for Brucker and
Guéret-Prins benchmarks. MCS-Lab reported that the early iterations were short and that
the latter ones become longer during the transition phase. Therefore, our estimation of
its runtime, inspired by the dichotomous variant of bottom-up (see Section 1), is equal to
5× dlog2

(
Cmax − CLB

max + 1
)

+ 1e seconds.
As mentioned before, our experiments were realized on a cluster with Linux machines,

each node with 1 GB of RAM and a AMD 2.2 GHz processor. We report the average solving
time t̄ and number of nodes n̄ of our approach over 20 runs. Note that the comparison of the
solving times might not be always significant because of the differences among computational
platforms.

Results for the Taillard Instances (Table 3) This set of instances is considered easy
since no optimality proof is needed, and it is thus solved efficiently by metaheuristics. For
example, only six instances remained unsolved after a unique run of GA-Pri. ACO-Blu
and PSO-Sha closed the remaining instances with good solution times even if some runs
on several instances led to suboptimal solutions. These failures are not clearly related to
the size of the problem. On the contrary, CNR-Cha obtained its weakest results on this
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Metaheuristics Exact Algorithms

Instance GA-Pri ACO-Blu PSO-Sha BB-Do SAT-Ta RRCP

Name Opt Avg t̄ Avg t̄ t t t̄ n̄

tai_7_7_1 435 436 435 2.1 435 2.9 0.4 21 1.6 355
tai_7_7_2 443 447 443 19.2 443 12.2 0.9 24 1.6 448
tai_7_7_3 468 472 468 16.0 468 9.2 30.9 30 4.3 1159
tai_7_7_4 463 463 463 1.7 463 3.0 5.3 20 1.5 478
tai_7_7_5 416 417 416 2.3 416 2.9 2.0 22 0.8 157
tai_7_7_6 451 455 451.4 24.8 451 13.5 95.8 45 11.5 3945
tai_7_7_7 422 426 422.2 23.0 422 13.6 167.7 33 2.3 602
tai_7_7_8 424 424 424 1.2 424 2.3 5.0 20 0.6 189
tai_7_7_9 458 458 458 1.1 458 1.3 0.8 21 0.3 109
tai_7_7_10 398 398 398 1.6 398 2.8 53.2 20 0.5 105
tai_10_10_1 637 637 637.4 40.1 637 9.4 30.2 98 8.3 1214
tai_10_10_2 588 588 588 3.0 588 3.5 70.6 95 4.8 667
tai_10_10_3 598 598 598 27.9 598 10.1 185.5 92 8.5 1162
tai_10_10_4 577 577 577 2.6 577 2.6 29.7 92 2.2 264
tai_10_10_5 640 640 640 8.6 640 4.0 32.0 96 6.6 830
tai_10_10_6 538 538 538 2.6 538 1.1 32.7 95 0.4 0
tai_10_10_7 616 616 616 5.2 616 3.9 30.9 103 4.4 403
tai_10_10_8 595 595 595 15.0 595 7.0 44.1 95 6.0 633
tai_10_10_9 595 595 595 5.1 595 4.1 39.8 97 5.8 541
tai_10_10_10 596 596 596 7.5 596 5.0 29.1 95 5.6 541
tai_15_15_1 937 937 937 14.3 937 4.3 481.4 523 4.4 0
tai_15_15_2 918 918 918 21.1 918 9.1 – 567 26.5 2190
tai_15_15_3 871 871 871 14.3 871 4.3 611.6 543 3.4 0
tai_15_15_4 934 934 934 14.2 934 3.9 570.1 560 1.7 0
tai_15_15_5 946 946 946 25.7 946 5.7 556.3 541 8.5 1760
tai_15_15_6 933 933 933 16.6 933 4.7 574.5 560 3.0 0
tai_15_15_7 891 891 891 20.1 891 10.4 724.6 566 16.5 1896
tai_15_15_8 893 893 893 14.2 893 17.3 614.0 546 1.3 0
tai_15_15_9 899 899 899.7 4.1 899.2 26.6 646.9 568 39.2 4053
tai_15_15_10 902 902 902 18.1 902 6.9 720.1 586 22.9 2081
tai_20_20_1 1155 1155 1155 54.1 1155 16.6 3519.8 3105 32.4 3340
tai_20_20_2 1241 1241 1241 79.7 1241 23.5 – 3559 588.4 45606
tai_20_20_3 1257 1257 1257 48.6 1257 19.6 4126.3 2990 3.0 0
tai_20_20_4 1248 1248 1248 49.1 1248 19.6 – 3442 2.7 0
tai_20_20_5 1256 1256 1256 49.1 1256 19.6 3247.3 3603 3.7 0
tai_20_20_6 1204 1204 1204 49.3 1204 19.6 3393.0 2741 10.2 1879
tai_20_20_7 1294 1294 1294 65.0 1294 25.4 2954.8 2912 86.9 8620
tai_20_20_8 1169 1171 1170.3 27.9 1170 50.9 – 2990 305.8 25503
tai_20_20_9 1289 1289 1289 48.6 1289 78.2 3593.8 3204 1.7 0
tai_20_20_10 1241 1241 1241 48.8 1241 78.2 4936.2 3208 1.1 0

Table 3: Results for the Taillard benchmark.

benchmark as it only found eight optimal solutions among instances of size 7×7 and 10×10,
and did not provide results for larger instances. The solution times of RRCP are roughly
similar to metaheuristics’s with the exception of tai_20_20_02 and tai_20_20_08. Note
however that, none of the metaheuristics were able to consistently find the optimum of
tai_20_20_08. Results also show that CROSH was more efficient than complex metaheuristics
on many large instances (if the average number of nodes n̄ is nil, then all runs of CROSH
reached the optimum).

BB-Do was the first exact method to solve all 10× 10 instances and most of the 15× 15
and 20 × 20. Its bottom-up algorithm clearly outperformed its top-down algorithm on
this benchmark because it needed to solve a unique feasible problem to prove optimality.
The tight initial upper bound given by CROSH compensates here the drawback of using a
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top-down algorithm. Furthermore, the diversification provided by the randomization and
restart mechanism helps to escape from bad initial choices whereas some instances remained
unsolved by BB-Do such as tai_15_15_02. With equivalent computational platforms, RRCP
clearly outperforms SAT-Ta, the first exact method to close the benchmark. However, the
total CPU time of SAT-Ta linearly fits with the number of clauses on this benchmark,
whereas it is not necessarily the case with our algorithm. For example, tai_20_20_08 is not
more difficult than others 20× 20 as opposed to other approaches. Last, MCS-Lab did not
report results on this benchmark.

Metaheuristics Exact Algorithms

Instance GA-Pri ACO-Blu PSO-Sha BB-Do SAT-Ta RRCP

Name Opt Best Avg t̄ Best Avg t̄ t t t̄ n̄

j6-per0-0 1056 1080 1056 1056 27.4 1056 1056 42.1 133.0 817 38.7 11032
j6-per0-1 1045 1045 1045 1049.7 61.3 1045 1045 59.7 5.2 57 0.3 198
j6-per0-2 1063 1079 1063 1063 38.8 1063 1063 72.6 18.0 57 0.6 223
j6-per10-0 1005 1016 1005 1005 10.6 1005 1005 45.5 14.4 52 0.8 263
j6-per10-1 1021 1036 1021 1021 11.3 1021 1021 21.0 4.6 46 0.3 177
j6-per10-2 1012 1012 1012 1012 1.4 1012 1012 8.5 13.8 51 0.5 188
j6-per20-0 1000 1018 1000 1003.6 31.1 1000 1000 77.5 10.7 60 0.4 208
j6-per20-1 1000 1000 1000 1000 0.8 1000 1000 1.5 0.4 46 0.2 161
j6-per20-2 1000 1001 1000 1000 3.9 1000 1000 30.6 1.0 40 0.4 179
j7-per0-0 1048 1071 1048 1052.7 207.9 1050 1051.2 104.9 (1058) M 7777.2 1564192
j7-per0-1 1055 1076 1057 1057.8 91.6 †1055 1058.8 155.8 9421.8 428 16.5 3265
j7-per0-2 1056 1082 1058 1059 175.9 1056 1057 124.5 9273.5 292 16.4 3120
j7-per10-0 1013 1036 1013 1016.7 217.6 1013 1016.1 183.8 2781.9 332 19.1 3981
j7-per10-1 1000 1010 1000 1002.5 189.9 1000 1000 81.9 1563.0 121 6.4 1276
j7-per10-2 1011 1035 1016 1019.4 180.7 1013 1014.9 125.6 15625.1 1786 583.1 128289
j7-per20-0 1000 1000 1000 1000 0.4 1000 1000 1.9 48.8 66 0.1 0
j7-per20-1 1005 1030 1005 1007.6 259.1 1007 1008 143.2 318.8 132 8.9 2130
j7-per20-2 1003 1020 1003 1007.3 257.3 1003 1004.7 160.9 2184.9 132 13.8 3150
j8-per0-1 1039 1075 1039 1048.7 313.5 1039 1043.3 220.8 M 11168.9 1648700
j8-per0-2 1052 1073 1052 1057.1 323.4 1052 1053.6 271.9 870 61.3 9379
j8-per10-0 1017 1053 1020 1026.9 346.5 1020 1026.1 205.0 2107 184.5 24548
j8-per10-1 1000 1029 1004 1012.4 308.9 1002 1007.6 202.2 8346 1099.3 165875
j8-per10-2 1002 1027 1009 1013.7 399.4 1002 1006 162.8 7789 4596.5 673451
j8-per20-0 1000 1015 1000 1001 237.2 1000 1000.6 136.9 148 9.1 2104
j8-per20-1 1000 1000 1000 1000 2.6 1000 1000 4.5 136 0.4 128
j8-per20-2 1000 1014 1000 1000.6 286.2 1000 1000 105.8 144 6.7 1512

Table 4: Results for the Brucker benchmark.

Results for the Brucker Instances (Table 4) As a result of the relatively low diffi-
culty of the Taillard instances, the Brucker instances were generated. GA-Pri is the most
degraded method and reached optimality only five times. ACO-Blu and PSO-Sha showed
higher average solving times than on Taillard instances, and some optimal solutions are
never reached. On the contrary, CNR-Cha reported improving 3 best-known solutions, and
finding 17 optimal solutions. RRCP exhibits good performance against metaheuristics with
the exception of several instances where the comparison is hard to achieve because solving
times are greater but metaheuristics fail to return optimal solutions at each run.

The top-down algorithm of BB-Do solved eight 7 × 7 instances of the nine. MCS-Lab
closed three of the six remaining instances (j8-per0-2, j8-per10-0, and j8-per10-1) and
SAT-Ta closed later the three last instances (j7-per0-0, j8-per0-1, and j8-per10-2).
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With the exception of j7-per10-2, j8-per10-0 and j8-per10-1, RRCP yields solving times
below or similar to estimated runtimes of MCS-Lab which range from 5 to 35 seconds.
Solving times of SAT-Ta stay greater than RRCP’s, especially for j7-per0-0 and j8-per0-1
where their experiments required great computation time. On this benchmark, their solving
times do not exhibit a linear behaviour on the problem’s size.

Metaheuristics Exact Algorithms

Instance GA-Pri ACO-Blu PSO-Sha BB-Gue SAT-Ta RRCP

Name Opt Best Avg t̄ Best Avg t̄ t t̄ n̄

gp06-01 1264 1264 1264 1264.7 30.8 1264 1264 176.1 1264 57 0.3 80
gp06-02 1285 1285 1285 1285.7 48.7 1285 1285 147.8 1285 65 0.2 172
gp06-03 1255 1255 1255 1255 30.0 1255 1255.6 133.1 1255 72 0.1 124
gp06-04 1275 1275 1275 1275 25.9 1275 1275 60.8 1275 63 0.1 67
gp06-05 1299 1300 1299 1299.2 39.9 1299 1299 159.6 1299 65 0.1 67
gp06-06 1284 1284 1284 1284 43 1284 1284 109.4 1284 65 0.1 68
gp06-07 1290 1290 1290 1290 10.5 1290 1290 1.6 1290 77 0.1 63
gp06-08 1265 1266 1265 1265.2 71.9 1265 1265.5 134.3 1265 71 0.1 52
gp06-09 1243 1243 1243 1243 9.8 1243 1243.1 156.5 1264 72 0.2 170
gp06-10 1254 1254 1254 1254 4.6 1254 1254 79.8 1254 57 0.3 241
gp07-01 1159 1159 1159 1159 86.9 1159 1159.3 223.7 1160 99 0.9 367
gp07-02 1185 1185 1185 1185 80.3 1185 1185 1.2 1191 148 0.6 4
gp07-03 1237 1237 1237 1237 40.9 1237 1237 9.5 1242 132 0.7 54
gp07-04 1167 1167 1167 1167 59.2 1167 1167 160.4 1167 131 0.7 144
gp07-05 1157 1157 1157 1157 124.4 1157 1157 139.1 1191 141 0.8 304
gp07-06 1193 1193 1193 1193.9 152.4 1193 1193.1 198.6 1200 127 0.8 306
gp07-07 1185 1185 1185 1185.1 91.1 1185 1185 1.4 1201 102 0.6 48
gp07-08 1180 1181 1180 1181.4 206.7 1180 1180 139.4 1183 144 0.7 117
gp07-09 1220 1220 1220 1220.1 127.9 1220 1220 143.9 1220 150 0.7 177
gp07-10 1270 1270 1270 1270.1 65.6 1270 1270 0.5 1270 127 0.6 4
gp08-01 1130 1160 1130 1132.4 335.0 †1130 1140.3 277.3 1195 160 2.6 1485
gp08-02 1135 1136 1135 1136.1 228.4 1135 1135.4 258.3 1197 190 1.2 304
gp08-03 1110 1111 1111 1113.7 336.3 1110 1114 240.3 1158 197 1.6 622
gp08-04 1153 1168 1154 1156 275.7 1153 1153.2 308.1 1168 227 1.4 566
gp08-05 1218 1218 1219 1219.8 347.7 1218 1218.9 56.6 1218 247 1.2 206
gp08-06 1115 1128 1116 1123.2 359.2 1115 1126.9 249.6 1171 175 2.3 1498
gp08-07 1126 1128 1126 1134.6 296.8 1126 1129.8 287.3 1157 204 3.6 2775
gp08-08 1148 1148 1148 1149 277.4 1148 1148 179.3 1191 183 2.0 1281
gp08-09 1114 1120 1117 1119 279.0 1114 1114.3 223.6 1142 189 2.0 1140
gp08-10 1161 1161 1161 1161.5 281.3 1161 1161.4 217.1 1161 203 1.1 245
gp09-01 1129 1143 1135 1142.8 412.9 1129 1133.2 376.3 1150 323 3.6 1691
gp09-02 1110 1114 1112 1113.7 430.8 †1110 1114.1 335.9 1226 327 10.7 8000
gp09-03 1115 1118 1118 1120.4 428.0 †1116 1117 313.4 1150 395 2.8 1422
gp09-04 1130 1131 1130 1140 549.7 1130 1135.8 328.7 1181 340 4.3 2219
gp09-05 1180 1180 1180 1180.5 295.9 1180 1180 22.3 1180 362 1.7 266
gp09-06 1093 1117 1093 1195.6 387.0 1093 1094.1 277.2 1136 401 4.6 2387
gp09-07 1090 1119 1097 1101.4 431.4 1091 1096.5 376.4 1173 339 5.9 3483
gp09-08 1105 1110 1106 1113.7 376.2 1108 1108.3 334.6 1193 349 3.1 1446
gp09-09 1123 1132 1127 1132.5 402.6 †1123 1126.5 358.6 1218 316 3.2 1537
gp09-10 1110 1130 1120 1126.3 435.8 †1112 1126.5 297.7 1166 355 6.1 2784
gp10-01 1093 1113 1099 1109 567.5 1093 1096.8 455.7 1151 470 29.8 6661
gp10-02 1097 1120 1101 1107.4 501.7 1097 1099.1 382.7 1178 526 9.7 3140
gp10-03 1081 1101 1082 1098 658.7 †1081 1090.3 450.8 1162 535 13.6 4196
gp10-04 1077 1090 1093 1096.6 588.1 1083 1092.1 371.8 1165 515 12.4 3921
gp10-05 1071 1094 1083 1092.4 636.4 †1073 1092.2 314.1 1125 515 16.3 4782
gp10-06 1071 1074 1088 1104.6 595.5 1071 1074.3 289.7 1179 508 12.4 3894
gp10-07 1079 1083 1084 1091.5 389.6 †1080 1081.1 167.4 1172 523 8.7 2188
gp10-08 1093 1098 1099 1104.8 615.9 †1095 1097.6 324.5 1181 498 10.5 3477
gp10-09 1112 1121 1121 1128.7 554.5 †1115 1127 428.2 1188 541 10.1 3303
gp10-10 1092 1095 1097 1106.7 562.5 1092 1094 487.9 1172 656 7.4 1724

Table 5: Results for the Guéret-Prins benchmark.
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Results for the Guéret-Prins Instances (Table 5) The Guéret-Prins instances seems
to be more difficult to solve because the metaheuristics are less effective. Average results of
ACO-Blu and PSO-Sha decrease according to problem size. In spite of higher solving times,
fewer optimums are reached, especially with ACO-Blu. By comparison, GA-Pri is more
effective than with Brucker benchmark and CNR-Cha claims to improve 12 solutions. RRCP
is particularly well-suited for this series of problems and it prevails over all metaheuristics
in every problem size.

BB-Gue solved most instances to optimality up to size 6 × 6 as well as a few large
instances. BB-Do did not report results on this benchmark and MCS-Lab reported closing
all the instances, but again did not report detailed solution times. Solving times of RRCP
are always lower than estimated runtimes of MCS-Lab which range from 40 to 50 seconds.
Solving times of SAT-Ta decrease and again linearly fit the number of clauses, but do not
compete with RRCP’s.

5. Conclusion
We have presented a constraint programming algorithm to solve the Open-Shop problem.
This algorithm consists of computing an initial upper bound before solving a high-level
declarative model (tasks, resources, precedences) by a top-down branch-and-bound enhanced
with randomization and restart.
The computational results matched the metaheuristics for the Taillard benchmark, whereas
we obtained better solution quality with solution times that are orders of magnitude lower
than the metaheuristics for the Brucker and Guéret-Prins benchmarks. The computational
results also outperformed all exact approaches that reported detailed solution times.
In further research, we will apply other branching schemes. In addition, subsequent research
topics include the study of other shop problems such as Flow-Shop Problems and Job-Shop
Problems.
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