A new CP-approach for a parallel machine
scheduling problem with time constraints on
machine qualifications.

Arnaud Malapert! and Margaux Nattaf?

L Université Cote d’Azur, CNRS, I3S, France
arnaud.malapert@unice.fr
2 Univ. Grenoble Alpes, CNRS, Grenoble INP**, G-SCOP, 38000 Grenoble, France
margaux.nattaf@grenoble-inp.fr

Abstract. This paper considers the scheduling of job families on par-
allel machines with time constraints on machine qualifications. In this
problem, each job belongs to a family and a family can only be exe-
cuted on a subset of qualified machines. In addition, machines can lose
their qualifications during the schedule. Indeed, if no job of a family is
scheduled on a machine during a given amount of time, the machine
loses its qualification for this family. The goal is to minimize the sum of
job completion times, i.e. the flow time, while maximizing the number
of qualifications at the end of the schedule. The paper presents a new
Constraint Programming (CP) model taking more advantages of the CP
feature to model machine disqualifications. This model is compared with
two existing models: an Integer Linear Programming (ILP) model and
a Constraint Programming model. The experiments show that the new
CP model outperforms the other model when the priority is given to
the number of disqualifications objective. Furthermore, it is competitive
with the other model when the flow time objective is prioritized.

Keywords: Parallel Machine Scheduling - Time Constraint - Machine
Qualifications - Integer Linear Programming - Constraint Programming.

1 Introduction

Process industries, and specially semiconductor industries, need to be more and
more competitive and they are looking for strategies to improve their produc-
tivity, decrease their costs and enhance quality. In this context, companies must
pay constant attention to manufacturing processes, establish better and more
intelligent controls at various steps of the fabrication process and develop new
scheduling techniques. One way of doing it is to integrate scheduling and process
control [16]. This paper considers such a problem: the integration of constraints
coming from process control into a scheduling problem.

Semiconductor fabrication plants (or fabs) have characteristics that make
scheduling a very complex issue [8]. Typical ones include a very large number

** Institute of Engineering Univ. Grenoble Alpes

2 A. Malapert and M. Nattaf

of jobs/machines, multiple job/machine types, hundreds of processing steps, re-
entrant flows, frequent breakdowns... Scheduling all jobs in a fab is so complex
that jobs are scheduled in each workshop separately. In this paper, the focus is
on the photolithography workshop, which is generally a bottleneck area. In this
area, scheduling can be seen as a scheduling problem on non-identical parallel
machines with job family setups (also called s-batching in [8]).

Fabrication processes of semiconductors are very precise and require a high
level of accuracy. Reliable equipments are required and valid recipe parameters
should be provided. Advanced Process Control (APC) systems ensure that each
process is done following predefined specifications and that each equipment is
reliable to process different product types. APC is usually associated with the
combination of Statistical Process Control, Fault Detection and Classification,
Run to Run (R2R) control, and more recently Virtual Metrology [9]. The main
interest of this paper is to consider, in scheduling decisions, constraints induced
by R2R controllers. As shown in the survey paper of [14], R2R control is becom-
ing critical in high-mix semiconductor manufacturing processes.

R2R controller uses data from past process runs to adjust settings for the
next run as presented for example in [10] and [4]. Note that a R2R controller is
associated to one machine and one job family. In order to keep the R2R param-
eters updated and valid, a R2R control loop should regularly get data. Hence,
as presented in [12,13], an additional constraint is defined on the scheduling
problem to impose that the execution of two jobs of the same family lies within
a given time interval on the same (qualified) machine. The value of the time
threshold depends on several criteria such as the process type (critical or not),
the equipment type, the stability of the control loop, etc. If this time constraint is
not satisfied, a qualification run is required for the machine to be able to process
again the job family on the machine. This procedure ensures that the machine
works within a specified tolerance and is usually time-consuming. In this pa-
per, we assume that qualification procedures are not scheduled either because
the scheduling horizon is not sufficiently long or because qualification procedures
have to be manually performed and/or validated by process engineers. Therefore,
maintaining machine qualifications as long as possible is crucial. More precisely,
it is important to have as many remaining machine qualifications as possible at
the end of the schedule, so that future jobs can also be scheduled.

To our knowledge, there are few articles dealing with scheduling decisions
while integrating R2R constraints. [2] and [7] study related problems, except
that they allow qualification procedures to be performed, the number or the
type of machines is different and the threshold is expressed in number of jobs
instead of in time. The scheduling problem addressed in this paper has been
introduced in [13], where two Integer Linear Programs (ILP) and two construc-
tive heuristics are proposed. More recently, [11,12] develop a new ILP, modelling
problem constraints in a better way. The paper also presents one Constraint
Programming (CP) model, as well as two improvement procedures of existing
heuristics.

Models for a scheduling problem with time constraints 3

In this paper, a new CP model, which takes more advantages of the CP fea-
tures, is presented. The main idea of this model is to exploit the fact that once
a machine is disqualified, it is until the end of the schedule. The consequence
of this is that it is possible to model machine disqualifications more accurately.
Then, the performance of this model is compared with the two exact solution
methods described in [11]. Both CP models use the CP Optimizer (CPO) frame-
work [3]. Indeed, CPO allows to model elegantly and to propagate the precedent
constraints efficiently and optional jobs.

The paper is organized as follows. Section 2 gives a formal description of the
problem. Section 3 presents the ILP and CP models of [11]. Section 4 describes
the new CP model and finally, Section 5 provides a detailed comparison of the
performance of each model.

2 Problem description

Formally, the problem takes as input a set of jobs, N' = {1,..., N}, a set of
families 7 = {1,..., F} and a set of machines, M = {1,..., M}. Each job j
belongs to a family and the family associated with j is denoted by f(j). For
each family f, only a subset of the machines M C M, is able to process a job
of f. A machine m is said to be qualified to process a family f if m € M;.
Each family f is associated with the following parameters:

— ny denotes the number of jobs in the family. Note that } ;. zng = N.

— py corresponds to the processing time of jobs in f.

— sy is the setup time required to switch the production from a job belonging
to a family f* # f to the execution of a job of f. Note that this setup
time is independent of f’. In addition, no setup time is required between the
execution of two jobs of the same family.

— 7y is the threshold value for the time interval between the execution of two
jobs of f on the same machine. Note that this time interval is computed on
a start-to-start basis, i.e. the threshold is counted from the start of a job of
family f to the start of the next job of f on machine m. Then, if there is a
time interval |¢,t +] without any job of f on a machine, the machine lose
its qualification for f.

The objective is to minimize both the sum of job completion times, i.e. the
flow time, and the number of qualification looses or disqualifications. Note that
the interest of minimizing the number of disqualifications comes from the fact
that, even if the time horizon considered is relatively small, the problem is solved
in a rolling horizon. Hence, it is interesting to preserve machine qualifications for
future jobs. In addition, it is relevant to consider that a machine cannot lose its
qualification for a family after the end of the schedule. Thus, this assumption is
made in the remaining of the paper. This problem, introduced in [13], is called
the scheduling Problem with Time Constraints (PTC). An example of PTC
together with two feasible solutions is now presented.

Ezample 1.

4 A. Malapert and M. Nattaf

ng pr sy oy My
3 9 1 25 {2}
3 6 1 26 {1,2}
3| 4 1 1 21 {1,2}

Figure 1 shows two feasible solutions. The first solution, described by Fig-
ure la, is optimal in terms of flow time. For this solution, the flow time is equal
to14+2+94+154+214+1+2+124+21+30 = 114 and the number of qualification
losses is 3. Indeed, machine 1 (m1) loses its qualification for f3 at time 22 since
there is no job of f3 starting in interval |1, 22] which is of size v3 = 21. The same
goes for my and f3 at time 22 and for mq and fo at time 26.

The second solution, described by Figure 1b, is optimal in terms of number
of disqualifications. Indeed, in this solution, none of the machines loses their
qualifications. However, the flow time is equal to 1 +2+9+ 17+ 19+ 9+ 18 +
20+27+37 = 159. This shows that the flow time and the number of qualification
losses are two conflicting criteria. Indeed, to maintain machine qualifications, one
needs to regularly change the job family executed on machines. This results in
many setup time and then to a large flow time value.

Consider the following instance with
N =10, M =2 and F = 3:

N [~

m2 fi ‘ fi fi ‘
mi 7 f2 | f2 | f2

2 9 12 15 2122 26 30

(a) An optimal solution for the flow time objective

ma fi fi ‘ f2 H fi ‘
BT TR

23 9 11 17 20 27 37

(b) An optimal solution for qualification losses

Fig. 1: Two solution examples for PTC.

Note also that disqualifications may occur after the last job on the machine.
For example, in Figure 1a, m; become disqualified for f3 at time 22 whereas the
last job scheduled on m; finishes at time 21. However, no disqualifications can
occur after the makespan Ci,qz.

Remark 1 (Bi-objective optimization). In [13], PTC is studied using a weighted
sum of the flow time and number of disqualifications. The weight associated to
the flow time is « and is always equal to 1. The weight associated with the number
of disqualifications is S and is set to 1 when the priority is given to the flow time
and to N - T when the priority is given to the number of disqualifications.

In this paper, we use instead the lexicographical order for the CP models where
the minimization of the disqualifications is prioritized.

Remark 2 (Bound on the makespan). In the remaining of the paper, the following
upper and lower bound on the makespan are defined. The upper bound used is

Models for a scheduling problem with time constraints 5

the same as in [13], i.e. T = Cpae = >z 1y - (py + 55). A trivial lower bound
i8 Caz = [(Zfef”f *pyr)/M].

3 Existing Models

This section describes the two exact methods developed in [11]. First, the ILP
is described and then, the CP model.

3.1 ILP model

The ILP model in [11] is an improvement of two existing models introduced
in [13|. The first ILP model of [13] relies on a job-based formulation. Indeed, in
this model, a variable z7"; is defined for each job j, each machine m and each
time t¢. This variable is then equal to 1 if and only if job j starts at time ¢ on
machine m. However, in a solution, there is no need to know which job starts at
which time on which machine. Indeed, only the family of the job is important.
Hence, a family-based model is developed in [13](IP2) and improved in [11](IP3).

In the family-based model, a variable 2f"; is introduced for each family f € F,
each machine m € M and each time t € T = {0,...,T — 1}, with T the upper
bound on the makespan (see Remark 2). This variable is set to one if and only
if one job of f starts at time ¢ on machine m. Therefore, the number of binary
variables is reduced compared to the job-based model.

Similarly, a set of variable y7", is used to model disqualifications. This variable
is set to 1 only if family f lose its qualification on machine m at time ¢t. However,
in (IP2), it may occur that a machine becomes disqualified after Cy,q.. Thus,
in (IP3), another variable set Y;™ is defined to model the fact that a machine
becomes disqualified for a family before C, ;.

min.a-ZCerﬂ-ZZYfm (1)

feF fEF meM
T—py
YD afi=mng VieF (2
meMy Tt:O
s
Y D (t+pp)-af <Oy vieF ()
meMy t=0 .
ngxy+ Z T, <ng Vf# f e F
Tty syt VYme MyNMp, VteT (4)
t
Yy + Z zh, <1 VfeF, VteT, Yme My (5)
T:t_tpf+1
vl D afe>1 VfEF, Vt>yreT, Yme My (6)
T=t—vys+1
Yii—1 < Yfe VfeF, YteT, Yme M; (7)

1 T—1 . -)
m Z Z Z T+ Yf—1— 1< Yf

fleF T:tfpf/ m’GMf/

6 A. Malapert and M. Nattaf

VteT, VfeF, Yme My (8)
zfy €40,1} Vte T,VfeF, Vme My 9)
yi: € 40,1} vte T,VfeF, Vm e My (10)
Y™ €{0,1} VfeF, Vme My (11)

The objective of the model is described by (1). It is expressed as the weighted
sum of the flow times and the number of disqualifications. Constraints (2) ensure
that all jobs are executed. Constraints (3) is used to compute the completion
time of family f, i.e. the sum of completion time of all jobs of f. Constraints (4)
ensure that jobs of f and jobs of f’ do not overlap and that the setup times
are satisfied. Constraints (5) are used to model both the fact that the execu-
tion of two jobs of the same family cannot occur simultaneously and the fact
that a machine has to be qualified to process a job. Constraints (6) make sure
that if no jobs of family f start on m during an interval |t — ~;,t], then m
becomes disqualified for f at time ¢. Constraints (7) maintain the disqualifica-
tion of the machine once it becomes disqualified. Finally, Constraints (8) ensure
that it is no longer necessary to maintain a qualification on a machine if there
is no job which starts on any machir}e in the remainder of the horizon, i.e.

1 T-1 m’
M-(T—1t) Zf’e]—‘ ZT:t—p‘f/ Zm/er/ Tpr= 0.

The number of variables of the model is F' - M - (2T + 1) and the number of
constraints is at most 2F + T - M - (4F + F?).

3.2 CP model

In this section, the CP model defined in [11] is described. The first part of the
model concerns the modelling of a classical parallel machine scheduling problem
(PMSP) with setup time and the second part deals with the modelling of the
disqualifications. attention will be given to this part of the model.

The parallel machine scheduling problem with setup time The PMSP
with setup time can be modeled using optional (or not) interval variables intro-
duced by [5,6]. An (optional) interval variable J is associated with four variables:
a start time, st(J); a duration, d(.J); an end time, et(J) and a binary execution
status z(.J), equal to 1 if and only if the interval variable is present in the final
solution. If the job J is executed, it behaves as a classical job that is executed
on its time interval, otherwise it is not considered by any constraint.

In the considered scheduling problem, a job j of family f can be scheduled
on any machine belonging to M ;. Therefore, a set of optional interval variables
altJ; ., is associated with each job j and each machine belonging to M¢(;y. The
domain of such variables is dom(alt.J;) = {[st, et) | [st,et) C[0,T), st+pys) =
et}. Furthermore, a non-optional interval variable, jobs; is associated with each
job j. Its domain is dom(jobs;) = {[st, et) | [st,et) C [0,T), st + ps(;) = et}.

To model the PMSP with setup time, the following two sets of global con-
straints is used [15].

Models for a scheduling problem with time constraints 7

Alternative constraints Introduced in [5], this constraint models an exclusive
alternative between a bunch of jobs.

alternative (jobs;, {altJ;m|lm € My }) Vi eN (12)

It means that when jobs; is executed, then exactly one of the alt.J; ,, jobs must
be executed, i.e. the one corresponding to the machine m on which the job
is scheduled. Furthermore, the start date and the end date of jobs; must be
synchronised with the start and end date of the altJ; ,, jobs. However, if jobs;
is not executed, none of the other jobs can be executed. In our model, jobs; is a
mandatory job. This constraint models the fact that each job must be executed
on one and only one machine.

No-Owerlap constraints An important constraint is that jobs cannot be executed
simultaneously on the same machine. It is a unary resource constraint. Each
machine can then be used by only one job at a time. To model this feature, we
use noOverlap constraints. This constraint ensures that the executions of several
interval variables do not overlap. It can also handle the setup time. Let S be
0 if f=f
s¢ otherwise
the following noOverlap constraint makes sure that, for all pairs of jobs (i, 7) s.t.
m € M; N M, either the start of altJ;,, occurs after the end of altJ; ,,, plus
sf(;) or the opposite:

the matrix of setup times of the problem, i.e. (Sy) = { Then,

noOverlap ({altJ;m|Vj s.t. m € My}, 5) Ym e M (13)

The exact semantic of this constraint is presented in [6].

Additional ordering constraints The authors of [11] add a non-mandatory set of
constraints to the model. Indeed, the model is correct without these constraints
but adding them remove many symmetry in the model. The constraint order the
start of jobs belonging to the same family.

startBe foreStart(jobs;, jobs}) Vi.g €N, 3 >3 fG") = F() (14)

Modelling of the number of disqualifications In the model of [11], disqual-
ifications are modelled as optional interval variables. The variable will be present
in the final solution if and only if, the machine became disqualified for the fam-
ily. The start time of the variable corresponds to the time at which the machine
becomes disqualified. Therefore, a set of optional interval variable, disqy,y,, of
length 0 is defined for each family f and each machine m such that m € M¢. The
domain of these variables is dom(disqys.) = {[st,et) | [st, et) C [y¢,T), st = et}.
In addition, the model will use a C,,,, interval variable of length 0 modelling
the end time of the last job executed on all machine, i.e. the end of the schedule.
Its domain is dom(Chnaz) = {[st, et) | [st,et) C[0,T), st = et}.

Then, the constraints used to model machine disqualifications are stated
below. The first set of constraints model the fact that each job has to be executed
before Chqz-

endBeforeStart(jobsj, Cmaz) VjieN (15)

8 A. Malapert and M. Nattaf

Another set of constraints ensures that no job of a family f is scheduled on m if
m is disqualified for f, i.e. after the disqy ., job.

startBeforeStart(altJjm, disqr(jy,m, V() Vi eN, VYm e My (16)

Finally, the following constraints sets enforce a machine to become disqualified
if no job of family f is scheduled on m during an interval of size ;. Indeed, the
first set state that if a job of f is scheduled on m, either there is another job
of f scheduled on m less than s units of time later, or the machine become
disqualified, or the end of the scheduled (C,qz) is reached.

w(altTjm) = \/ (st(altJy m) < tjm) V (5t(disqs(y.m) = tim) V (Crnaz < tjm)
J'#j
FN=£G" Vi €N, ¥m € My (17)

with ;. = st(altJjm) + v¢;)- The second set of constraints ensures that if no
job of f is scheduled on m, then m becomes disqualified for f.

\/ (st(altjm) < v5) V (st(disgsjym) = 75) V (st(Comaz) < 7r)

JEN
FR=FG" VfeF,Vme My (18)

Objective functions The objective is to minimize both the flow time and the
number of disqualifications. In this CP model, the flow time can be expressed as
flowTime = Zje/\f et(jobs;) and the number of disqualifications as nbDisq =

Efe]—‘ ZmGM w(diSQf,m)'

Model size The number of variables of the model is at most N-(M+1)+M-F+1
and the number of constraints is at most N2 + 2N + M - (1 + 2N + F).

4 New CP Model

This section presents a new CP model that can be used to solve PTC. As said
earlier, PTC can be decomposed into two sub-problems: a PMSP with setup
time and a machine qualifications problem. The model described in this section
uses the same idea as in [11] to formulate the first sub-problem of PTC. However,
to model the machine qualification sub-problem a novel approach is developed
modelling qualifications as resource.

The first part of this section described the difference of modelling of the
PMSP between the model of Section 3.2 and the model of this section. The
second part is dedicated to the machine qualification sub-problem.

In the model, without loss of generality, the two following assumptions are
made. First, it is assumed that jobs of the same family have consecutive index
in V. More precisely, with ny the number of jobs in family f then jobs with
index in {1,...,n1} belong to family 1, jobs with index in {n; +1,...,n1 +na}
are jobs of family 2, etc. The second assumption made in the model is that it
is equivalent to consider the threshold either on an end-to-end basis or on a

Models for a scheduling problem with time constraints 9

start-to-start basis. Indeed, if a job of family f starts at time ¢ on m, another
job of f has to start before ¢ 4. This is equivalent to: if a job of family f ends
at time ¢ + py on m, another job of f has to end before ¢t + pys + 7. Therefore,
the model considers the threshold on an end-to-end basis. The motivation for
this second assumption will be given later in the section.

The parallel machine scheduling problem with setup time As for the
model of Section 3.2, the parallel machine scheduling problem with setup time is
modeled using interval variables jobs;, Vj € N/, and optional interval variables
altJ; . The constraints used are the same and, therefore, are not described in
this section.

Cumulative constraints The model is also reinforced by considering the set of
machines as a cumulative resource of capacity M. Indeed, each job consumes
one unit of resource (one machine) during its execution and the total capacity of
the resource (total number of machines available) is M. This is expressed using
the global constraint cumulative [1].

cumulative({(jobs;j, 1) |Vj € N}, M) (19)

Makespan modelling As for the previous model, the makespan of the scheduling
is needed to model machine disqualifications. The constraints presented in this
section concern the link between the makespan and the PMSP. A constraint
linking the makespan with the number of disqualifications will be presented
later in the paper.

Unlike the previous model, the makespan is modeled here as an interval vari-
able starting at time 0 and spanning the execution of all jobs. This is modelled
using span constraints. Introduced in [6], this constraint states that an executed
job must span over a set of other executed jobs by synchronising its start date
with the earliest start date of other executed jobs and its end date with the
latest end date. It is expressed by the following constraints:

span(Cmaz, {jobs; |Vj € N'}) (20)
$t(Crmaz) =0 (21)

In addition, the size of the interval has to be between the upper and the
lower bound on the makespan defined in Remark 2.

Machine qualifications problem In this section, the model for the machine
qualifications problem is described. The main idea of the model is that, each
time a job of family f is scheduled on a machine m, a qualification interval of
size vy will occur right after. This interval “models” the fact that machine m
remains qualified for family f until, at least, the end of the interval. To model
this feature, optional interval variable are used. Indeed, for each job j and each
machine m € My (;y, an optional interval variable, qual; ., of size 7 and
taking its value in {0, ..., T +maxy v} is created. Then, a variable qual; , will
be present in the solution only if altJ; ,, is present and will start at the end of
altJ; m. This is expressed by the following set of constraints.

z(altJ;m) = z(qual;,m) VjieN, Ym e My, (22)

10 A. Malapert and M. Nattaf

endAtStart(altJ; m, qual; m) VjieN, Ym e My, (23)

Hence, a job of f can only be scheduled on m during a qualification interval
of f on m. This is modeled using cumulative functions. A cumulative function
Qfm counts, at each time ¢, the number of qualification intervals for (f,m) in
which ¢ is. If the number of qualification intervals for (f,m) is greater than 1,
then a job of f can be scheduled on m. Otherwise, the number of interval is zero
and m is disqualified for f. Q¢,, is expressed as:

Qf.m = pulse(0,vs +ps, 1)+ Z Z pulse(qualj m,1)
JEN mEMf(j)
fG)=f
Indeed, at the beginning of the scheduled, the machine is qualified from time
0 to v¢ + ps. In addition, each time an interval variable qual; ., is scheduled,
Qf(;),m increases by one. Then, when a job of f is scheduled on m, Qy,, has to
be greater than one and one can show that @y, is always smaller than n; 4 1.

alwaysIn(Q ¢(j),m, altJjm, 1, np) + 1) VjieN, Ym e My, (24)

Ezample 2 (Example of cumulative function). Considering the instance of Ex-
ample 1. The cumulative function @ ¢, m, corresponding to Figure 1b is described
by Figure 2.

4

=N W

T T T

5 10 1

T T T

25 30 3B o

Fig. 2: Example of cumulative function to model qualifications.

Each time a job of f3 ends, the value of the function @y, .., increases by one
and decreases when the qualification interval ends. While the value of @ s, m,
is greater than one, it is possible to schedule jobs of f3 on m;. Here, Qy, m, is
always greater than one for t € [0, Cp,q,) meaning that m; remains qualified for
f3 at the end of the schedule.

Machine disqualifications Another dummy optional interval variable set, end@ s, m
is introduced to check if a machine has been disqualified for a family during the
schedule. The variable is present in the final solution only if the machine is still
qualified at the end of the schedule. In this case, the variable starts at time
0, ends at time Cj,qz + py and the function Qr: has to be greater than one
during the whole execution of job end@y., (otherwise, the machine has been
disqualified).

st(endQym) =0 VfeF, Vme My (25)

Models for a scheduling problem with time constraints 11

endAtEnd(Caz, endQ fm, Df) VfeF, Vme My (26)
alwaysIn(Q fm,endQ s m,1,ny + 1) VfeF, Vme My (27)

Thresholds were considered on an end-to-end basis so that the constraints al-
waysIn can be used.

Ordering constraints The following sets of constraint (partially) order vari-
ables in the solution. These (partial) ordering is used to break symmetries in the
model. Recalling that it is assumed that jobs of the same family have consec-
utive index in A. Then constraints (28) state that jobs;_; has to start before
jobs; and constraints (29) that the maximum time lag between these jobs is
Y¢(;)- Constraints (30) order jobs that cannot be executed in parallel. Indeed,
job j can overlap at most My ;) — 1. Hence, job j — My ;) cannot overlap job
j and has to end before. Constraints (31) ensure that the qualification interval
corresponding to job j is separated from the qualification interval of j — 1 by at
least the duration of the job. Finally, constraints (32) model the fact that, on a
machine m, jobs of a same family are ordered, i.e. smaller index scheduled first.

startBe foreStart(jobs;_1, jobs;) VieN st fG)=fG—-1) (28)
startBeforeSart(jobs;, jobs;_1, =7 (;y) VieN st fG)=fG-1) (29)
endBe foreStart(jobs;—n, ;,,jobs;) VieN st f(4) = f(j— Ms;) (30)

startBeforeStart(qualj 1 m, qualj m,ps(;))
vm e My, Vi€ N st f(j) = f(G—1) (31)
endBeforeStart(altim,altJ;m) Ym € My, Vi< je N st.f(i) = f(5) (32)

Objective functions The objective function is modeled using two integer vari-
ables: flowTime € {Craz, - -+, Cmaz} and qualified € {1,..., Efe}' M;}. The
expressions of these variables are given below:

flowTime = Z et(jobs;) (33)
JEN

qualified = Z Z z(endQf,m) (34)
fEF meMy jy

Then, the objective is expressed as a sum, i.e. (flow — qual), or using the
lexicographical order, e.g. lex(—qual, flow). Note that, in this model, the number
of machine qualified at the end of the schedule is maximized which is equivalent
to minimize the number of machine becoming disqualified during the schedule.

Model size The number of variables of the model is at most N - (2M +1)+ M -
F+3 and the number of constraints is at most N2-M +4N +M-(1+4N +3F)+6.

5 Experiments

This section starts with the presentation of the instances used in the experiments
(Section 5.1). Then, the general framework of the experiments is described in 5.2.
Finally, the three model presented in the paper are used to solve the instances
and the results are compared and analysed (Section 5.3).

12 A. Malapert and M. Nattaf

5.1 Instance generation

The benchmark instances used to perform our experiments are extracted from [11].
In this paper, 19 instance sets are generated with different number of jobs (N),
machines (M), family (F) and qualification schemes. Each of the instance sets
is a group of 30 instances and are generated as follows.

In each generated instances, each family can be executed by at least one
machine and each machine is qualified to process at least one job family. Fur-
thermore, since short thresholds may lead to very quick machine disqualifica-
tions, the time thresholds of job families are chosen sufficiently large compared
to their associated processing times, i.e. maxyerpy < minger v¢. Then, to en-
sure diversity, each set of instances contains 10 instances with small threshold
(corresponding to duration needed to process one to two jobs of another family
than f), 10 with medium threshold (two to three jobs) and 10 with large thresh-
old (three to four jobs). In addition, setup times are not chosen too large so that
the risk of disqualifying a machine due to a setup time insertion is “acceptable”,
lLe. maXfer sy < mingecr py.

Table 1 presents the parameters of the different instance sets. In the first
row, the different number of jobs N is given, the number of machines M is
described by the second row and number of families F' is detailed in the third
row. Note that each triplet (n,m, f) corresponds to 30 instances. Among those
instances, at least 99, 5% are feasible. Indeed, experiments in [11] show that only
one 60-job instance and two 70-job instances have an unknown status. For all
other instances, at least one of the algorithms presented in [11] is able to find a
feasible solution.

]\]\/][3 4 3 415 3
Fla]s]2[3]4]5[2[3]4]5[4][5]3[3[4]5[5][4]5

Table 1: Instance characteristics

The instances generated are relatively small compared to industrial instances.
However, due to the complexity of the problem, it is important to first analyse
and compare the results of the three models described in this paper. Finding
good solutions for industrial instances is a real challenge and is an important
research direction for future work.

5.2 Framework

The experiment framework is defined so the following questions are addressed:

Question 1. Which model is the best at finding a feasible solution, proving the
optimality or finding good upper bounds (especially when solving large in-
stances)?

Question 2. Does the performance of a model change depending on the objective
function or on the time limit?

Models for a scheduling problem with time constraints 13

The models are implemented using IBM ILOG CPLEX Optimization Studio
12.8 [3]. That is CPLEX for the ILP model and CP Optimizer for CP models. All
the experiments were led on a computer running on Ubuntu 16.04.5 with 32 GB
of RAM and one Intel Core i7-3930K 3.20GHz processors (6 cores). Furthermore,
two time limits are used in the experiments: 30 and 600 seconds.

Two heuristics are used to find solutions which are used as a basis for the
models. These heuristics are called Scheduling Centric Heuristic and Qualifica-
tion Centric Heuristic [11]. The goal of the first heuristic is to minimize the flow
time while the second one tries to minimize the number of disqualifications.

In the following of the section ILP model, CPp model and CPy model de-
notes respectively the ILP model of section 3.1, the previous CP model described
in Section 3.2 and the new CP model detailed in Section 4. Furthermore, to de-
scribe the performance of the different models, the following indicators are used
in the table of Section 5.3: %sol. gives the percentage of instances for which
feasible solution is found; %opt. shows the percentage of instances for which
the optimality is proven; %uvbs provides the percentage of instances for which
the model is the virtual best solver, i.e. has found the best solution compared
to others; #dis. gives the average number of disqualified machines and finally,
obj. is used to show the average of the sum of the flow time and the number of
disqualified machines.

In addition, a bold value in the table means that the corresponding indicator
has the best values among its row, i.e. compared to other model.

5.3 Comparison of the three models

This section aims at comparing the results of the three models. First, the results
are described for the tight time limit, i.e. 30 seconds. Then, the results with the
600-seconds time limits are given.

30-seconds time limit

Minimizing the number of disqualifications over the flow time Table 2 gives
indicators for the three models solved using the lex(—qual, flow) objective with
30-seconds time limit.

ILP model CPo model CPxn model
N ‘%sol. %opt. %vbs #dis. %sol. %opt. %ovbs #dis. Y%sol. Y%opt. %ovbs H#dis.

20| 100 544 556 1.1 | 100 694 861 0.6 | 100 82.2 90.6 0.6
30972 21.7 233 31 [99.4 511 594 14 | 989 56.7 71.1 1.2
40| 100 233 267 09 | 100 633 633 06 | 100 83.3 90 0.2
50 | 100 0 6.7 29 | 100 333 367 14 | 100 56.7 73.3 0.8
60 | 88.3 0 0 7.5 90 83 333 34 90 21.7 56.7 2.8
70 | 86.7 0 0 9.5 | 91.1 44 411 5 91.1 15.6 52.2 4.1

Table 2: Lexicographic minimization of the disqualified machines and the flow
time within 30 seconds.

14 A. Malapert and M. Nattaf

Table 2 shows that the ILP model finds less feasible solutions than the CP
models. Furthermore, the ILP model does not scale well for large instances.
Indeed, the ILP model is never the VBS and its average number of disqualified
machines is very high for the largest instances compared to the CP models.

On the other hand, the CPy model obtains better results than the CPp
model. Indeed, the percentage of proof of optimality is higher with CP model.
The model is also more often the VBS regardless of the instance size. Further-
more, the difference between the average numbers of qualified machines of both
model increases with the instance size. This shows that the CPy model scales
better than the CPo model.

Minimizing the flow time over the number of disqualifications Table 3 gives
indicators for the three models solved using the (flow — qual) objective with
30-seconds time limit.

ILP model CPo model CPx model
N ‘%sol. %opt. %vbs obj. %sol. Y%opt. Y%vbs obj. %sol. %opt. %vbs obj.

20 | 100 96.7 97.8 334.7| 100 0 87.8 334.8| 100 65.6 90 334.7
30| 97.8 69.4 72.2 782.5|99.4 71.1 770 | 98.9 244 578 766.8
40| 100 90 90 1536 | 100 93.3 1530 | 100 60 100 1529
50 | 100 60 70 2265 | 100 76.7 2159 | 100 10 73.3 2151
60 | 88.3 5 8.3 3228 | 90 50 2792| 90 0 36.7 2805
70| 86.7 4.4 5.6 4256 | 90 0 52.2 3583 | 91.1 0 43.3 3562

Table 3: Weighted sum minimization of the flow time and number of disqualified
machines within 30 seconds.

o O oo

Table 3 shows that the ILP model is more competitive when the priority is
given to the number of disqualifications. Indeed, despite the fact that it finds
a few less feasible solutions than the CP Models, it is better at proving the
optimality of its solution. However, the ILP model does not scale well as shown
by the high objective values for the largest instances.

On the other hand, the CPp model is the most efficient for finding good
upper bounds, but completely fails at proving the optimality of its solution. The
CPx model proves optimality less often than the ILP model. However, it is only
slightly dominated by the CPo model in terms of being the VBS. However, the
CPpy model still have the lowest objective values.

600-seconds time limit Table 4 gives indicators for the three models solved
using both lexicographic and weighted sum minimization with 30-seconds and
600-seconds time limit. Only challenging instances with 60 jobs are used to save
computation time.

For the lexicographic minimization, the CPy model confirms its predom-
inance. For all three models, the percentages of solved instances remain con-
stant, the percentages of optimality proof only slightly increase, and the average
numbers of disqualified machines significantly decrease.

Models for a scheduling problem with time constraints 15

For the weighted sum minimization, the ILP model becomes the best model.
The percentages of solved instances and optimality proof significantly improve
and the model often becomes the VBS. Nevertheless, the CPy model model has
the best average objective.

Most of the time, the low improvements of the number of solved instances or
optimality proofs suggest that the solvers is subject to thrashing and therefore
cannot diversify the search.

ILP model CPo model CPxn model
t ‘%sol. Y%opt. Y%vbs #dis. %sol. %opt. %ovbs Hdis. %sol. Y%opt. Y%vbs #dis.
30s | 88.3 0 0 7.5 90 8.3 333 34 90 21.7 56.7 2.8
600s| 90 0 3.3 4.2 90 11.7 283 29 90 23.3 61.7 2.2

t ‘%sol. Y%opt. Y%vbs obj. %sol. %opt. %ovbs obj. %sol. Y%opt. Y%vbs obj.

30s | 88.3 5 8.3 3228 | 90 0 50 2792 90 0 36.7 2805
600s| 98.3 55 75 2873 | 90 0 33.3 2755 | 90 0 33.3 2744

Table 4: Weighted sum and leximin minimization over instances of 60 jobs within
600 seconds.

6 Conclusions and further work

A parallel machine scheduling problem was studied where some Advanced Pro-
cess Control constraints are integrated: minimal time constraints between jobs
of the same family to be processed on a qualified machine to avoid losing the
qualification. Two criteria to minimize are considered: the sum of completion
times and the number of disqualifications.

For this problem, a new CP model was proposed. This model improves the
modelling of machine disqualifications. Indeed, when the number of disqualifica-
tions is prioritized, this model is better than the existing methods (ILP model
and CPo model) in terms of objective value and in terms of optimality proof.
However, when the flow time is prioritized, the performance of the model is less
impressive. In this case, the CPp model tends to have better performance for
small-time limit and the ILP model performs better in case of larger time limit.

Experiment results show that a good CP model needs to make some improve-
ments on the modelling and/or the solving of the parallel machine scheduling
problem with the flow time objective. Interesting research directions include the
improvement of variable bounds, especially the makespan. It also includes the
study of good relaxations of the problem to enhance the performance of con-
straint programming models.

Another relevant research perspective consists in scheduling jobs on a longer
time horizon, where lost qualifications could be automatically recovered after a
given qualification procedure. Qualification procedures, requiring time on ma-
chines, would then also be scheduled.

16 A. Malapert and M. Nattaf
References
1. Beldiceanu, N., Carlsson, M., Rampon, J.X.: Global constraint catalog (revision a)

10.

11.

12.

13.

14.

15.

(01 2012)

. Cai, Y., Kutanoglu, E., Hasenbein, J., Qin, J.: Single-machine scheduling with

advanced process control constraints. Journal of Scheduling 15(2), 165-179
(Apr 2012). https://doi.org/10.1007/s10951-010-0215-8, https://doi.org/10.1007/
$10951-010-0215-8

IBM: IBM ILOG CPLEX Optimization Studio. https://www.ibm.com/products/
ilog-cplex-optimization-studio (2019)

Jedidi, N., Sallagoity, P., Roussy, A., Dauzere-Peres, S.: Feedforward run-to-run
control for reduced parametric transistor variation in cmos logic 0.13 um technol-
ogy. IEEE Transactions on Semiconductor Manufacturing 24(2), 273 -279 (2011)
Laborie, P., Rogerie, J.: Reasoning with conditional time-intervals. In: Proceedings
of the Twenty-First International Florida Artificial Intelligence Research Society
Conference, May 15-17, 2008, Coconut Grove, Florida, USA. pp. 555-560 (2008),
http://www.aaai.org/Library /FLAIRS /2008 /flairs08-126.php

Laborie, P., Rogerie, J., Shaw, P., Vilim, P.: Reasoning with conditional time-
intervals. part II: an algebraical model for resources. In: Proceedings of the Twenty-
Second International Florida Artificial Intelligence Research Society Conference,
May 19-21, 2009, Sanibel Island, Florida, USA (2009), http://aaai.org/ocs/index.
php/FLAIRS/2009/paper/view /60

Li, L., Qiao, F.: The impact of the qual-run requirements of APC on the scheduling
performance in semiconductor manufacturing. In: Proceedings of 2008 IEEE Inter-
national Conference on Automation Science and Engineering(CASE). pp. 242-246
(2008)

Moench, L., Fowler, J.W., Dauzére-Pérés, S., Mason, S.J., Rose, O.: A survey of
problems, solution techniques, and future challenges in scheduling semiconductor
manufacturing operations. Journal of Scheduling pp. 1-17 (2011), http://dx.doi.
org/10.1007/s10951-010-0222-9, 10.1007 /s10951-010-0222-9

Moyne, J., del Castillo, E., Hurwitz, A.M.: Run-to-Run Control in Semiconductor
Manufacturing. CRC Press, 1 edn. (2000)

Musacchio, J., Rangan, S., Spanos, C., Poolla, K.: On the utility of run to run con-
trol in semiconductor manufacturing. In: Proceedings of 1997 IEEE International
Symposium on Semiconductor Manufacturing Conference. pp. 9-12 (1997)
Nattaf, M., Dauzére-Pérés, S., Yugma, C., Wu, C.H.: Parallel machine scheduling
with time constraints on machine qualifications, Manuscript submitted for publi-
cation.

Nattaf, M., Obeid, A., Dauzére-Pérés, S., Yugma, C.: Méthodes de résolution pour
I'ordonnancement de familles de tdches sur machines paralléles et avec contraintes
de temps. In: 19éme édition du congrés annuel de la Société Frangaise de Recherche
Opérationnelle et d’Aide a la Décision, ROADEF2018

Obeid, A., Dauzére-Pérés, S., Yugma, C.: Scheduling job families on non-identical
parallel machines with time constraints. Annals of Operations Research 213(1),
221-234 (Feb 2014). https://doi.org/10.1007/s10479-012-1107-4

Tan, F., Pan, T., Li, Z., Chen, S.: Survey on run-to-run control algorithms in
high-mix semiconductor manufacturing processes. IEEE Transactions on Industrial
Informatics 11(6), 1435-1444 (2015)

Wolf, A.: Constraint-based task scheduling with sequence dependent setup times,
time windows and breaks. In: GI Jahrestagung (2009)

https://doi.org/10.1007/s10951-010-0215-8
https://doi.org/10.1007/s10951-010-0215-8
https://doi.org/10.1007/s10951-010-0215-8
https://www.ibm.com/products/ilog-cplex-optimization-studio
https://www.ibm.com/products/ilog-cplex-optimization-studio
http://www.aaai.org/Library/FLAIRS/2008/flairs08-126.php
http://aaai.org/ocs/index.php/FLAIRS/2009/paper/view/60
http://aaai.org/ocs/index.php/FLAIRS/2009/paper/view/60
http://dx.doi.org/10.1007/s10951-010-0222-9
http://dx.doi.org/10.1007/s10951-010-0222-9
https://doi.org/10.1007/s10479-012-1107-4

Models for a scheduling problem with time constraints 17

16. Yugma, C., Blue, J., Dauzére-Pérés, S., Obeid, A.: Integration of scheduling and
advanced process control in semiconductor manufacturing: review and outlook.
Journal of Scheduling 18(2), 195-205 (Apr 2015). https://doi.org/10.1007/s10951-
014-0381-1, https://doi.org,/10.1007/s10951-014-0381-1

https://doi.org/10.1007/s10951-014-0381-1
https://doi.org/10.1007/s10951-014-0381-1
https://doi.org/10.1007/s10951-014-0381-1

	A new CP-approach for a parallel machine scheduling problem with time constraints on machine qualifications.

