
Computing SyncCharts Reactions

Charles André

I3S Laboratory (UMR 6070)
University of Nice Sophia Antipolis / CNRS

Sophia Antipolis, France

Abstract

SyncCharts are a state-based visual synchronous model. Though using a simple graphical syntax,
SyncCharts may exhibit complex instantaneous behavior, mixing concurrent evolutions, preemp-
tions and state re-incarnations. This paper explains such reactions in terms of microsteps. The
underlying semantics is a constructive semantics, fully compatible with the Esterel’s semantics.
The semantics is presented in a semi-formal way, as resulting from the cooperation of concurrent
reactive cells.

1 Introduction

The reactive systems are discrete-event systems. They are mostly event-
driven, which means that they perform little processing on their own and
that their behavior can be represented as a sequence of reactions to stimuli.

A classical way of representing sequential evolutions is to resort to state-
transition models. However the simplest forms of automata are not convenient
to cope with the complexity of modern applications. Representing the behav-
ior of such systems implies hierarchical description, support of concurrency
and synchronization, and communication between the different parts of the
system. Synchronous languages have been introduced to address the issues of
reactive system programming. In the imperative synchronous language Es-

terel[1], communication and synchronization are unified under the concept
of signals. The stimuli that provoke reactions are associated with emission

1 Email: andre@unice.fr

Electronic Notes in Theoretical Computer Science 88 (2004) 3–19

1571-0661/$ – see front matter © 2004 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2003.05.007

mailto:andre@unice.fr
http://www.elsevier.com/locate/entcs

and reception of signals. Signals are also the actors of preemption, making it
possible to suspend (to freeze) or to abort the behavior of some parts of the sys-
tem. Synchronous models have adopted a simplifying hypothesis: the system
evolves only during discrete phase (instant), the duration of which is 0. Thus,
the computation of a reaction, which may result from complex interactions
among parts of the program, is supposed to be instantaneous. This strong
hypothesis, augmented with the hypothesis of instantaneous broadcasting of
signals, allows deterministic behaviors even in the presence of concurrency and
preemption. Esterel excels in expressing complex reactive behaviors, but it
does not directly support specifications in terms of hierarchical communicating
finite state machines. SyncCharts [2] have been introduced as a graphical
form of the Esterel language, which adopts states as first-class citizens. Being
direct descendants of Esterel, SyncCharts have inherited the mathematical se-
mantics of the language, along with its advantages and its drawbacks. On the
other hand, SyncCharts owe their look (syntax) to Harel’s statecharts [3].
This double inheritance may be misleading for the beginner: a syncChart 2

looks like a statechart but its behavior may be different.

Sections 2 and 3 of this paper are mostly educative. They aim at sen-
sitizing the reader about SyncCharts semantics through simple examples.
SyncCharts—an apparently simple model—may have complex (instantaneous)
reactions, which strictly respect the synchronous hypotheses. These reactions
reflect the underlying semantics of SyncCharts, introduced in Section 4. The
semantics is described in terms of microsteps that respect the constructive
causality : before being tested, the presence status of a signal must be de-
termined at a previous microstep. This is the essence of the constructive
semantics [4] introduced by G. Berry for the Esterel language. This seman-
tics is presented in a semi-formal way, heavily relying on the structure of
SyncCharts. This structure is precisely defined by an UML model. A more
detailed presentation of this model and its semantics, given in an operational
style suitable for simulation at the microstep level, is available in an extended
version of this paper [5].

2 A Tour of SyncCharts

2.1 Illustrating Example

SyncCharts consist of states and transitions for their structure, and signals
for their dynamics. A typical syncChart is drawn in Fig.1.

2
SyncCharts is the model. A syncChart is a particular instance of the model.

C. André / Electronic Notes in Theoretical Computer Science 88 (2004) 3–194

wA

A/arm

wB

B/arm

WaitAandB

done

/ AB

dA dB

ABSync

Reset

signal arm

idle

cnt

1

arm

Detection

Inhib

Timer

2 T /
disarm

disarm

2

signal disarm

Fig. 1. A Typical SyncChart: This syncCharts specifies a detector of synchronized occurrences.
Signal AB must be emitted when A and B have occurred, in any order, but “close enough” in
time. “Close enough” means that there are at most two occurrences of T between the occurrences
of A and B. Reset is a signal re-initializing signal. Finally, Inhib is a signal that enables “time
suspension”: when Inhib is present, possible occurrences of T are ignored.

2.2 Simplified Syntax of SyncCharts

2.2.1 Structure.

A state can be either a simple state, drawn as a simple circle or ellipse, or a
macrostate drawn as a rounded rectangle. A macrostate is refined: it contains
other states. A simple state does not. A state may have a name: written
inside for a simple state, written in a cartouche for a macrostate.

A transition is a directed link between two states (from a source state and
a target state). There are three types of transitions: strong abortion, weak
abortion, and normal termination transitions. The transition from state wA
to state dA is a strong abortion transition. The self-loop transition from state
Detection to itself, and labeled disarm is a weak abortion transition. Finally
the transition from state WaitAandB to state done is a normal termination
one.

A State-Transition Graph (STG) is a connected set of states. A STG must
have an initial state, graphically denoted by an arc pointing to it. States
Detection, wA, wB. . . are initial states for different STGs. A STG may also
have final states, denoted by double circles. States dA and dB are final states.
STGs are necessarily contained in a macrostate. When several STGs are in
the same macrostate, they are separated by dashed lines, and they are said
to be concurrent. Note that contrary to statecharts, SyncCharts respect
a strict containment policy: there is no inter-level transition. Macrostate
Detection contains two concurrent STGs, and so is macrostate WaitAandB.
Outgoing transitions from a state are ordered: an integer called the priority
is attached to the origin of the transition. For instance, two transitions leave
state Detection. The strong abortion transition has priority 1, while the weak

C. André / Electronic Notes in Theoretical Computer Science 88 (2004) 3–19 5

abortion transition has priority 2.

The “lollipop” at the bottom of macrostate Timer is a suspension arc. A
label can be associated with a transition, an initial arc, or a suspension arc.
These labels refer to signals presented in the next subsection.

2.2.2 Signals.

Signal is our unique abstraction for handling communication and synchroniza-
tion. Emitting or receiving a signal meets with the classical notion of event.
A signal has a presence status : present(+), absent(-), or unknown(⊥). It may
convey a value of a given type. If a signal can be emitted several times within
one reaction, a combination function is also required. A signal that conveys
no value is called a pure signal. Finally, a signal has a scope: either external
or local to a macrostate. External signals are further classified in input signals
and output signals. Local signals are bi-directional but used only for internal
communication.

Local signals are explicitly mentioned on a syncChart: arm is signal lo-
cal to macrostate Detection; disarm is local to macrostate ABSync. External
signals are not explicitly declared in the syncChart. The input signals of the
outermost macrostate are A, B, Reset, T, and Inhib. There is only one output
signal: AB.

2.2.3 Label Associated with a Transition.

The general syntax for a label is trigger [guard] / effect. A trigger may be
a single signal the presence of which is expected to fire the transition. An
optional integer factor indicates that several consecutive occurrences of the
signal are expected (e.g., the trigger “2 T” of the transition in macrostate
Timer). More complex triggers are expressions on signals using logical opera-
tors (and, or, not). A guard is an expression that evaluates to true or false.
The expression uses values of signals and constants. An effect is a set of (in-
stantaneous) actions. Emitting a signal is a possible action. Trigger, guard,
and effect are optional.

2.2.4 Label associated with a simple state.

An effect can be associated with a simple state. For pure SyncCharts (i.e., a
syncChart with pure signal only) this effect consists of a possibly empty set
of emitted signals. The syntax of the label is / effect.

C. André / Electronic Notes in Theoretical Computer Science 88 (2004) 3–196

2.3 Informal Semantics

Up to now, we have only presented syntactical aspects of SyncCharts. Since
SyncCharts are intended to represent reactive behavior, the main thing is to
understand the dynamics of the model. In this section, explanations are kept
informal. Moreover, we focus on pure syncCharts, that is, syncCharts with
pure signals only. Reactivity has strong connection with the presence/absence
of signals. Pure SyncCharts are sufficient to explain the essence of a reac-
tion. This simplified approach has already been successfully adopted for the
Esterel’s semantics [4].

2.3.1 Reaction.

A syncChart, like other synchronous models, is “executed” cyclically. An
evolution cycle is as follows:

(i) Read the inputs: in our restricted presentation, this means “get the pres-
ence status of each input signal, yielding an input image”.

(ii) Compute the reaction: according to the internal state of the syncChart
and the input image, compute the new internal state and the output
image (i.e., find for each output signal its new presence status).

(iii) Perform the outputs (i.e., effectively deliver output signals to the envi-
ronment).

This process is supposed to take no time. An instant is fully characterized
by the associated reaction. Note that the reaction must be deterministic.
Thus, computing the reaction of a syncChart in a fully deterministic way is a
central problem.

2.3.2 Communicating FSMs.

A first approach is to consider a syncChart as a set of communicating finite
state machines (a state machine for each STG contained in the syncChart).
“A finite state machine is a machine specified by a finite set of conditions of
existence (called states) and a likewise finite set of transitions among states
triggered by events”. This definition given by B. P. Douglass [6] applies to
SyncCharts, provided events are replaced by signals. As usual, a state
characterizes a condition that may persist for a significant period of time.
When in a state, the system is reactive to a set of signals and can reach (take
or fire a transition to) other states based on the signals it accepts. Suppose
that states wA, wB, and idle are active in syncChart ABSync. If A is present,
then the transition from state wA to state dA is taken. The associated effect
(emission of local signal arm) is executed. Now, this signal is instantaneously

C. André / Electronic Notes in Theoretical Computer Science 88 (2004) 3–19 7

broadcast. State idle was waiting for the presence of arm. The presence
of arm triggers the transition from state idle to macrostate Timer. Entering
macrostate Timer, causes the activation of the initial state of the STG in Timer.
Further evolution is no longer possible in this reaction. Therefore, signal AB
is not emitted during this reaction (presence status set to absent). Thus,
a reaction appears as a sequence of instantaneous transitions or microsteps
driven by causality relationship. The global result is an instantaneous change
of active states. The causality chain may be cyclic: its instantaneous execution
is obviously unacceptable. In such a case, the syncChart is rejected.

The previous reaction implies only strong abortion transitions on simple
states. Strong abortion applies to macrostates as well. When Reset is present,
whatever the presence status of the other input signals, macrostate Detection
is exited without any prior internal evolution of the macrostate. The target
state being the same macrostate, Detection is re-entered during the reaction
and recursively activates initial states of the enclosed STGs. A weak abortion
is performed differently: before exiting the macrostate origin of the weak
abortion transition, the internal evolutions of the macrostate are executed
(see example below).

A normal termination transition has no explicit trigger. Such a transition
is fired as soon as each STG of the source macrostate is in a final state. For
instance, if states dA and wB are active, and B is present, the transition from
wB to dB is taken. Now the two STGs in macrostate WaitAandB are in a final
state. Instantaneously, the normal termination transition is taken, signal AB
is emitted, and state done becomes active.

We can now illustrate the firing of the unique weak abortion transition
of the example. Suppose that states dA, wB, and cnt are active. What is
the reaction of the syncChart if B and T are present, and T is the second
occurrence of T since cnt has been active? The transition whose trigger is “2
T” is taken. The local signal disarm is emitted. The weak abortion is triggered,
but before exiting macrostate Detection, possible internal evolutions must be
executed. This is the case for the normal termination of macrostate WaitAandB
previously presented. Thus, signal AB is emitted. Now, no further evolution
in Detection is possible; macrostate Detection is effectively exited, and then
re-entered as already explained for the strong abortion.

Note that, when several transitions issued from the same state are simulta-
neously eligible for firing, only the one with the highest priority (the smallest
integer value) is taken. In order to avoid inconsistent decisions, SyncCha-

rts impose the following restriction: strong abortions have priority over weak
abortions, which have priority over a normal termination.

Normal termination is not strictly necessary: the same behavior can be

C. André / Electronic Notes in Theoretical Computer Science 88 (2004) 3–198

obtained by a weak abortion triggered by a conjunction of local signals (see
Fig.2). We keep this convenient construct that is more readable than its weak
abortion counterpart.

done

/ AB

dA dB

signal arm

done

DA and DB /

AB

signal arm, DA, DB

dA dB/ DA / DB

Fig. 2. Normal termination can be replaced by weak abortion and local signals.

Finally, suspension is used to “freeze” evolutions within a macrostate.
When Inhib is present, Timer will ignore possible occurrences of T, and, of
course, can not emit disarm.

These few examples show the complexity of a reaction, which may result
from partially ordered transition firings. In fact, communicating FSMs are not
well-adapted to hierarchy, preemption, and above all, instantaneous chaining
of transition firings. Instead of communicating FSMs, we choose cooperating
reactive cells as active agents.

2.3.3 Reactive Cell.

In SyncCharts, the default behavior is to stay in a state for ever. A state
can be exited only by firing an abortion transition (recall that normal termi-
nation is a special case of weak abortion), or indirectly by exiting a containing
macrostate. Thus, active agents in a syncChart are states with their outgo-
ing transitions. We call reactive cell a state with its outgoing transitions. A
reactive cell can be active (alive) or idle (doing nothing at all). An active re-
active cell is permanently testing the triggers associated with its transitions.
As soon as a transition can be taken, the reactive cell is deactivated and the
reactive cell target of the transition is activated. A reaction now appears as
a propagation of activations/deactivations among a collection of cells. This
execution model has been inspired by Boussinot’s reactive objects [7], though
reactive objects address distributed applications, and are not subject to strict
synchronous hypotheses.

Reactive Cells will be used in our more formal presentation of the model
(Sec.4).

C. André / Electronic Notes in Theoretical Computer Science 88 (2004) 3–19 9

p q r

/ A / B / C

a/b t

transition t new state emitted signals
b
−→ {q} b, B
#b
−−→ {r} b, B, C

◦
#b
−−→ {r} b, C

Fig. 3. Immediate Reactions: Behavior according to the type of preemption applied to state q,
when p is active, and a occurs.

3 Advanced Features

3.1 Immediate Preemption

When entering state wA in macrostate WaitAandB, if A is present at this very
instant, the outgoing transition is not taken. This is the usual behavior: a
trigger waits for a strictly future occurrence. This default behavior can be
modified using the immediate qualifier for a transition (denoted by the #
symbol prefixing the trigger). With immediate transitions some states can
possibly become transient, that is, activated and then deactivated during the
same reaction. Note that they are still genuine states, because the control can
stay in them, under some circumstances. Immediate reaction combined with
preemption results in different behaviors, as illustrated by Fig.3. Note that,
in this example, the immediate strong abortion makes state q to be bypassed.

3.2 Re-incarnation

Loop, immediate preemptions, and priority can lead to amazing, but perfectly
consistent behaviors. Fig.4 shows an example especially devised to illustrate
these complex interactions. For this example, we use valued signals for a
better traceability, but the succession of microsteps would have been the same
with pure signals. The signal v is an integer with the multiplication as the
combination function. The value emitted by each transition is a different prime
number, so that, the value conveyed by v faithfully reflects the transitions fired
during the reaction 3 .

Suppose state s1 is active. If signals a, b, c, and d are present, then v is
present and its value is 11550 = 2 ∗ 3 ∗ 52 ∗ 7 ∗ 11. The new active state is s3.
This reaction can be informally decomposed as follows:

(i) Macrostate innerMacro must be weakly aborted by the transition labeled
c, which has priority over the one labeled by d.

3 The ordering cannot be preserved by a combination function, which must be commutative!

C. André / Electronic Notes in Theoretical Computer Science 88 (2004) 3–1910

s1

a / v[3]

1

s2

b / v[5]

innerMacro

/ v[2]

c / v[7] s3

d / v[11]

2

1 2

signal v:=1: combine integer with *

reincarnation

Fig. 4. State Reincarnation.

(ii) Before firing the transition, the inside of the macrostate must be executed.
Inside, it is the strong abortion triggered by a that is taken, emitting v(3).

(iii) State s1 is the target, so s1 is re-entered. In fact, this is a fresh instance
(re-incarnation) of s1.

(iv) This fresh instance is receptive to a strictly future occurrence of a, and
to a present or future occurrence of b. Hence, the transition triggered by
b is taken, and v is emitted with 5. State s2 is activated.

(v) Since state s2 has no outgoing transition, no more evolution is possible
in innerMacro. The transition triggered by c is then fired. v is emitted
with value 7.

(vi) The target of the transition is macrostate innerMacro, which is re-entered.
Again, it is a re-incarnation. This fresh instance is receptive to strictly
future occurrences of c, and to a present or future occurrence of d. The
weak abortion triggered by d is then to be taken, but before, the inside
of innerMacro must react.

(vii) The execution of innerMacro starts with emitting v with value 2 (initial
arc) and enters state s1.

(viii) This fresh instance of s1 is receptive to a strictly future occurrence of a,
and to a present or future occurrence of b. Hence, the transition triggered
by b is taken, and v is emitted with 5. State s2 is activated.

(ix) Since state s2 has no outgoing transition, no more evolution is possible
in innerMacro. The transition triggered by d is then fired. v is emitted
with value 11.

(x) State s3 is activated, and the reaction stops.

Hence, v conveys the value 3 ∗ 5 ∗ 7 ∗ 2 ∗ 5 ∗ 11. To recapitulate, a fully
explainable behavior, all but obvious.

C. André / Electronic Notes in Theoretical Computer Science 88 (2004) 3–19 11

4 Formal Presentation of SyncCharts

SyncCharts are based on states and instants. Usually, the semantics of
instant-based models is given as the set of possible stimuli/reaction sequence
pairs (input sequences / output sequences). This set is given implicitly by
an acceptation procedure or by an inductive construction mechanism. In this
paper, we choose the latter. So, we need a formal definition of the structure of
a syncChart (Sec.4.1). Then, we have to characterize the state of a syncChart
and of its environment. For this, the concepts of configuration and signal
context are defined (Sec.4.2). Finally, we have to give a semantics: in Sec.4.3,
we introduce an operational constructive semantics.

STG

SimpleState

+isFinal : boolean

StrongAbort

SyncChart

NormalTerm

InitialArc

SuspArcWeakAbort

MacroState

State

ReactiveCell

InstantAction

0..1+top 1

+body

1

+stgs

1..*

+watrans 0..*
{ordered}

+suspension0..1
0..1

+effect 0..1

+nttran

0..1

0..1

+exit
0..1

+initial

1

+rcells 1..*

0..1

+entry
0..1

+satrans 0..*
{ordered}

Fig. 5. SyncCharts’s Metamodel: States.

4.1 Metamodel

The abstract syntax for SyncCharts is expressed using the standard UML
notations. Fig. 5 covers the basic concepts related to states. A ReactiveCell
consists of a body and possibly empty sets of outgoing transitions. The body
is a state: either a Macrostate or a SimpleState. satrans is the set of strong
abortion transitions; watrans the set of weak abortion transitions; nttran is a
the set of normal termination transitions that contains one transition at most.

Well-formed SyncCharts must also respect a few constraints:

• An STG must be a connected graph.

• A Transition links two reactive cells in the same STG.

• A SimpleState, which is final, has neither outgoing transition nor associated
effect.

The structure of a syncChart can be represented by a tree that reflects the
state containment hierarchy. More precisely, a macrostate contains STGs, a
STG contains reactive cells, a reactive cell contains one and only one state.
In the tree, a ReactiveCell has one and only one successor. It can be omitted

C. André / Electronic Notes in Theoretical Computer Science 88 (2004) 3–1912

without loss of information about the structure. The resulting tree has two
types of nodes (state and STG) that alternate on any path of the tree. Fig. 6
gives our notation and the tree associated with ABSync. Note that solid circles,
which represent states, have three variants: macrostate without suspension,
macrostate with suspension, and simple state.

Timer

cnt

idle

ABSync

Detection

WaitAandB

dAwA dBwB

done

Macrostate without suspension

STG

Macrostate with suspension

Simple state

Legend

identifier
identifier

Fig. 6. Tree associated with a syncChart.

4.2 Configuration and Signal Context

4.2.1 Configuration.

Harel and Naamad [8] defined a configuration as a maximal set of states that
could be simultaneously active. This definition must be adapted to take ac-
count of suspensions.

Let T be the top macrostate associated with a syncChart. A configuration
C for T (and thus, for the syncChart) must satisfy the following rules:

(i) T is in C.

(ii) If a macrostate without suspension M is in C, then C must also contain for
each STG G directly contained in M, exactly one state directly contained
in G.

(iii) If a macrostate with suspension M is in C, then
• Either C must not contain state descendant of M,
• Or C must also contain for each STG G directly contained in M, exactly

one state directly contained in G.

(iv) C contains only states satisfying rules 1 to 3.

Configurations can be derived from the tree associated with the syncChart.

C. André / Electronic Notes in Theoretical Computer Science 88 (2004) 3–19 13

This tree has to be considered as a AND/OR tree, where AND-nodes are solid
circles (states) and OR-nodes are hollow circles (STGs). {ABSync, Detector,
WaitAandB, wA, wB, idle}, {ABSync, Detector, WaitAandB, wA, wB, Timer},
and {ABSync, Detector, WaitAandB, wA, wB, Timer, cnt} are instances of
configurations of syncChart ABSync.

4.2.2 Signal Context.

Since reactions in SyncCharts may result from instantaneous cooperation of
several subsystems, signals, which support communication, are the cornerstone
in the SyncCharts semantics.

With each reaction is associated a set of signals E called the signal context.
E is partitioned into two blocks: E+ and E− (i.e., E = E+∪E− and E+∩E− =
∅) 4 . E+ is the set of the present signals at the current instant, E− the set
of the absent signals. During an instant, a signal must be either present or
absent. When computing a reaction, only input signals, which are imposed
by the environment, have a definite status. The presence status of all other
signals must be determined. Like in the Esterel language, we assume that
a non-input signal is present if and only if it is emitted during the instant.

4.3 Introduction to Constructive Semantics

Problem 4.1 Given a pure syncChart, one of its configuration, and the pres-
ence status of all its input signals, compute the reaction, (i.e., the next con-
figuration, and the presence status of all output signals).

4.3.1 Principle of the Computation of a Reaction.

We consider the syncChart as a collection of interacting reactive cells. Each
cell receives signals that trigger evolutions, which possibly emit new signals.
All the signals are instantaneously broadcast.

Conceptually, reactive cells run concurrently. Each active reactive cell
locally determines its behavior (i.e., performs actions, takes a transition and
thus becoming idle, or staying active). The presence status of the signals is
the deciding information. To ensure the determinism of the reaction of the
syncChart, all reactive cells must agree on the actual presence status of each
signal. This suppose finding a fixpoint solution through dialogs.

To solve this problem, we propose that each reactive cell suspends its evo-
lution when in doubt about the value of a triggering signal expression. The
corresponding evaluation is left pending. When a still running concurrent cell

4 In Esterel, the set of present input signals is called an input event. We avoid this term,
usually associated with occurrence of a single signal.

C. André / Electronic Notes in Theoretical Computer Science 88 (2004) 3–1914

emits a signal, this fact about the presence status of the emitted signal is
broadcast to other cells. This reliable fresh information may assert or refute
a pending evaluation, and thus resume the evolution of a cell. This process
is applied till stability, when each active cell has terminated its evolutions, or
is suspended. What is done in the latter case depends on the chosen seman-
tics. Some semantic variants will be described below. Beforehand, we have to
precisely define the interpretation of signal expression.

Remark 4.2 This approach is akin to the one advocated by G. Berry [4] for
the Esterel language. He named it the constructive semantics in reference
to the fact that values are computed by explicit proofs, not by a “trial and
error” procedure.

4.3.2 Signal Algebra.

The partition of the signal context in present and absent signals is effective
when the reaction has been successfully computed. However, during the com-
putation itself, the presence status of a signal can be unknown. Now, E+ is
the set of the certainly present signals at the current instant, E− the set of
the certainly absent signals, and E⊥ the set of signals, the status of which is
not yet known. Instead of dealing with Boolean values, we resort to a Scott
Boolean domain B⊥ = {⊥,−, +} where ⊥ < + and ⊥ < −.

The technique adopted for determining the context E is to propagate facts
and build the solution incrementally, if one exists. The computation relies on
monotonic functions. The order relation is defined by

E ≤ E ′ ⇐⇒ E+ ⊆ E ′+ ∧ E− ⊆ E ′−

Signals are combined in signal expressions used, for instance, in triggers.
A signal expression is an expression similar to a Boolean expression, made of
signals, operators (not , or , and), and parentheses.

Given a signal context E, a signal expression Φ evaluates in B⊥:
For Φ ::= σ (for a signal σ) | not φ | φ or ψ | φ and ψ. φ is evaluated as
follows:

eval(σ, E) = + if σ ∈ E+, − if σ ∈ E−, ⊥ otherwise

eval(not φ, E)= not eval (φ, E)

eval(φ or ψ, E)= eval (φ, E) or eval (ψ, E)

where operators not , or , and and are defined in the tables below.

C. André / Electronic Notes in Theoretical Computer Science 88 (2004) 3–19 15

not or ⊥ - + and ⊥ - +

⊥ ⊥ ⊥ ⊥ ⊥ + ⊥ ⊥ - ⊥

- + - ⊥ - + - - - -

+ - + + + + + ⊥ - +

4.3.3 Reaction of Reactive Cells.

The reaction of a reactive cell relies on the reaction of its components. A
react() method is defined for the different classes. This method returns a
termination status taking values in the enumeration {DONE, DEAD, PAUSE}.

Returning DONE means that the object has terminated its reaction and has
nothing left to do at the next instant. Returning PAUSE means that its reaction
is over for the current instant, but will proceed at the next instant. Finally,
DEAD means that the object has terminated its reaction and has nothing left to
do at the next instant except waiting for a normal termination. Once entered
in a final state, react() returns DEAD till the effective normal termination.

The pseudo-code for the react() methods and comments are presented in
the extended version of this paper [5]. Note that, our objective is not to
make an efficient compilation of SyncCharts, but only to explain microsteps.
Our solution heavily relies on concurrent executions, while most compilations
(of Esterel programs) try to serialize concurrent evolutions (e.g., see S.
Edwards’s compiler [9], and SAXO-RT [10]).

4.3.4 Use of a Potential Function.

If the recursive computation returns, then the syncChart is now in a new con-
figuration, and all signals used during the reaction have been given a definite
presence status. By default, all other signals are set to absent. The com-
putation of the reaction is successful. However, the computation may stall
with suspended reactive cells. For Esterel programs and reactive objects,
F. Boussinot [11] has studied different ways to resume the computation. These
ideas apply to SyncCharts as well. The more drastic solution, in use in re-
active objects, is to set to absent all not yet assigned signals, to resume the
evaluation of pending expressions, and to defer the issue of the decisions to the
next instant. SyncCharts, like Esterel does not defer decisions. Instead,
they try to enrich their knowledge about the signal context. A most interest-
ing information is about signals that are certainly absent (cannot be emitted)
during the reaction. To know whether a signal shall not be emitted seems to
be relevant of clairvoyance. In fact, using the structure (syntactic analysis),
we construct a monotonic decreasing set of potentially emitted signals, called

C. André / Electronic Notes in Theoretical Computer Science 88 (2004) 3–1916

the potential. Any signal not in this set will certainly not be emitted, provided
that this set is correct (i.e., all signals possibly emitted are in the potential).

Taking account of the potential, a stalled reaction may resume, proceed
by microsteps, and then stall again. This process is repeated, and eventually,
either the process stops with all presence status defined, or there still exists
suspended evaluation and the potential cannot help the pending evaluations.
In the first case, the reaction completes successfully. In the latter case the
syncChart is rejected as non constructive. The choice of the potential function
is critical. A rough potential is easy to compute but leads to many unjustified
rejections of syncCharts; a fine potential is difficult to construct but accepts
a large class of SyncCharts.

The commercial version of SyncCharts used in Esterel Studio [12] trans-
lates the syncChart into an equivalent Esterel program, which is then com-
piled. Thus the potential function is the one used in the Esterel V5 compiler,
based on the “must” and “cannot” sets [4]. Research on efficient potential
functions exploiting the structure of the syncCharts are still in progress.

5 Conclusion and Perspectives

This paper has shown that the apparent simplicity of SyncCharts may
hide complex behavior. In fact, SyncCharts are the graphical counterpart
of Esterel, a textual language. Any syncChart can be translated into an
equivalent Esterel program, and this is the usual way to compile Sync-

Charts. For people familiar with the semantics of Esterel, the behavior
of SyncCharts is easy to understand. For instance, the amazing state re-
incarnation example can be seen as a simple graphical variant of the Esterel

signal re-incarnation.

Instead of exploiting this close relationship between SyncCharts and
Esterel, we have chosen to present SyncCharts as an independent state-
based synchronous model. The structure of SyncCharts has been formally
defined by a metamodel, using the UML notations. The computation of a re-
action has been explained in terms of cooperating reactive cells. The principles
of the constructive semantics have been also explained, but not formalized 5 .

We believe that a graphical model like SyncCharts may be a good in-
troduction to synchronous programming for many engineers more familiar
with state graph models than with programming languages. However, being
as expressive as the Esterel language, SyncCharts may be too power-
ful for “standard” users. The re-incarnation example is a bright illustration.

5 There exists a technical report [13] about a behavioral semantics of SyncCharts (early
version).

C. André / Electronic Notes in Theoretical Computer Science 88 (2004) 3–19 17

Moreover, even advanced users, may use only a subset of the SyncCharts

possibilities.

We plan to develop a platform dedicated to SyncCharts that will allow
the user

• to select the set of constructs he/she wants to use (customizing),

• to trace microstep execution (understanding semantics),

• to trace reactions (simulating).

Thus, the user could adapt his/her model to his/her needs. A simpler
model is, of course, easier to learn, and may lead to more efficient compila-
tions. For instance, the immediate modifier is very interesting for instanta-
neous dialogs, but it may easily introduce causality cycles. Discarding im-
mediate makes the first instant reaction far simpler: neither strong nor weak
abortion can occur on a just-entered state. Other possibilities concern the
choice of a potential function. It is even possible to introduce variations on
signal handling: Under some circumstances, for example to eliminate a causal-
ity cycle, it would be convenient to differ the emission of some signals to the
next instant, as it is done in Statecharts. All those variations are easily for-
malized and implemented. Additional constraints are added to the metamodel
(syntax). As for semantics, it is sufficient to modify the react() methods.

References

[1] G. Berry. The foundations of Esterel. In C. Stirling G. Plotkin and M. Tofte, editors, Proof,
Language and Interaction: Essays in Honour of Robin Milner. MIT Press, 2000.

[2] C. André. Representation and analysis of reactive behaviors: A synchronous approach. In
Computational Engineering in Systems Applications (CESA), pages 19–29, Lille (F), July 1996.
IEEE-SMC.

[3] D. Harel. Statecharts: A visual formalism for complex systems. Science of computer
programming, 8:231–274, 1987.

[4] G. Berry. The Constructive Semantics of pure Esterel. (revision 1999), available on the web,
www.esterel-technologies.com, Sophia Antipolis (F), July 1999.

[5] Charles André. Computing synccharts reactions. Technical Report ISRN I3S/RR-2003-09-FR,
I3S, Sophia-Antipolis, France, April 2003.

[6] B. P. Douglass. Real-Time Design Patterns. Object Technology Series. Addison-Wesley,
Reading, Massachusetts, 2003.

[7] F. Boussinot, G. Doumenc, and J-B. Stefani. Reactive objects. Ann. Telecommunication,
51(9–10):459–473, 1996.

[8] D. Harel and A. Naamad. The statemate semantics of statecharts. ACM Trans. Soft. Eng.
Method., 5(4):477–498, October 1996.

[9] Stephen A. Edwards. An esterel compiler for large control-dominated systems. IEEE Trans.
on Computer-Aided Design of Integrated Circuits and Systems, 21(2):169–183, 2002.

C. André / Electronic Notes in Theoretical Computer Science 88 (2004) 3–1918

[10] E. Closse, M. Poize, J. Pulou, P. Venier, and D. Weil. Saxo-rt: Interpreting Esterel

semantics on a sequential execution structure. In Electronic Notes in Theoretical Computer
Science, volume 65 (5), Grenoble (F), 2002. Slap’2002, Synchronous Languages, Applications
and Programming.

[11] F. Boussinot. Sugarcubes implementation of causality. Technical Report 3487, INRIA,
September 1998.

[12] Esterel Technologies, Guyancourt (F), //www.esterel-technologies.com. Esterel Studio, V4,
2002. Reference Manual.

[13] Charles André. Synccharts: a visual representation of reactive behaviors. Technical Report
RR 95–52, rev. RR (96–56), I3S, Sophia-Antipolis, France, Rev. April 1996.

C. André / Electronic Notes in Theoretical Computer Science 88 (2004) 3–19 19

	Introduction
	A Tour of SyncCharts
	Illustrating Example
	Simplified Syntax of SyncCharts
	Informal Semantics

	Advanced Features
	Immediate Preemption
	Re-incarnation

	Formal Presentation of SyncCharts
	Metamodel
	Configuration and Signal Context
	Introduction to Constructive Semantics

	Conclusion and Perspectives
	References

