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Abstract

We present a constraint programming formulation for the elevator trip origin-destination matrix estimation problem using
a lexicographic bi-criteria optimization method where least squares minimization is applied to the measured counts and
the minimum information or the maximum entropy approach to the whole matrix. An elevator trip consists of successive
stops in one direction of travel with passengers inside the elevator. It can be defined as a directed network, where the
nodes correspond to the stops on the trip and the arcs to the possible origins and destinations of the passengers. The
goal is to estimate the most likely counts of passengers for the origin-destination pairs of every elevator trip occurring
in a building that are consistent with the measured boarding and alighting counts and any prior information about the
trip matrix. These counts are used to make passenger traffic forecasts which, in turn, are used in elevator dispatching
to reduce uncertainties related to future passengers and therefore to improve passenger service level. Atrtificial test
data was obtained by simulations of lunch hour traffic in a typical multi-story office building. This resulted in complex
problem instances that enable robust performance and quality testing. The results show that the proposed approach
outperforms previous alternatives in terms of quality, and can take an advantage of prior information. In addition, the
proposed approach satisfies real time elevator group control requirements for estimating elevator trip origin-destination
matrices.
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Practical application elevator will serve so that the selected service level criterion
is optimized.
Making optimal dispatching decisions and maintaining
a good passenger service level may be difficult especially
during heavy traffic. This is because of the uncertainties
related to the current and future traffic demand. For example,
the number of passengers waiting behind a pickup request
is not in general known, which means that the elevator
dispatched to serve the request may not have enough space
for all the passengers behind it. Modeling of the uncertainties
in the EDP helps to avoid bad dispatching decisions and to
improve the passenger service level *. The uncertainties are
typically modeled based on historical traffic statistics that are
constructed from traffic measurements. The EGCS is capable
of measuring and storing, e.g., the count of passengers
boarding and alighting at each elevator stop and passengers’
Introduction requests .
The statistics based on the measurements do not fully
In high-rise buildings, elevators are typically combined into  jescribe the passenger traffic in a building, and thus, cannot

groups and the elevators in the same group are collectively  pe ysed to explicitly model all the uncertainties related to
controlled by an elevator group control system (EGCS).

The task of the EGCS is to dispatch the elevators to
passengers’ requests, e.g., up and down calls, so that they ¢, . o a0 d'Azur, CNRS, I3S, France

get to their destinations fast and without waiting. In order 2xoNg Corporation, 02150 Espoo, Finland

to achieve this, modern EGCS use advanced mathematical

optimization algorithms to minimize passenger waiting or )

. i . . . Arnaud Malapert, Laboratoire I13S - UMR7271 - UNS CNRS
journey time, O,I both. _Thls optimization pr'oblen'l is called 2000, route des Lucioles - Les Algorithmes - bat. Euclide B,
the Elevator Dispatching Problem (EDP)'>. Given a set ggq Sophia Antipolis - France

of pickup requests, a solution to the EDP defines optimal  Tel: +33 4 92 94 27 93

elevator routes, i.e., which requests and in which order each  Email: arnaud.malapert@unice.fr

The elevator trip origin-destination matrix estimation
problem is important since it makes it possible to obtain
complete information and statistics about the -elevator
passenger traffic. The statistics can be used to model future
passengers which, when taken into account in the elevator
group control, helps to improve passenger service level.
Simulation experiments show that most of the problems
occurring in reality can be solved within a reasonable time
considering a real application, and the solving algorithms
are relatively easy to implement using available constraint
programming tools. Hence, this work is undoubtedly of
interest to the building and elevator industry.
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the passenger traffic. For example, it is not possible to
accurately model how many passengers who board at an
origin floor will alight at a given destination floor, i.e., how
much free space should there be in the elevator during the
journey from the origin to the destination. Modeling of this
and other important uncertainties requires the measuring of
every passenger journey between every pair of floors in a
building. This, however, is not possible with the commonly
used measuring devices. Although some dedicated systems
such as video cameras exist to identify every passenger, they
are not commonly used in EGCS. In addition, the measuring
devices are not usually 100% accurate, which makes also the
boarding and alighting count measurements uncertain.

The passenger journeys can, however, be estimated by
finding the passenger counts for the origin-destination (OD)
pairs of every elevator trip occurring in a building. An
elevator trip in an up or down direction starts at a stop where
passengers board an empty elevator and ends at a stop where
the elevator becomes empty again’. The OD pairs of the trip
define the possible passenger routes that in turn are defined
by delivery requests, e.g., calls given inside the elevator car.

An elevator trip can be mathematically defined as a
directed network of nodes N = {1,2,...,n}, and arcs A
defined by the OD pairs (4, ) € N. The nodes correspond to
the stops made by the elevator and the arcs to the OD pairs.
Figure 1 presents an elevator trip with five nodes, n = 5, and
four OD pairs that are defined as follows. The passengers
who board the elevator at node 1 register a delivery request
to node 4, which defines the OD pair (1,4). The passengers
who board the elevator at node 2 register a new delivery
request to node 3, which defines the OD pair (2,3). The
passengers who board the elevator at node 2 may be traveling
also to node 4, which results in the OD pair (2,4). The
passengers who board the elevator at node 3 do not register
new delivery requests, and thus, they must be traveling to
node 4, which results in the OD pair (3,4). Let b; and a;
denote the measured count of passengers who board and
alight the elevator at node or stop i, respectively. They can
be measured, e.g., with an electronic load-weighing device”.
Let X;; denote the unobserved number of passenger journeys
or the OD passenger count from the origin node ¢ to the
destination node j. The goal is to find the OD passenger
count for every OD pair (i,j) € A of the trip, i.e., the
elevator trip OD matrix (ETODM) based on the measured
counts.

b b

bs as aq

Figure 1. An elevator trip with five nodes and four OD pairs.

An elevator trip is analogous to a single transit route such
as a bus line, where there is only one route connecting any
OD pair, and counts on the boarding and alighting passengers
are collected on all stops on the route®. In addition, a single
transit route is usually defined in advance, a node forms an
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OD pair with every other preceding the node and the route
has always the same set of OD pairs unless the route or the
stops are changed. This means that it is possible to collect
many counts on the same route during a given time period,
e.g., a rush hour, and use these counts to estimate an OD
matrix for the whole period.

The methods for the estimation of a single transit route
OD matrix can be roughly divided into two categories. In the
first one, it is assumed that the sum of the measured boarding
counts is equal to the sum of the measured alighting counts,
i.e., the counts are consistent. Then, a typical objective is to
estimate an OD matrix that minimizes the distance to a target
OD matrix with respect to a suitable distance measure®''.
The target OD matrix is usually based on historical data
collected, e.g., with a manual survey. In the second category,
the counts are not required to be consistent and the objective
is to estimate an OD matrix that minimizes the distance
between the estimated and measured counts, and usually
also the distance to the target OD matrix '>~'#. The estimated
boarding or alighting count at a node is the sum of the
unobserved OD passenger counts out of or into the node,
respectively.

An elevator trip, however, is request driven which means
that every elevator trip is unique, having its own set of OD
pairs and boarding and alighting counts. Consequently, the
methods used to estimate an OD matrix for single transit
route are not well suited for the estimation of an elevator
trip OD matrix. In addition, especially in new buildings, the
estimation must be based only on the measured counts since
there is no target OD matrix available.

Kuusinen et al.'> formulate the ETODM estimation
problem as a box-constrained integer least squares (BILS)
problem, and present algorithms for finding all solutions to
the problem. There are three reasons for finding all or at
least multiple solutions and the integer constraint. The first
one is the natural fact that there cannot be partial passengers,
and thus, the OD passenger counts must be positive integers.
Actually, more stringent lower bounds can be defined by
making the reasonable assumption that each delivery request
corresponds to at least one passenger. The second one is
related to the quality of the statistics constructed based on the
estimated ETODMs. When all or at least multiple solutions
are available for every ETODM estimation problem and
the final solution is selected randomly for every problem,
the statistics are not affected by the algorithm used for
solving the problem. In the long term, this strategy results in
statistics that model the possible realizations of the passenger
traffic better than selecting always the first integer solution
found by the algorithm or a continuous solution to every
problem. The third reason is that integer OD counts make
it possible to model the passenger traffic uncertainties in
the EDP as a geometric Poisson process, which results in
good performance with respect to passenger service level '°.
Although the ETODM estimation problem is NP-hard'’
(roughly, polynomial time algorithms are unlikely to exist
for this problem), the problem instances occurring in reality
are often so simple that all or at least many solutions can be
found fast enough considering the time constraints of a real
EGCS, usually in less than half-second 15,

Kuusinen and Malapert'® present a constraint program-
ming (CP) based formulation of the ETODM estimation
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problem. One advantage of the CP'° approach compared to
the BILS approach is that both deterministic and randomized
search procedures resulting in a single or multiple optimal
solutions can be easily implemented. The reason for studying
the effect of randomization is that intuitively, if only some
of the optimal solutions can be computed within a real time
limit, then a randomized algorithm should result in better
quality statistics for the reason that a deterministic algorithm
will always favor particular solutions. Indeed, the results
suggest that randomization and multiple solutions is a good
compromise between solving time and quality. However,
the problem with the ETODM estimation problem based
only on the least squares objective function is that there are
often more than one minimizing ETODM. The final solution
can be selected, e.g., randomly or as the average of the
minimizing ETODMS, but it would be better to obtain a good
quality integer solution directly.

This paper presents a bi-criteria optimization method to
estimate the most likely ETODM. The problem is formulated
as a CP problem, but in addition to minimizing the least
squares deviation between the estimated and measured
boarding and alighting counts on the first level, a secondary
objective function based on the minimum information or the
maximum entropy approach is also optimized on the second
level to obtain a single solution directly. The derivation of the
minimum information and the maximum entropy objective
function for the ETODM estimation problem is based on Van
Zuylen and Willumsen '’. The two objective functions favor
solutions where none of the OD pairs of the OD matrix
is given more weight, i.e., the passenger flow out of and
into the origins and destinations, respectively, is divided
evenly between the OD pairs. This is well suited for the
ETODM estimation problem since the OD pairs do not have
any order of importance. In addition, as mentioned in Van
Zuylen and Willumsen '?, the two approaches make full use
of the information contained in the measured counts, and
prior information from a target OD matrix can easily be
included into the problem. The performance of the new bi-
criteria optimization methods is studied and compared to
some previous methods with respect to solving time and
quality of the estimated OD matrix.

The rest of the paper is organized as follows. Sec-
tion presents the CP formulation, and Section the derivation
of the minimum information and the maximum entropy
objective. Section describes the process of generating and
using the ETODMs in practice or in simulation, and Sec-
tion the search algorithms. Section presents numerical
experiments and results, and Section concludes the paper.

Constraint programming formulation

Continuing the example and mathematical definition from
the previous section, let r; be the node at which a
delivery request to the node i € N = {1,2,...,n}, r; <1,
is registered. If no delivery requests are registered to node ¢,
then r; = n + 1. The elevator capacity, expressed as number
of passengers, is denoted with C'. The following assumptions
are made:

1. At any time, there are less than C' passengers in the
elevator.
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2. At least one passenger boards at node r; # n + 1 and
alights at node .
3. Passengers do not alight at a node without a delivery
request.
4. Passengers who board at node ¢ < r;, i.e., before the
delivery request to node j is registered, do not alight at
node j.
The assumptions 2, 3 and 4 imply that the delivery requests
are assumed to be accurate, i.e., there are no false requests.
This is reasonable since, even if passengers may sometimes
accidentally register false requests, the number of such
requests is small. The fourth assumption means that the
possible destinations of a passenger are defined by the
delivery requests that are registered before or at the node
where the passenger boards the elevator, which is usually the
case in practice. This eliminates some OD pairs, and thus,
an elevator trip often includes a smaller number of OD pairs
than a single transit route where typically any node i forms
an OD pair with any other node j, ¢ < j. The set of arcs A is
then defined as:

A={(G,j) e N?*|i<j Ai>r;}. )

Let B; € [0,C] and A; € [0,C] denote the estimated
count of passengers who board and alight the elevator at node
1 € N, respectively. The estimated boarding and alighting
counts must be consistent:

ZBZ»:ZAJ. )

ieN jEN

An elevator trip starts at a stop where passengers board an
empty elevator and ends to a stop where the elevator becomes
empty again. Hence, at the first node, the estimated boarding
count must be at least one and the alighting count zero, and,
at the last node, the reverse must hold:

A1 =0, By>1, A, >1, B, =0. 3)

At every node between the first and the last node, at least one
passenger either boards or alights:

A;+B; >1, 1<i<n.

This constraint is more accurately stated by considering the
delivery requests.

Passengers cannot alight at a node to which there is no
delivery request, and thus, at least one passenger must board:

ri=n+le A, =0AB;>1, 1<i<n. (4

At least one passenger boards at node r; # n + 1 and alights
at node ::
ri#Fn+le X, >1,

l<i<n . 5)

The unobserved OD passenger counts are related to the
estimated boarding and alighting counts through the flow
conservation constraints:

> Xij=Bi VieN, (6)
il(ij)eA

Y Xij=A; VYjeN. (7
i|(i,j)EA
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Let P, € [1,C],i=1,...,n— 1, denote the number of
passengers in the elevator between the nodes ¢ and ¢ + 1. It
is computed as follows:

P, =B, P,1=A4,,

8
P =P+ B; — A, ®)

l<i<n—-1.
The elevator capacity constraint is always satisfied because
of the domain of the variables.

In a real application, the goal is to measure the boarding
and alighting counts as accurately as possible. Hence, it
can be assumed that the measured counts are closed to the
true counts, i.e., possible measuring errors are small. A
good solution or an ETODM would then be such that the
difference between each estimated and measured count on
the elevator trip is small. Such solutions can be obtained
by minimizing the least squares (LS) deviation between the
estimated and measured counts:

ieN
The goal is to minimize (9) with respect to the

constraints (2)-(8).

Finding the most likely ETODM

This section presents the minimum information and the
maximum entropy approaches to formulate a secondary
objective function and to obtain a single solution directly.
The main difference with the approach of Van Zuylen and
Willumsen '° is that the second level optimization problem
is solved using CP rather than a dedicated algorithm. Indeed,
they obtained the formal solution to the second level problem
by the differentiation of its Lagrangian, which results in a
multi-proportional problem. Here, the presence of additional
constraints prevents the direct application of the Lagrangian
method.

Minimum information approach

Since the information contained in the measured boarding
and alighting counts is not enough to define a unique
ETODM, it seems reasonable to select an ETODM that adds
as little information as possible to the knowledge contained
in equations (6) and (7). Brillouin? defines the information
contained in a set of [V observations where the state k£ has
been observed n;, times as:

Nk

i
'7
Nk

I =logN!
k

(10)

where gy, is the a priori probability of observing state k. If the
observations are boarding counts B; at floor 4, it is possible
to define state 7j as the state in which a passenger has been
traveling on the OD pair (4, j). This implies that:

b _
nij = X”

Y

It is also possible to express the a priori probability qu of
observing state ¢ when boarding at floor ¢ as a function of a
priori information about the OD matrix as:

b
S (12)
! ZF(i) Lik
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where t;; is the a priori number of passenger journeys or the
OD passenger count from origin ¢ to destination j provided,
e.g., by a historical OD matrix, and T'(¢) = {j|(¢,j) € A} is
the set of successors of i.

The information contained in the boarding count B; for
the OD pair (3, j) is then:

(dh) ™
I, =—logB;! [| ﬁ
r'(i) A

13)

Using Stirling’s approximation, log X! = X log X — X, itis
possible to obtain:

Iy, = —B;log B; + B; — Z Xijlog for
()

Z Xijlog Xij — Z X5, (14)
(i)

I'(3)

and using the fact that B; = ZF(i) X;; gives:

Ibi = — Z Xij 10g Bi — Z Xij 10g q:?j + Z Xij log Xij
ING) T'(2) I'(2)

X;;
(i) iij

15)

Similarly, the information contained in the alighting count
Aj can be computed using the a priori probability gf; of
observing state i when alighting at floor j:
2jligeatei

a

45 = (16)

Then, summing up over all the OD pairs on the elevator trip
gives:

X X
1= X;i(1 2 1 ), 1
ZA: ij(log Aj‘]?j +log Biq%) (17)
This is the total information contained in the measured
counts and in the unobserved OD passenger counts. The
problem of finding an ETODM consistent with the measured
counts and adding a minimum of extra information to the
them is equivalent to minimizing I subject to the model’s
constraints.

Maximum entropy approach

This approach defines the most likely ETODM as the one
having the greatest number of micro-states associated with
it?!. The number of ways of selecting an ETODM with a
total number of passengers or passenger journeys X is then:

X!
B Hij Xij!’
where [],; stands for J[; ;jc4. The goal is to find an

ETODM that maximizes W or a monotonic function of it.
A convenient choice is the logarithmic function:

W (18)

E =logW. (19)
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Using Stirling’s approximation for log X! the problem
becomes
E=XlogX — X — Z(Xz’j log X;; — Xij)
ij
= Xlog X — > (X;;log X;;).

ij

(20)

Prior information can be included in this model as follows:

X!Hij qij]

W = ) 2D
Hij Xij!
where ’
ij
Gij = =—. (22)
! ZU tij

Then, following steps analogous to above:

E :XlogX—Z(Xij log =42). (23)
ij

ij

Generating and using the ETODMs

The ETODMs estimated during a given time interval, e.g., 5
or 15 minutes, can be summed up to construct a building OD
matrix (BODM). This matrix describes the passenger traffic
between every pair of floors in the building. The BODMs of
successive intervals form historical traffic statistics that can
be used to model the passenger traffic uncertainties. They
can also be used by the EGCS to forecast and adapt to the
possible changes in the traffic. For example, to learn the
traffic in the building, the BODMs of the same time of day
or time interval, and usually day of week can be combined,
e.g., by exponential smoothing°.

In a real building, the elevator and passenger traffic events
that are used to formulate and generate ETODM estimation
problems such as elevator stops, boarding and alighting
passenger counts, and passengers’ requests are created by
actual passenger and elevator movements. In this study,
however, the events were obtained from simulations run with
the Building Traffic Simulator (BTS)??. The advantage of
simulation is that traffic, elevator and building parameters
can easily be changed to model any kind of building. In
addition, the simulation of a whole day traffic takes typically
only a couple of minutes, and thus, a large amount of
appropriate test data can easily be obtained.

Figure 2 describes the process of generating ETODM
estimation problems, solving the problems, constructing the
BODM based on the estimated ETODMs and using the
BODM in the EDPs both in practice and in simulation.
The EGCS is responsible for monitoring the elevator and
passenger traffic events, and controlling the elevators based
on the EDP solutions. Each elevator typically has its own
sensors and signalization devices, e.g., a load-weighing
device to count the boarding and alighting passengers and
buttons for giving a delivery request to a destination floor,
and a control unit that sends this data to the EGCS. The
EGCS also receives the pickup requests registered using,
e.g., up and down call buttons in the elevator lobbies. Based
on these data, the EGCS formulates and solves the ETODM
estimation problems and the EDPs. The EDP solutions define
the dispatching decisions and elevator routes, i.e., which
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pickup and delivery requests each elevator should serve and
in which order. The EGCS communicates the route of an
elevator to its control unit that then executes the route.

In reality, the EDP solution algorithm as well as all the
other components of the process are part of the EGCS but,
in the figure, they are separated for clarity. In the figure,
P, corresponds to the pth ETODM estimation problem, 1 <
p < m, where m is the total number of estimation problems
generated, e.g., within a 15-min interval, n,, is the number of
nodes in the pth problem, function f maps an OD passenger
count obtained by solving the pth problem, X7 . to the
correct OD pair of the estimated BODM, E, and n® is
the total number of floors in the building. B describes the
true BODM that contains the true traffic. It is constructed
directly from the simulated passengers and can be used in
two ways:1) to study the quality of the estimation results
or the estimated BODM, and 2) as prior information in the
ETODM estimation problems. In reality, the true BODM is
not known, but it could be replaced by an estimated BODM
when the estimation process has been running for some time.
To highlight the fact that simulation is not part of a real
elevator system or building, the corresponding components
and connections are shown in the figure with gray color and
dashed lines.

Search algorithms

The search algorithms summarized in Table 1 are based on
a complete backtracking search which consists of a depth-
first traversal of the search tree. During the search, an
uninstantiated variable X;; representing an OD passenger
count is selected at each node of the tree, and the node is
extended with new branches that may have to be examined
in order to find a solution. The branching strategy determines
the order in which the variables and their values are
instantiated.

This paper considers only one deterministic variable
selection strategy, namely, the dom strategy which selects
the variable whose domain is the smallest. Other application-
independent variable selection strategies exist, but Kuusinen
and Malapert'® showed that they do not provide here
significant improvement compared to the simpler dom
strategy with respect to solving time and quality.

The value selection is based on two classical strategies;
minVal selects the smallest value of the domain and randVal
selects a value randomly. They showed that the also classical
maxVal strategy, which selects the largest value, increases the
search time without any improvement in quality, and thus, it
is not considered in this paper. For an extensive review on
constraint programming, we refer the reader to the Chapter 4
of the “Constraint Programming Handbook” '* Chapter 4.

Single-criterion optimization

These search algorithms minimize the LS objective
function (9) using a bottom-up procedure. The bottom-up
procedure starts with a lower bound /b as the target upper
bound which is incremented by one unit until the problem
becomes feasible. The first solution found by bottom-up is
proven optimal. The bottom-up procedure is efficient if the
lower bound is tight.
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EGCS
monitors elevator and passenger
traffic events, and controls eleva-
tors based on the EDP solutions.

v

Events Processing
generates ETODM estimation problems:

Pp = {(fisri,ai,b:) }1<i<n,,

A

BTS

simulates elevator and passenger traffic events.

I<p<m.

\ 4
Construct True BODM

from the simulated passengers:

B = (Bij)lgi,jgnB .

-

Solve EDPs

using passenger traffic forecasts
based on the estimated BODM.

*

Construct Estimated BODM

as the sum of the esti-
mated ETODM projections:

m
B; = Y B, 1<ij<n®,
p=1
B Xp o ,if fy=tand f, =7 ,
*J 0 , otherwise .

&

Solve ETODM Estimation Problems

using a search algorithm A:

=APp), 1<p<m.

(XP)1<ii<n,

Figure 2. Overview of the process of generating and using the ETODMs in practice and in simulation.

The first two single-criterion search algorithms return
the first optimal solution using different value selection
strategies; DOM returns the first optimal solution using
the strategies dom and minVal, and RAND returns the first
optimal solution using the strategies dom and randVal.

The bottom-up procedure can be easily extended to find
all optimal solutions. The next two single-criterion search
algorithms use the dom and minVal strategies to find all
solutions; UNIF returns an optimal solution drawn randomly
with a uniform distribution among all optimal solutions, and
AVG returns the average of all optimal solutions. Indeed,
the randVal strategy is efficient for the diversification of
equivalent solutions, but not needed when searching for
all solutions. Note that AVG is the only search algorithm
that does not satisfy the integer constraint and produces a
fractional ETODM.

Bi-criteria optimization

These search algorithms use a lexicographic method
which consists of solving two single-objective optimization
problems. They first minimize the LS objective function
and then a secondary criterion subject to the constraint
that the LS objective remains optimal. The secondary
criterion is either the minimum information objective (17)
or the maximum entropy objective (23). By nature, the
lexicographic method returns pareto-optimal solutions. The
lexicographic method was chosen since the measuring errors
on the boarding and alighting counts can be assumed to
be very small, and thus, the LS objective considered more
important than the secondary objectives.

The secondary objective is optimized using the fop-down
procedure which starts with an upper bound, ub, and tries
to improve it. If, by luck, the first solution found with the
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top-down procedure is optimal, the optimality still has to
be proven. The top-down procedure is appropriate for the
optimization of the secondary objective because typically the
lower bounds on this objective are weak.

The search algorithms use the dom and minVal strategies;
ENT uses the maximum entropy and INF the minimum
information as the secondary objective. In addition, some
of the algorithms use prior information to put more weight
on historically likely OD passenger counts. ENTP and INFP
use the prior information contained in the true BODM, and
ENTB and INFB use the prior information obtained by
summing up all the true BODMs generated for the numerical
experiments. Hence, the latter two algorithms are based
on imperfect prior information corresponding to the reality
better.

Numerical experiments

This section presents computational experiments conducted
to evaluate the search algorithms. The emphasis is
especially on the performance of the new bi-criteria
optimization methods compared to the previous single-
criterion alternatives. The implementation is based on
choco (http://choco.mines—nantes.fr) which
is an open source java library for constraint programming.
All the experiments were conducted on a Linux machine
with 32 GB of RAM and a Intel Core i7 processor (6
cores — 3.20GHz). In reality, the EGCS may be executed
on an industrial PC with less computing power, which
may limit the usage of the search algorithms in practice.
However, most of the instances occurring in reality are
so simple that they can be solved fast enough also with
a less powerful machine'’, and in any case the process
executing the ETODM solver can be given a lower priority
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Algorithm | Objective(s) Value Solution selection Prior
selection info
DOM ‘ LS ‘ minVal ‘ First optimal solution -
RANDI1 LS . . .
RAND?2 LS randVal First optimal solution -
UNIF1 LS . . .
UNIE2 LS minVal Random optimal solution -
AVG LS minVal | Average optimal solution. -
g¢ op
ENT Lex(LS,E) . . .
INF Lex(LS.I) minVal Pareto-optimal solution -
ENTP Lex(LS,E) . . .
INFP Lex(LS.I) minVal Pareto-optimal solution Perfect
ENTB Lex(LS,E) . . .
INFB Lex(LS.) minVal Pareto-optimal solution Imperfect

Table 1. Summary of the search algorithms. All algorithms use dom as the variable selection strategy. The search algorithms
RAND1 and RAND2 (resp. UNIF1 and UNIF2) correspond to RAND (resp. UNIF) with different random seeds. All algorithms return
an integer solution with the exception of AVG which returns a fractional solution.

or a maximum allowed duration based on the performance
of the machine so that more critical tasks can be executed
immediately when necessary.

This section is organized as follows. Section analyses
the characteristics of the true BODMs and of the generated
ETODM estimation problem instances. Section analyses the
optimal values and the number of optimal solutions over
all instances for the LS objective. Section compares the
performance of the search algorithms with respect to the
real time constraint of the EGCS for solving one ETODM
estimation problem. The remaining four subsections study
the performance of the algorithms with respect to four
quality measures. All four measures compare the estimated
BODM, B, to the true BODM, B. Section analyzes the
absolute deviation Z?:Bl Z;’:BI |Bij — Byj|, where np is
the number of floors in the building, and Section the
LS deviation ZZL:BI Z;le(ém — B;;)%. Section discusses
the accuracy and precision of estimated BODMs, and
Section summarizes the numerical results.

Characteristics of the true BODMs

Building Traffic Simulator was used to simulate lunch hour
traffic in a 25-story office building with two express floors.
Lunch hour is one of the most difficult traffic situations
occurring in an office building during a day. The simulated
elevator group consisted of eight elevators with the capacity
of 21 passengers. To obtain several sets of test data, i.e., true
BODMs and the corresponding ETODM estimation problem
instances, we repeated the simulation process 10 times with
different seeds. The duration of each simulation was 15
minutes which is a suitable interval length for passenger
traffic statistics in a real elevator group control application”.

Naturally, simulation does not involve measurement errors
but in practice it is very difficult or even impossible
to measure the boarding and alighting counts without
errors. The magnitude of the measuring error and the
error frequency depends on the accuracy of the measuring
device and counting algorithm. For example, with a basic
load weighing device and a dedicated algorithm based
on such a device, a reasonable assumption about the
measuring accuracy is 90% and the magnitude of the error
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one passenger>®. Consequently, to simulate measurement
errors, one passenger was removed from each boarding and
alighting count with 10% probability.

Table 2 gives general information about each of the
10 true BODMs: the number of elevator trips, i.e.,
ETODM estimation problem instances, the total number of
passengers, and the number of OD pairs for which the OD
passenger count is non-zero. Since the total number of floors
in the simulated building was 25 and there were two express
floors, the total number of OD pairs for which the OD
passenger count can be non-zero is 25 X 25 — 25 — 94 =
506 (all OD pairs - diagonal OD pairs - express floor OD
pairs). There is a total of 558 elevator trips with a total
of 6675 passengers. The average number of passengers per
elevator trip is around 12, and the average number of non-
zero OD pairs in a true BODM is around 23.7% when all OD
pairs are considered and 29.2% when only those OD pairs for
which the OD passenger count can be non-zero are taken into
account. In addition to the information given in the table, the
number of stops or nodes in an ETODM estimation problem
instance varies from 2 to 19 and the number of passengers
from 1 to 34.

Each true BODM contains the passengers from a 15-
min period which constitutes an upper bound for solving an
average of 55 ETODM estimation problem instances. This
is approximately 15 seconds per instance. But at the same
time, the EGCS is processing more important tasks such as
dispatching the elevators to passenger’s requests. This means
that each ETODM estimation problem instance needs to be
solved as fast as possible. The next sections show, however,
that the quality of the solutions is more challenging than the
time limit.

Characteristics of the optimal solutions

Figure 3a gives the frequency of the optimal value (dark
gray) and the number of optimal solutions (light grey) for
the LS objective. The latter is calculated for a value range
based on the x-axis values i = 0,1,2,...,8 as ]10°~1, 10¢].
For instance, the two leftmost columns indicate that, for more
than 300 instances, the LS objective is equal to 0 and they
have only one optimal solution, 10° = 1.
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BODM | 1 2 3 4 5 6 7 8 9 10 | total
trips 53 50 59 52 54 54 63 60 59 54 558
passengers | 692 681 676 597 686 682 721 662 672 706 | 6675
OD pairs 143 144 148 138 142 158 158 141 162 144 | 1478

Table 2. General information about the true BODMs.

The LS objective value is very small and close to the trivial
lower bound (0) which justifies the choice of the bottom-
up procedure. Note that errors on the boarding or alighting
counts can be present even if the LS objective is equal to 0,
for instance, if one passenger is removed from the boarding
and the alighting count related to the same OD pair. More
than 40% of the instances have multiple optimal solutions,
and 5% have more than 1000 optimal solutions. Errors on
boarding and alighting counts and multiple optimal solutions
are likely to decrease the quality of the estimation results and
BODMs.

Solving time

Figure 3b shows a box plot of the solving times of the
558 ETODM problem instances with respect to the search
algorithms. The box spans the range of values from the first
quartile to the third quartile. The whiskers extend from each
end of the box for a range equal to 1.5 times the interquartile
range. Any point that lies outside of the range of the whiskers
is considered as an outlier which are drawn as individual stars
in the figure.

Most of the instances are solved within a few seconds.
The search algorithms that return the first optimal solution
(DOM, RAND1 and RAND?2) are the fastest. The maximum
time in the figure is 10 seconds even if there was one instance
for which it took more than 10 seconds to find the first
optimal solution. Including this instance, there were only
four instances for which the other algorithms ends within
more than 10 seconds. To conclude, all search algorithms
meet the real time constraints of the EGCS. In the worst case,
the search can always be interrupted as soon as a solution has
been found.

Absolute deviation

Figure 4a shows a heat map of the absolute deviations
between the true and the estimated BODMs. Here, the value
of a cell is the absolute deviation of a search algorithm (row)
for a BODM (column). The color of a cell represents the Z-
score of the cell which is the signed number of the standard
deviations of the absolute deviation of a search algorithm
for a BODM. Z-scores larger than the mean are represented
by dark gray whereas Z-scores smaller than the mean are
represented by light gray. Briefly, the smaller (lighter) the
Z-score (color), the better the search algorithm (row) for a
BODM (column) with respect to the absolute deviation. The
dendrogram on the left is a tree diagram that illustrates the
hierarchical clustering of the search algorithms. The rows or
algorithms are ordered from top to bottom in a decreasing
order according to the row means, and the leaves of the
dendrogram that also correspond to algorithms are given a
color according to the grouping in Table 1. Note that the
relevance of this empirical grouping is confirmed by the
results of the hierarchical clustering.

Prepared using sagej.cls

The search algorithms based on bi-criteria optimization
outperform those based on single-criterion optimization.
The dendrogram also highlights the fact that single-
criterion and bi-criteria optimizations behave differently. The
only exception is that AVG outperforms ENT. Bi-criteria
optimization with perfect information is the most efficient
and the dendrogram shows that it behaves differently than
with imperfect information or without prior information.
Imperfect information is beneficial for the maximum entropy
approach, but not for the minimum information approach.
For most BODMSs, bi-criteria optimization with perfect
information provides the best quality with respect to the
absolute deviation.

Least squares deviation

Figure 4b shows a heat map of the LS deviations between
the true and the estimated BODMs. Here, the value of a
cell is proportional to the root mean square error which
is equal to the LS deviation divided by the square of the
total number of floors which is 625. AVG outperforms other
search algorithms, but it is the only search algorithm that
does not satisfy the integer constraint and returns fractional
ETODMs that give a real advantage here. Except for
AVG, bi-criteria optimization outperforms single-criterion
optimization UNIF being the best of the single-criterion
based algorithms. As showed by the dendrogram, ENTP and
INFP are close to AVG, but they satisfy the integer constraint.
More surprisingly, the bi-criteria search algorithms using
imperfect information, ENTB and INFB, are not as good
as the same algorithms without prior information, INF
and ENT. In addition, the maximum entropy approach
outperforms the minimum information approach without
prior or with imperfect information.

Accuracy and precision

In this section, we focus on the OD pairs rather than on
the OD counts. Table 3 describes a classification of the
OD pairs based on the true and estimated BODMs. The
rows describe the presence of an OD pair in a true BODM
while the columns describe the presence of the OD pair in
the corresponding estimated BODM. For example, the cell
(B;; = 0, B;; = 0) means that OD pair (¢, j) is not present,
i.e., the corresponding OD passenger count is zero, in the true
and in the estimated BODM which results in a true negative
classification.

‘ Eij =0 B\ij >0
B;j =0 | True Negative (TN)  False Positive (FP)
B;; > 0 | False Negative (FN)  True Positive (TP)

Table 3. Classification of the OD pairs.

Accuracy and precision are defined based on this
classification. Accuracy is the proportion of true results, both
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true positives and true negatives, among the total number of

cases examined:

Accuracy =
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#TN + #TP

#TN + #TP + #FP + #FN

(24)

In this case, an accuracy of 100% means that whenever an
OD pair is present (resp. not present) in the true BODM, it is
also present (resp. not present) in the estimated BODM.

Precision is defined as the proportion of the true positives
against all the positive results, both true positives and false
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positives: learned by combining the BODMSs of the same day or time
4TP interval, and usually day of week. These matrices can be used
Precision = ——8M— . 25) to make forecasts about future passengers. The forecasts are

#TP + #FP 25)

Precision answers the following question: “If an estimated
OD pair is positive, how well does that predict the presence
of the OD pair in the true BODM?”.

Figure 5 shows the accuracy and precision of the search
algorithms as a scatter plot. Each point represents one
BODM estimated by one search algorithm. The search
algorithms are grouped to ease the interpretation. Clearly,
AVG has the lowest accuracy and precision because of its
fractional nature. If a passenger can be assigned to several
OD pairs in an ETODM estimation problem, AVG splits the
passenger between these OD pairs and therefore decreases
accuracy and precision. So despite having low deviations,
AVG has a poor predictive power in describing the actual
passenger traffic in a building. The search algorithms with
perfect information, INFP and ENTP, have the highest
accuracy and precision. The other algorithms are slightly
less accurate and precise and have about the same predictive
power for OD pairs even if their estimation performance with
respect to OD counts differs as discussed before.

Summary of the numerical results

Based on the results, bi-criteria search algorithms with per-
fect information significantly outperform the other search
algorithms. In most cases, bi-criteria optimization outper-
forms single-criterion optimization. Fractional optimization
such as AVG has low deviations but also poor accuracy and
precision. Imperfect information, on the other hand, does not
really improve the BODM quality, but this may not be the
case in practice. Here, imperfect information was formed by
summing up all the 10 true BODMs into one BODM that
does not describe the OD pairs and passenger counts of a
particular BODM accurately enough. In practice, imperfect
information would correspond, e.g., to a historical BODM
of a given time interval. A time series of such matrices is
likely to capture typical traffic patterns, e.g., passengers’
day-to-day routines such as lunch time habits. Hence, in
practice, it may be possible to obtain imperfect information
that improves the quality of the estimated BODMSs. Overall,
the maximum entropy approach slightly outperforms the
minimum information approach. Finally, the performance of
the search algorithms meets the real time constraints of the
EGCS.

Conclusions

We presented a constraint programming formulation for the
elevator trip origin-destination matrix (ETODM) estimation
problem using a lexicographic bi-criteria optimization
method based on least squares minimization of the measured
traffic counts and information minimization or entropy
maximization of the whole matrix. An elevator trip consists
of successive stops in one direction of travel with passengers
inside the elevator, and the estimated OD matrix contains the
OD passenger counts for the OD pairs of the trip.

The ETODMs estimated for a given time interval are
added up to construct the building OD matrix (BODM)
of that interval. The passenger traffic in a building can be
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needed in elevator dispatching to improve the dispatching
decisions with respect to future passengers.

An ETODM estimation problem may have many optimal
solutions with respect to the least squares minimization, and
any of these solutions may correspond to what happened
in reality. To obtain robust forecasts, the learned BODMs
should describe the possible realizations of the passenger
traffic as well as possible. This can be achieved by finding the
most likely ETODM based on the information minimization
or the entropy maximization approach.

Several test problems were obtained by simulations of
lunch hour traffic in a typical multi-story office building. The
traffic intensity was adjusted above the handling capacity
of the simulated elevator group. This resulted in complex
problem instances that enable robust performance testing and
comparison of the algorithms. We compared the bi-criteria
optimization methods to single-criterion alternatives. The
comparison was based on solving time and BODM quality
which affects the reliability of the passenger traffic forecasts.

The results show that the proposed bi-criteria optimization
methods clearly outperform their single-criterion alternatives
and provide a good compromise between solving time and
quality. The bi-criteria methods can also make full use of the
information contained in the observed boarding and alighting
counts as well as a priori information available in the form
of, e.g., an old BODM. However, the results show that while
perfect a priori information significantly improves the quality
of estimation results, the imperfect a priori information used
in this study did not provide much improvement. Hence,
future research will address how to form better imperfect
a priori information. Furthermore, the BODMs estimated
using the entropy maximization approach were frequently
closer to the true BODMs than those estimated using the
information minimization approach. Finally, the proposed
bi-criteria methods fulfill real time elevator group control
requirements for solving ETODM estimation problems.
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