Using Cloud Computing for Solving Constraint
Programming Problems

Mohamed Rezgui **, Jean-Charles Régin**, and Arnaud Malapert **

Univ. Nice Sophia Antipolis, CNRS, I3S, UMR 7271, 06900 Sophia Antipolis, France

Abstract. We propose to use cloud computing for solving constraint programing
problems in parallel. We used the Embarrassingly Parallel Search (EPS) method
in conjunction with Microsoft Azure, the cloud computing platform and infras-
tructure, created by Microsoft. EPS decomposes the problem in many distinct
subproblems which are then solved independently by workers. EPS has three ad-
vantages: it is an efficient method, it is simple to deploy and it involves almost no
communication between workers. Thus, EPS is particularly well-suited method
for being used on cloud infrastructure. Experimental results show ratio of gain
equivalent to those obtained for a parallel machine or a data center showing the
strength of EPS while using in conjunction with a cloud infrastructure. We also
compute the number of cores in a cloud infrastructure requires to improve the
resolution by a factor of k£ and we discuss about the price to pay for solving a
given problem in a certain amount of time.

1 Introduction

Constraint Programming (CP) is an efficient method for solving complex optimization
problems. In CP, problems are represented by variables subject to constraints on which
combinations of values of variables are acceptable. Variables takes their values in do-
mains and constraints are associated with filtering algorithms which aim at removing
value that do not belong to a solution of the constraints. Efficient algorithms have been
developed in CP for accelerating the search for a solution.

There are different way for improving the resolution of a problem. We can change
the model or improving the internal algorithms. We can also use a more efficient proces-
sor. In this paper, we are interested in the acceleration of the resolution by using more
processors. More precisely, we would like to know the number of cores we should use
to improve the resolution time by a factor of p. This is not an easy task because usu-
ally increasing the number of cores by a factor of k£ does not mean that we increase
the computational power by a factor of k. There are several reasons: the parallelization
must scale up and the communication must be reduced.

Several methods for parallelizing the search in constraint programming (CP) have
been proposed. The most famous one is the work stealing [6,8,3,9,2,4]. This method
uses the cooperation between computation units (workers) to divide the work dynami-
cally during the resolution. Recently, [7] introduced a new approach named Embarrass-
ingly Parallel Search (EPS), which has been shown competitive with the work stealing

** This work was granted access to the Microsoft Azure Cloud. .

method. EPS is simple and involve almost no communication so give us more chance
to be able to predict the improvement that we can expect by using k& more cores.

The idea of EPS is to decompose statically the initial problem into a huge number
of subproblems that are consistent with the propagation (i.e. running the propagation
mechanism on them does not detect any inconsistency). These subproblems are added
to a queue which is managed by a master. Then, each idle worker takes a subproblem
from the queue and solves it. The process is repeated until all the subproblems have
been solved. The assignment of the subproblems to workers is dynamic and there is
no communication between the workers. EPS is based on the idea that if there is a
large number of subproblems to solve then the resolution times of the workers will be
balanced even if the resolution times of the subproblems are not.

In other words, load balancing is automatically obtained in a statistical sense. In-
terestingly, experiments of [7] have shown that the number of subproblems does not
depend on the initial problem but rather on the number of workers. Moreover, they have
shown that a good decomposition has to generate about 30 subproblems per worker.
Experiments have shown good results on a multi-cores machine (40 cores/workers) and
on a data center (512 cores/workers). The gain factor is clearly better with EPS than
with work stealing when the number of cores is increased.

In this paper we study the behavior of EPS on a cloud infrastructure. Then, we
establish some relations between the power different of type of machines and cloud
computing. Since cloud computing is directly linked to price because we pay for using
a machine having some features for a certain amount of time, we compare the price of a
computation using cloud computing and the same computation using classical servers.

The paper is organized as follows. First we recall some preliminaries about con-
straint programming and embarrassingly parallel method. Then, we give some exper-
imental results when using EPS in conjunction with a cloud infrastructure. Next, we
propose some relations between the power of a cloud computing approach and a more
classical computing approach. At last, we conclude.

2 Preliminaries

A worker is a computation unit. Most of the time, it corresponds to a core. We will
consider that there are w workers.

2.1 EPS

The Embarassingly Paralell Search (EPS) method has been defined in [7]. This method
splits statically the initial problem into a large number of subproblems that are consis-
tent with the propagation and puts them in a queue. Once this decomposition is over,
the workers take dynamically the subproblems from the queue when they are idle. Pre-
cisely, EPS relies on the following steps:

« it splits a problem into p subproblems such as p > w and pushes them into the
queue.
« each worker takes dynamically a subproblem in the queue and solves it.

. a master monitors the concurrent access of the queue.
« the resolution ends when all subproblems are solved.

For optimization problems, the master manages the value of the objective. When a
worker takes a subproblem from the queue, it also takes the best objective value com-
puted so far. And when a worker solves a subproblem it communicates to the worker
the value of the objective function. Note that there is no other communication, that is
when a worker finds a better solution, the other workers that are running cannot use it
for improving their current resolution.

The main strength of the method is the reduction of communication. Furthermore, a
resolution in parallel can be replayed by saving the order in which the subproblems have
been executed. This costs almost nothing and helps a lot the debugging of applications.

2.2 Constraint Programming
A constraint network CA = (X, D, C) is defined by:

. asetof nvariables X = {x1,xa,...,2,}

« aset of n finite domains D = {D(x1), D(x2), ..., D(xy)} with D(x;) the set of
possible values for the variable z;,

« a set of constraints between the variables C = {C1,Cs,...,C.}. A constraint C;
is defined on a subset of variables X¢, = {2, 2,, ..., s, } of X with a subset of
Cartesian product D(z;1) X D(z2) X ... x D(z;;), that states which combinations
of values of variables {z;,, Zi,, ..., x;; } are compatible.

Each constraint C; is associated with a filtering algorithm that removes values of
the domains of its variables that are not consistent with it. The propagation mechanism
applies filtering algorithms of C to reduce the domains of variables in turn until no
reduction can be done. For convenience, we will use the word ”problem” for designing
a constraint network when it is used to represent the constraint network and not the
search for a solution. We say that a problem P is consistent with the propagation if and
only if running the propagation mechanism on P does not trigger a failure.

3 Cloud computing

3.1 Microsoft Azure Cloud

Microsoft Azure is a cloud infrastructure and Windows HPC is a high performance
computing (HPC) solution built on Windows Server technology (http://technet.microsoft.com/en-
us/library/cc514029.aspx). It provides powerful computation units, named nodes, to the
user. Users may use different kind of nodes and hour of computation are bought.
A node has between 1 and 8 cores. This is a choice of the user. This has no influence
on the price or the power that are defined per core. Without loss of generality, we will
consider only 8 cores nodes. When using nodes, some other management nodes must be
also bought. The rules are the following (http://technet.microsoft.com/en-us/library/jj899633.aspx):

— 1 headnode using 1 core is required

Table 1. Configuration: hourly price per available core

#cores|bought cores|total price|price/core
4 9 0.612 0.153

8 13 0.884| 0.1105

16 21 1.428| 0.0893

32 37 2.516] 0.0786

64 69 4.692| 0.0733

128 133 9.044| 0.0707

256 261| 17.748| 0.0693
512 5191 35292 0.0689

— 2 hpcproxy nodes (each using 2 cores) are required up to 400 nodes.
— 1 hpeproxy node (using 2 cores) is required per additional 200 nodes

The hourly price per core is almost constant as shown in Table 1 (See https://azure.microsoft.com/en-
us/pricing/details/virtual-machines/).

3.2 Experiments

Benchmark Instances All instances come from the minizinc distribution (see [5]). We
report results for the twenty most significant instances we found. Two types of problems
are used: enumeration problems and optimization problems.

Execution environment All the experiments have been made on three type of machines:

« cicada : the data center ”Centre de Calcul Interactif” hosted by the University of
Nice Sophia Antipolis. It has 1152 cores, spread over 144 Intel E5-2670 processors,
with a 4,608GB memory and runs under Linux (http://calculs.unice.fr/
fr). We were allowed to use to up to 512 cores simultaneously for our experiments.
The data center uses a scheduler (OAR) that manages jobs (submissions, executions,
failures).

« fourmis : a Dell machine having four E7-4870 Intel processors, each having 10
cores with 256 GB of memory and running under Scientific Linux.

« azure : the Windows Azure cloud. We were allowed to use to up to 24 cores simul-
taneously for our experiments. We manage jobs with the Microsoft HPC Cluster 2012
(http://technet.microsoft.com/en-us/library/jj899572.aspx).

Implementation EPS is implemented on the top of the solver gecode 4.0.0 [1]. We use
MPI (Message Passing Interface), a standardized and portable message-passing system
to exchange information between processes. Master and workers are MPI processes.
Each process reads a FlatZinc model to init the problem and only jobs are exchanged
through messages between master and workers.

Scaling analysis We test the scalability of EPS for different numbers of workers with
different machines and cloud infrastructure. Table 2 describe the details of the speedups

http://calculs.unice.fr/fr
http://calculs.unice.fr/fr
http://technet.microsoft.com/en-us/library/jj899572.aspx

respectively on fourmis machine, cicada machine and Microsoft Azure (azure). We use
the following definitions:

« 1 is the resolution time of an instance in sequential

o SU = %0 is the speedup of the overall resolution time compared with the sequential
resolution time

Table 2. Scaling comparison between machines with EPS.

Instance 10 workers 20 workers

fourmis cicada azure fourmis cicada azure
fillomino_18 54 58 58 9.1 8.8 120
market_split_s5-02 10.0 10.1 10.2 18.6 18.3 20.3
market_split_s5-06 10.1 10.2 10.3 19.1 18.8 20.3
market_split_u5-09 10.0 10.1 10.3 18.9 18.3 20.3
quasigroup7.10 74 7.6 92 127 123 183
sb_sb_13.13.6_4 39 47 6.0 54 5.1 118
bacp-27 10.8 10.8 6.8 19.1 16.8 13.8
depot_placement_att48.5 6.8 69 70 120 16.1 14.3
depot_placement_rat99.5 24 28 29 4.1 8.0 55
depot_placement_st70_.6 76 7.6 7.6 159 144 153
golombruler_13 85 85 8.7 18.1 17.0 17.5
open_stacks_0l_problem_15.15 44 45 46 106 98 94
open_stacks_01_wbp_-20_20_1 70 74 74 182 174 149
open_stacks_01_wbp_-30_15_1 74 74 175 12.1 11.8 15.7
pattern_set mining.-kl_german-credit 36 36 3.6 59 58 7.1
pattern_set mining.-kl_yeast 162 16.7 194 234 224 394
radiation_03 3.1 3.5 38 58 54 8.0
still_life_still_life_9 7.0 6.7 7.1 13.6 134 143
sugiyama2._g5.7_.7_7_7_2 69 7.1 84 10.5 10.8 16.2
talent_scheduling.alt_filml17 45.0 426 32.1 66.4 65.7 66.2
geometric average (su) 72 74 173 132 13.6 14.7

We observe that the scaling factor of the cloud infrastructure is comparable to the
ones obtained with a parallel machine or with a data center.

Performances comparison between machines Figure 1 describes the scaling func-
tions for each machine up to 512 workers. For the Windows Azure cloud and fourmis
machine, we extrapolate from their speedup because they do not have more cores than
cicada machines (24 cores for Windows Azure and max 40 cores for fourmis machine).
The scaling functions shows that Windows Azure has a better scaling than other ma-
chines. However, these results have to be considered with caution.

512

fourmis machine: f(x) = 0.5682x
cicada data center: g(x) = 0.5137x
windows azure: h(x) = 0.7098x

256+

speedup

1284 - -
96 - -
64+ ---
324 -,
1

] | I I]
1 32 64 96128 256 512
number of workers

Fig. 1. Scaling functions obtained by regression linear based on geometric speedup (all instances)
with EPS for each machine up to 512 workers.

4 Resolution speed-up and resolution price

As mentioned in the introduction, it is not an easy task to improve the resolution of
problem by a factor of p, because it is not easy to use all the power provided by a core
and because any code using several cores spend some times in computing an efficient
way to use it as much as possible.

We can compute the number of cores required to increase by a factor of p the power
of the machine using k,; cores. We define by sf), the scaling function for a machine
M. This is the value of the scaling of EPS for a given number of cores of the machine
M. Then, we search for the number of cores x such that s fy; () = p x sfas(kas), that
is x = sfy; (p x sfar(kar)). Thus we have,

Property 1 Let M be a machine. The number of cores needed to increase by a factor
of p the power of machines when it uses kyr cores is = sfy,; (p x sfar(knr))

4.1 Power equivalence

We propose to define a power equivalence between two machines, for instance a core
on the Microsoft Azure cloud infrastructure and the core of a server machine. The idea

is to compute the number of cores for the machine M5 that we need to have a practical
power equivalent to the power we have on a given machine M;.

Consider any machine M usiing k; cores. We propose to compute ko the number of
cores that we need on the machine M5 to have a capacity of computation equivalent to
the one that we have with our machine M;. We say that two systems have an equivalent
capacity of computation if they requires exactly the same time for running the same
program, that is for solving the same problem.

First, we define by pr(M7, M) the performance ratio between two machines when
using only one core. An estimation of this number can be obtained by running a program
Z\‘Z the ratio of the resolution times
of each machine. For instance, for Microsoft Azure we obtain {4 = 3167s and we
measured ¢z = 1355 for the 40 cores machines so we have pr(A, F) = 3167/1355 =
2.34. On the data center, ie., the cicada machine, we measures the same time as for the
40 cores machine.

Then, we can compare two machines:

on one core of each machine and by computing

Property 2 Let My and My be two machines. Consider that the machine My uses ki
cores. The number of cores ko of the machine My needed for having an equivalent
power as the ky core on the machine M is defined by:

ko = s fap, (S, (k)pr(Ma, My)) ey

Consider the scaling function when using 20 cores. We observed s f 4 (z) = 0.7083x
for the Microsoft Azure cloud infrastructure, s fr(z) = 0.66 for the forumis machine
and sfc(xz) = 0.68z for Cicada, the data center. Thanks to Equaton eql, Table 3 gives
the number of cores for the fourmis and cicada machines for having a power equivalent
to 20 cores on the Microsoft Azure cloud. Precisely, the number of cores for fourmis is
equal to: sf " (sf4(20)pr(F, A)) = sfn' (20 x 0.7083 x 1355/3167) = sfp"(20 x
0.7083 x 1355/3167) = 6,0609/0.66 = 9,19. The number of cores for cicada is
equal to: sf5 "' (sfa(20)pr(C, A)) = sf5" (20 x 0.7083 x 1355/3167) = sf;" (20 x
0.7083 x 1355/3167) = 6,0609/0.68 = 8,92.

Table 3. Power equivalence of 20 Microsoft Azure cores

Microsoft Azure cloud|fourmis (server)|cicada (data center)
F#cores 20 9,19 8,92

From the previous property and from Table 1 we can compute for the server ma-
chine and for the data center, the number of hours of computations we can have on the
Microsoft Azure cloud infrastructure with a number of cores leading to an equivalent
power of the machines. Table 4 gives the results. We learn that the cost of an equivalent
power of the data center corresponds to almost one year of computations on the cloud.
Note that we do not integrate side cost like electricity or maintenance.

Table 4. Number of hours of computation for an equivalent power with the Microsoft Azure
cloud infrastructure

With Microsoft Azure
#cores price |#cores|hourly cost|#hours for price
fourmis (server) 40 €20 000 88 €6.45 3100
cicada (data center)| 1 150|€1 500 000| 2 579| €177.69 8441

4.2 Price for a given power

We can make further computations and determine the price it will cost for obtaining a
certain power computing during a certain time. This operation is useful for answering
some question about the resolution of a problem within a given amount of time.

In other words, we would like to know how much it will cost to solve a problem
with a machine M5 in less than ¢5 unit of time knowing that it requires ¢; unit of time
to be solve on a machine M using k; cores.

First, we define the number of cores needed to solve the problem with an equivalent
power on the machine M». From Equation 1 we have ko = sf;é (sfar, (k1)pr(Ma, My)).
Then we need to increase the power by a factor of ¢1 /to. Property 1 gives us the answer.
So we have:

Property 3 Let M be a machine using ky cores for solving a problem in t1 units of
time. We can solve the problem with the machine M, in to units of time by using the
number ks of cores defined by

ko = sfn(t1/ta X sfar, (s fap (s far, (k1)pr(Ma, My)))) 2

5 Conclusion

In this paper we have studied the behavior of th Embarrassingly Parallel Search method
for solving constraint programming in parallel with cloud computing. Preliminaries re-
sults have shown that the EPS methods scales on the Microsoft Azure cloud infrastruc-
ture as well as it scales on a server or on a data center. This gave us the opportunity to
define some properties establishing an equivalent power between infrastructures. This
led us to define the cost of having an equivalent power with cloud computing as we can
have with server machines or a data center.

References

1. Gecode 4.0.0. http://www.gecode.org/, 2012.

2. Geoffrey Chu, Christian Schulte, and Peter J. Stuckey. Confidence-Based Work Stealing in
Parallel Constraint Programming. In Ian P. Gent, editor, CP, volume 5732 of Lecture Notes in
Computer Science, pages 226-241. Springer, 2009.

3. Joxan Jaffar, Andrew E. Santosa, Roland H. C. Yap, and Kenny Qili Zhu. Scalable Distributed
Depth-First Search with Greedy Work Stealing. In ICTAI, pages 98—103. IEEE Computer
Society, 2004.

. Laurent Michel, Andrew See, and Pascal Van Hentenryck. Transparent Parallelization of
Constraint Programming. INFORMS Journal on Computing, 21(3):363-382, 2009.

. MiniZinc. http://www.g12.csse.unimelb.edu.au/minizinc/, 2012.

. Laurent Perron. Search Procedures and Parallelism in Constraint Programming. In Joxan Jaf-
far, editor, CP, volume 1713 of Lecture Notes in Computer Science, pages 346-360. Springer,
1999.

. Jean-Charles Régin, Mohamed Rezgui, and Arnaud Malapert. Embarrassingly parallel search.
In Christian Schulte, editor, Principles and Practice of Constraint Programming, volume
8124, pages 596-610. Springer Berlin Heidelberg, 2013.

. Christian Schulte. Parallel Search Made Simple. In ”Proceedings of TRICS: Techniques
foR Implementing Constraint programming Systems, a post-conference workshop of CP 2000,
pages 41-57, Singapore, 2000.

. Peter Zoeteweij and Farhad Arbab. A Component-Based Parallel Constraint Solver. In Rocco
De Nicola, Gian Luigi Ferrari, and Greg Meredith, editors, COORDINATION, volume 2949
of Lecture Notes in Computer Science, pages 307-322. Springer, 2004.

	Using Cloud Computing for Solving Constraint Programming Problems

