
 1

Semantics of SyncCharts

Charles André
I3S Laboratory – UMR 6070

University of Nice-Sophia Antipolis / CNRS
BP 121

F 06903 Sophia Antipolis cédex

andre@unice.fr

April 2003

This report has been written for Esterel-Technologies
(Available at //www.esterel-technologies.com,

Download>Scientific Papers>Semantics of S.S.M)

 2

 3

1 Table of Contents

1 Table of Contents ... 3
2 List of Figures .. 5
3 Introduction .. 7
4 A First Look at SyncCharts.. 9

4.1 Abstract .. 9
4.2 Reaction of a SyncChart... 9
4.3 Finite State Machine... 10
4.4 FSM with outputs associated with transitions.. 11

4.4.1 Model ... 11
4.4.2 Behavior ... 11

4.5 Associating outputs with states .. 12
4.5.1 Example: Toggle Flip-Flop .. 12
4.5.2 Strong and Weak Abortion Transitions.. 13

4.6 Alternative Representation to Execution Traces .. 14
4.7 FSM with Choice: Introducing Priority ... 16

4.7.1 An Example of Resource Management.. 16
4.7.2 User’s Dialog Controller .. 16
4.7.3 Arbitration Controller... 17

4.8 Summary Statement of SyncCharts and FSM.. 18
5 Hierarchy, Concurrency, Preemption... 21

5.1 Abstract .. 21
5.2 Hierarchy.. 21

5.2.1 Hierarchy seen as state grouping.. 21
5.3 Concurrency ... 22

5.3.1 Example of a Binary Counter... 22
5.3.2 Behavior of Cnt2 .. 23
5.3.3 Another example: Resource Manager .. 24
5.3.4 Concurrency and Normal Termination .. 26

5.4 Preemption ... 27
5.4.1 ABRO: Strong Abortion on a Macrostate .. 27
5.4.2 ABRO Variant: Weak Abortion on a Macrostate .. 29
5.4.3 Abortion and Priority ... 30
5.4.4 Trigger-less Transitions.. 31

5.5 Summary .. 32
6 Computation of a Reaction: A First Approach... 33

6.1 Abstract .. 33
6.2 SyncCharts Structure: Associated Tree.. 33

6.2.1 Syntax for SyncCharts.. 33
6.3 Behavior ... 37

6.3.1 Configuration ... 37
6.3.2 Computation of a Reaction: Overview... 37

6.3.3 Computation of a Reaction: Algorithms. ... 39
6.4 Examples of Computation of a Reaction ... 43

6.4.1 Application to ABRO... 43
6.4.2 Application to ResMgr ... 45

6.5 Summary .. 46

 4

7 Causality Cycle .. 47
7.1 Abstract .. 47
7.2 Example of a Causality Cycle .. 47

8 Advanced Constructs.. 49
8.1 Abstract .. 49
8.2 Immediate transition... 49
8.3 Suspension.. 51
8.4 Entry and Exit Actions ... 53

8.4.1 Entry Actions.. 53

8.4.2 Exit Actions .. 54
8.5 Computation of a Reaction (Revisited) .. 56
8.6 Valued SyncCharts ... 57
8.7 Reference Macrostate ... 59
8.8 Pre... 60
8.9 Conditional Pseudo-state.. 63
8.10 Reincarnation ... 64

9 References .. 67
10 Annex ... 69

10.1 Esterel-Studio notations ... 69
10.1.1 Initial state .. 69
10.1.2 Effect associated with states... 69
10.1.3 Suspension.. 69
10.1.4 Entry and Exit Actions ... 69

10.2 A Resource Management ... 70
10.2.1 The system.. 70
10.2.2 Black-box view .. 70

11 Glossary.. 73

 5

2 List of Figures

Figure 4-1: Input and output signals. ... 9
Figure 4-2: Cyclic evolution. ... 10
Figure 4-3: A Simple Frequency Divider... 11
Figure 4-4: Toggle Flip-Flop—Black-Bow view... 12
Figure 4-5: SyncCharts for the Toggle Flip-Flop—Strong and weak abortion versions. 14
Figure 4-6: Notations. .. 15
Figure 4-7: An Execution Trace for Tsa. .. 15
Figure 4-8: An Execution Trace for Tsa—Concise form.. 16
Figure 4-9: Mealy machine with the same input-output behavior as Tsa. 16
Figure 4-10: User’s Dialog Controller. .. 17
Figure 4-11:Mealy machine equivalent to UCtrl. .. 17
Figure 4-12: SyncChart with Choice.. 18
Figure 4-13: Mealy machine for Arbiter.. 18
Figure 4-14: FSM notations ... 19
Figure 5-1: Macrostate as state grouping. .. 21
Figure 5-2: A 2-bit binary counter. .. 22
Figure 5-3: SyncChart for a 2-bit binary counter. .. 22
Figure 5-4: A Detailed Execution Trace for Cnt2. .. 23
Figure 5-5: Microsteps. .. 24
Figure 5-6: Controller of the Resource Manager. .. 25
Figure 5-7: Partial Execution trace of the Resource Manager Controller................................ 25
Figure 5-8: Microsteps in an Instantaneous Dialog. .. 25
Figure 5-9: Synchronized Termination. ... 26
Figure 5-10: Execution of a synchronized termination.. 26
Figure 5-11: Waiting for three signals. .. 27
Figure 5-12: SyncChart for ABRO. ... 28
Figure 5-13: A Reaction involving preemption and hierarchy. ... 29
Figure 5-14: SyncChart (variant) for ABRO. .. 29
Figure 5-15: Microsteps in a case of weak abortion. ... 30
Figure 5-16: Imposing an arbitrary priority ordering... 31
Figure 5-17: Imposing higher priority to weak abortion.. 31
Figure 6-1: A SyncChart. ... 34
Figure 6-2: Reactive Cells.. 34
Figure 6-3: Macrostate and STGs. ... 35
Figure 6-4: Tree associated with ABRO.. 36
Figure 6-5: Overview of a Reaction. .. 38
Figure 6-6: Reaction of a Reactive-Cell... 42
Figure 6-7: Reaction of a “final” Reactive-Cell... 43
Figure 6-8: Computation of a Reaction of ResMgr. ... 46
Figure 7-1: An Instance of Causality Cycle. .. 47
Figure 7-2: Analysis of the Causality Cycle. ... 48
Figure 8-1: Controller of the Resource Manager using immediate transitions. 50
Figure 8-2: Immediate Weak Abortion. ... 50
Figure 8-3: Immediate Strong Abortion... 51
Figure 8-4: Suspension... 51
Figure 8-5: 2-bit Counter with Suspension and Reset.. 52
Figure 8-6: Interruption Mechanism. ... 53

 6

Figure 8-7: Entry Actions... 54
Figure 8-8: Exit Actions. .. 55
Figure 8-9: Microsteps of a reaction with exit actions (1). .. 55
Figure 8-10: Microsteps of a reaction with exit actions (2). .. 55
Figure 8-11: Microsteps of a reaction with exit actions (3). .. 56
Figure 8-12: Reaction of a Reactive-Cell (extended version).. 56
Figure 8-13: SyncChart used as a Reference. .. 59
Figure 8-14: 4-bit Counter using Reference Macrostates. ... 59
Figure 8-15: Macrostates Pre and ValuedPre. ... 60
Figure 8-16: An Execution Trace of Pre. ... 60
Figure 8-17: Microsteps in a Reaction of Pre. ... 61
Figure 8-18: Filtered SR Flip-Flop... 61
Figure 8-19: Shift Register. .. 62
Figure 8-20: Local Signal, Suspension, and pre... 62
Figure 8-21: Arbiter with Turning Priority. ... 63
Figure 8-22: Signal Reincarnation. .. 64
Figure 8-23: An execution trace of Signal_Reincarnation. .. 64
Figure 8-24: The microsteps of the third reaction.. 65
Figure 8-25: Nested Reincarnations. .. 65
Figure 10-1: Initial state. .. 69
Figure 10-2: Effect associated with state. .. 69
Figure 10-3: Suspension... 69
Figure 10-4: Entry and Exit Actions. ... 69
Figure 10-5: A Resource Management System.. 70
Figure 10-6: Interface of UCtrl. ... 70
Figure 10-7: Interface of Arbiter.. 71

 7

3 Introduction

SyncCharts are a visual synchronous model. They were conceived in the mid nineties [André
1996a] as a graphical notation for the Esterel language [Boussinot and De Simone 1991,
Berry 2000]. As such, SyncCharts were given a mathematical semantics fully compatible with
the Esterel semantics. A technical report [André 1996b] explained this semantics. This is a
valuable document for people familiar with formal semantics but may be difficult to read for
most potential users. Since SyncCharts were also devised as a graphical model, akin to finite
state machine, intended for engineers, an informal presentation of the model and its semantics
was missing. This paper is an attempt to fill this need.

Like Esterel, SyncCharts are devoted to programming control-dominated software or
hardware systems. These systems are reactive, that is, they continuously react to stimuli
coming from their environment by sending back other stimuli. They are purely input-driven:
they react at a pace imposed by their environment. A reactive application usually performs
both data handling and control handling. Esterel and SyncCharts are imperative languages
especially well-equipped to deal with control-handling: they produce discrete output signals
in reaction to incoming signals. At a given instant, a signal is characterized by its presence
status. Besides its presence status, a signal may convey a value of a given type. Such a signal
is called a valued signal. A signal that conveys no other information than its presence is called
a pure signal.

This paper mostly focuses on Pure SyncCharts, which are restricted to pure signaling. Pure
SyncCharts are enough to explain most typical reactions that are easily expressed by graphical
notations. Since a syncChart1 may include any “in-line” Esterel code, a comprehensive
presentation of the semantics of SyncCharts should include a presentation of the Esterel
semantics. This is definitely beyond the scope of this paper. Interested readers should refer to
two papers written by Gérard BERRY: “The Primer” for the Esterel language [Berry 1997],
which presents the language and its semantics in a precise but informal way, and “The
Constructive Semantics of Pure Esterel” [Berry 1999], which presents the reference semantic
framework for the language. Note that this presentation is also restricted to the “pure” subset
of the language.

While Esterel adopts a textual form to express the control, SyncCharts rely on a graphical
representation made of a hierarchy of communicating and concurrent finite state machines
(FSMs). Our intuitive presentation of the semantics of SyncCharts will explain why, given a
current configuration (a set of active states) and a stimulus (a set of input signals), a
syncChart changes its configuration and generates output signals. Since SyncCharts are
deterministic, the new configuration and the set of emitted signals are perfectly defined for
any correct syncChart.
The observed reactions result from instantaneous interactions among finite state machines.
With simple examples, progressively enriched, we will introduce structural elements of
SyncCharts and explain their interactions. Not surprisingly, our informal but precise
descriptions of the behavior are visual representations.

1 “SyncCharts” is the model. A “syncChart” is a particular instance of this model.

 8

Organization of the paper

• After this introduction, a chapter (Section 4) introduces the SyncCharts model and the
synchronous hypotheses. The basic concepts of signals, state, and transition are
illustrated with simple examples. In this chapter SyncCharts are seen as another
variant of Finite State Machines.

• The next chapter (Section 5) explains why SyncCharts are much more than Finite
State Machines: they support hierarchy, concurrency, and preemption. The various
kinds of preemption are introduced, they can be combined with hierarchy and
concurrency, while preserving deterministic evolutions.

• After these informal presentations of the SyncCharts and their behavior, a chapter
(Section 6) deals with an operational semantics of SyncCharts. The syntax of the
model is precisely defined and a way to compute a reaction of a syncChart is given.
This computation relies on the structure.

• Synchronous reactions, which allow emitted signals to participate to the reaction itself,
may result in paradoxical or even incorrect behavior. Section 7 explains such an
erroneous behavior known as a “causality cycle”.

• Advanced constructs of SyncCharts are presented in the next chapter (Section 8). The
first two constructs capture powerful concepts rarely supported in state-based models.
The first one is the “immediate” transition: transition firings can be explicitly chained
during a reaction, so that transient states can be compiled out. The second one is the
“suspension”, a temporary form of preemption, useful to freeze evolutions of parts of
the model. Instantaneous actions to perform when entering or leaving a state are other
model extensions. The computation of a reaction is then revisited to integrate these
model enhancements. This chapter ends with a short introduction to valued
SyncCharts, a presentation of the pre operator, and finally two illustrations of signal
and state reincarnations.

Most explanations are precise and yet easy to understand. Some points are not so simple.

They are pointed out by the symbol. The reader may skip them for a first reading. A few
points need deep insight in the model semantics or describe reactions at a very fine grain.

They are indicated by the symbol. They should be reserved for a second reading.

 9

4 A First Look at SyncCharts

4.1 Abstract
In this section we introduce the SyncCharts model and the synchronous hypotheses.
The main concepts are signal, state, and transition. In this first approach, only “flat”
SyncCharts are considered. They can be seen as a variant of Finite State Machines. Their
behavior is represented by executions traces (for particular evolutions) or by Mealy machines.

4.2 Reaction of a SyncChart
In the synchronous approach, signals are the unique abstraction for modeling information
exchange between the reactive system and its environment. The signals sent by the
environment to the reactive system are called input signals; the signals generated by the
reactive system are called output signals (Figure 4-1). In a control application, input signals
are often associated with sensors, while output signals are associated with actuators. The input
and output signals define the interface of the reactive system. The black-box view of the
reactive system consists of a box, incoming arrows that represent input signals, and outgoing
arrows for outgoing arrows. A syncChart describes the behavior of a reactive system, that is,
how sequences of output signals are related to sequences of input signals.

Figure 4-1: Input and output signals.

A second hypothesis of the synchronous approach is that the reactive system evolves by
successive reactions taking place at discrete instants. This results in a cyclic evolution model
(Figure 4-2). A reaction consists of three phases:

1. Reading input signals
2. Computing the reaction
3. Performing outputs.

The first phase collects the presence status and the possible value of each input signal. The
second phase computes the reaction (i.e., the next internal state of the syncChart, and the
presence status and the value, if any, of each output signal). The third phase issues output
signals to the environment. The set of all present input signals has been called the input event
in Esterel. We adopt this term though the reader must keep in mind that an event is set of
signals instead of a simple change-of-state of some condition (meaning given in Petri nets,
UML...). Of course, an output event is a set of emitted signals.

 10

In order to satisfy the strict synchronous hypothesis, which assumes that a reaction is
instantaneous (0-duration), these three phases are supposed to be executed on a hypothetical
infinitely fast machine. This machine acts as a transformer of input histories to output
histories.

This execution model will refined later. It is sufficient to explain the behavior of the simplest
SyncCharts that are simple finite state machines.

Read Inputs

Compute Reaction

Perform Outputs

Input event

Output event

Figure 4-2: Cyclic evolution.

4.3 Finite State Machine
Finite State Machines (FSMs) are widely used in many domains, with possible different
interpretations. A FSM is made of states and transitions. When used in control applications, a
FSM represents the expected behavior of the system.
Interpretations may differ on

• how to trigger a transition,
• when leaving a state,
• when entering a state,
• when performing actions (effects) associated with a transition,
• when performing actions associated with a state,
• …

SyncCharts will give a precise answer to all these questions.

“A finite state machine (FSM) is a machine specified by a finite set of conditions of existence
(called states) and a likewise finite set of transitions among states triggered by events”

 11

[Douglass 2003, chap.1]. This definition given by B.P DOUGLASS applies to SyncCharts,
provided events are replaced by signals.

As usual, a state characterizes a condition that may persist for a significant period of time.
When in a state, the system is reactive to a set of signals and can reach (take a transition to)
other states based on the signals it accepts.

4.4 FSM with outputs associated with transitions
Consider a simple “frequency divider”, that is, a system that waits for a first occurrence of a
signal T, and then emits a signal C at every other occurrence of T. This behavior can be
represented by the syncChart in Figure 4-3.

4.4.1 Model

Figure 4-3: A Simple Frequency Divider.

Graphically, a state is drawn as a circle (or an ellipse). An optional identifier, written inside
the state, may be given to a state. SyncChart FDIV2 has two states named off and on. The
ways to exit a state and to enter another one are represented by transitions from the source
state to the target state. The label associated with the transition indicates the trigger and the
effect, according to the following syntax: trigger / effect. The simplest trigger is a single
triggering signal. Complex triggers consist of several signals combined with the and, or, and
not operators. With Pure SyncCharts, effects are restricted to signal emissions. The trigger
and the effect are optional, the interpretation of a trigger-less transitions will be given later
(See Section 5.4.4).

• Transition from state off to state on is triggered by an occurrence of signal T.
• Transition from state on to state off is triggered by an occurrence of signal T and

signal C is emitted while the transition is taken.
SyncCharts being a deterministic model, a state must be selected as the initial state. The
initial state is denoted by a arrow pointing to the state. State off is the initial state of
syncChart FDIV2.

4.4.2 Behavior
A simple trigger is said to be satisfied when the associated signal is present. The satisfaction
of a complex trigger is computed by giving to the and, or, and not operators their usual
meaning. For instance, not S, where S is a signal, is satisfied if and only if S is absent; for S
and T two signals, S and T is satisfied if and only if S is present and T is present.

 12

When a state is entered (activation of the state) the outgoing transition is not immediately
checked: only a strictly future satisfaction of the trigger can enable the transition. Stated in
other words: As soon as a state is activated, this state waits for a strictly future satisfaction of
the trigger of its outgoing transition. When the trigger is satisfied, the transition is said to be
enabled. The transition is immediately taken and emits associated signals, if any. The firing of
a transition takes no time.

The behavior of the system can be represented by execution traces. An execution trace is a
record of successive reactions, indexed by natural numbers. Each reaction is characterized by
an input event and an output event. Table 4-1 contains an execution trace for FDIV2.

Notation:
With Pure SyncCharts, it is sufficient to mention present signals. When the set is a singleton,
the curly braces are omitted (i.e., T stands for {T}, and is interpreted as signal T is present).

4.5 Associating outputs with states
A machine that associates outputs with transitions is known as a “Mealy Machine”.
Sometimes, it may be interesting to know the current state of the syncChart. This can be done
by associating output signals with state (Moore Machine).

4.5.1 Example: Toggle Flip-Flop
We modify the previous example by adding two new output signals: OFF and ON. OFF is
emitted when in state off, whereas ON is emitted when in state on (see Figure 4-4). The new
system is known as a “Toggle Flip-Flop” (T Flip-Flop). “A Toggle Flip-Flop has a single
input that causes the stored state to be complemented when the input is asserted” [Katz 1995].

Figure 4-4: Toggle Flip-Flop—Black-Bow view.

Instant Input Output
1
2 T
3
4 T C
5
6 T
7 T C
8 T
9

Table 4-1: An execution trace for FDIV2.

 13

In SyncCharts, signals associated with a state are denoted by a label attached to the state. The
syntax is / effect. In Pure SyncCharts, effect is a set of signals.

Now, we are faced with the task of deciding when precisely the output signals must be
emitted. There are three different cases to analyze: when entering a state, when in a state,
when exiting a state. For now, we consider entering, in, and exiting as exclusive. That is, at an
instant, a state is in if and only if it is active, it has been entered in a previous instant (not
entering), it will stay active (not exiting).

4.5.2 Strong and Weak Abortion Transitions
Obviously, when in a state, the associated output signals must be emitted. SyncCharts have
two types of transitions (strong abortion transitions and weak abortion transitions) specifying
different behaviors. Table 4-2 defines the behavior. The third case is given for information. It
is the behavior observed for circuits running in the clocked (synchronous) mode, an usual
mode for sequential circuits (see [Katz 1995]).

From Table 4-2 we deduce that synchronous models are “faster” than classical models: they
perform actions associated with the target state of a transition at the very instant when the
transition is taken. Weak and strong abortion transitions differ only on what is done when
exiting a state. Weak abortion performs actions associated with the exited state, while strong
abortion does not. A more general characterization of abortions will be given later, after
introducing hierarchy in SyncCharts.

Notation

SyncCharts
The behavior of the Toggle Flip-Flop is specified in Figure 4-5. Two versions using strong
and weak abortions are presented. The former is called Tsa (Toggle strong abort), the latter
Twa (Toggle weak abort).

 entering in exiting
Weak abortion Yes Yes Yes
Strong abortion Yes Yes No
(clocked mode) No Yes Yes

Table 4-2: Emitting output signals associated with states.

 14

Figure 4-5: SyncCharts for the Toggle Flip-Flop—Strong and weak abortion versions.

Behavior
Table 4-3 contains an execution trace for the two versions of the Toggle Flip-Flop. Signals
emitted when exiting a state by weak abortion are written in red letters.

4.6 Alternative Representation to Execution Traces
The representation of execution traces given in Table 4-3 makes no direct reference to internal
states. In order to explain how an ssm works, explicit references to states are needed. Using
the notations introduced in Figure 4-6 makes it possible.

Figure 4-7 contains the first five instants of the execution trace already presented in Table 4-3
for Tsa. The advantage of this representation is to show the active state of the ssm and its
dynamic evolutions. A more concise representation (Figure 4-8) only mentions the active
state but loses the information about the control path (transitions through which the control
passed).

Output Instant

Input
 Tsa Twa

1 OFF OFF

2 T ON OFF,ON

3 ON ON

4 T C,OFF C,OFF,ON

5 OFF OFF

6 T ON OFF,ON

7 T C,OFF C,OFF,ON

8 T ON OFF,ON

9 ON ON

Table 4-3: An execution trace for the Toggle Flip-Flop.

 15

Figure 4-6: Notations.

Executions traces, in all the previously described forms, represent only particular behaviors.
There are very useful to understand the system behavior. In order to represent all possible
behaviors, we need some “trace folding” technique. For finite state models, FSMs can do that.
The Mealy machine (Figure 4-9) is equivalent to syncChart Tsa. The reader may wonder
why to introduce a new model, namely the SyncCharts, if we have recourse to well-known
FSMs or Mealy machines. The answer to this question will be given later.

Figure 4-7: An Execution Trace for Tsa.

 16

Figure 4-8: An Execution Trace for Tsa—Concise form.

Figure 4-9: Mealy machine with the same input-output behavior as Tsa.

4.7 FSM with Choice: Introducing Priority

4.7.1 An Example of Resource Management
This system allows two users to access a resource, while ensuring exclusive access to the
resource. The access controller (ResMgr) consists of

• Two user’s dialog controller (UCtrl1 and UCtrl2)
• And an arbitration controller (Arbiter).

More details about this application are given in Annex 2.

4.7.2 User’s Dialog Controller
Figure 10-6 shows the interface (left side) and the syncChart of the user’s dialog controller
(UCtrl). The syncChart uses both strong and weak abortions. This example is almost as simple
as the T flip-flop. An equivalent Mealy machine (Figure 4-11) can be easily proposed. Just
notice that the transition from state Wg to state Busy, caused by a weak abortion, emits both
Rq and Rn. Signal Rq stands for “request” and is associated with state Wg (Waiting for
Grant). Signal Rn stands for “running” and is associated with state Busy.

 17

Figure 4-10: User’s Dialog Controller.

Figure 4-11:Mealy machine equivalent to UCtrl.

4.7.3 Arbitration Controller
Up to now, each state had at most one outgoing transition. Usually, there exist several ways to
exit a state, and therefore, several outgoing transitions. Since SyncCharts are deterministic
models, we have to resolve a choice when several transitions are simultaneously enabled , and
therefore, candidate for firing.

Consider the simple syncChart that expresses the behavior of the arbiter in the Resource
Manager application (Figure 4-12).

The external signals of the Arbiter and their interpretation are:

input Rq1; (User1 requests the resource)
input Rl1; (User1 releases the resource)
output G1; (Arbiter grants the resource to User1)
input Rq2; (User2 requests the resource)
input Rl2; (User2 releases the resource)
output G2; (Arbiter grants the resource to User2)

 18

Figure 4-12: SyncChart with Choice.

The syncChart on the left is incorrect because when in state Idle, if Rq1 and Rq2 get present
at the very same instant, both outgoing transitions can be taken, but only one is actually taken.
This results in a non deterministic choice. A correct syncChart avoids this situation by
imposing a deterministic choice. A priority attached to each outgoing transition (an integer
number written by the origin of the transition) resolves the potential conflict (decreasing
priority for increasing number).

The previous syncChart with priority given to Rq1 over Rq2 behaves like the Mealy machine
below (Figure 4-13).

Figure 4-13: Mealy machine for Arbiter.

4.8 Summary Statement of SyncCharts and FSM

In its simplest form, a syncChart is a variant of the FSM model. At each instant there is one
and only one active state. The initial state is the first activated state. Transitions between a
source state to a target state are of two kinds: weak abortion transitions and strong abortion
transitions.

Labels are optionally attached to transitions and states. A transition label has two optional
fields: a trigger, and an effect. A trigger may be a single signal or a combination of signals
using the and, or, and not operators. An effect may be a single signal or a set of signals. A
state label has only an effect field, which is a set of signals.

 19

A distinct static priority is attached to each outgoing transition of a state. Figure 4-14 sums up
the various notations.

Figure 4-14: FSM notations

An active state waits for the satisfaction of the trigger of one of its outgoing transition, at an
instant strictly posterior to its entering (activation). The satisfaction of a trigger enables the
associated transition. An enabled transition must be immediately taken.
The change-of-state, caused by the firing of a transition is fully deterministic. It takes no time.
Signals may be emitted as a consequence of the transition firing. Whether a signal associated
with state is to be emitted when exiting the state depends on the kind of transition: only weak
abortion permits emission.

Execution traces, possibly showing active states, can be used to represent particular behaviors
of a syncChart.

As we will see in the next section, SyncCharts are generally made of several FSMs. These
machines have concurrent evolutions, and moreover they may be nested. Their behavior will
greatly differ from usual FSM behavior—behavior upon which users not always agree. So, we
prefer to use another term: State Transition Graph (STG) to designate connected labeled
graphs made of states connected by transitions, with an initial state.

 21

5 Hierarchy, Concurrency, Preemption

5.1 Abstract
SyncCharts are more than FSMs. They support hierarchy, concurrency, and preemption. This
section shows how to model hierarchy (macrostate), concurrency (concurrent STGs), and
preemptions (strong and weak abortion). A reaction is explained in terms of microsteps. A
striking feature of synchronous models is that evolutions are still deterministic even when
concurrency, communication, and preemption are mingled.

5.2 Hierarchy
Hierarchy can be seen as a grouping facility, or as a support for refinement.

5.2.1 Hierarchy seen as state grouping
The User’s Dialog Controller can be either Idle, or Working. The latter status corresponds to
either sustaining a request while waiting for Grant, or being running and waiting for S. This
is captured by the notion of macrostate. A macrostate is a state that contains one (or several)
state transition graph(s). In contrast, a classical state, which is not refined, will be called a
simple-state.

Figure 5-1: Macrostate as state grouping.

In the macrostate named Working (Figure 5-1), there exists a special state (with a double
outline), called a final state. When entering this final state, the control is instantaneously
passed through a normal termination transition to the Idle state. Thus, the behavior is the same
as the “flat” model previously studied (Figure 4-10).
The tail of a normal termination transition is a small green triangle ().

 22

This way of leaving a macrostate, without an explicit triggering event is called a normal
termination.

The use of final states and normal termination is more interesting in the presence of
concurrency. This will be illustrated after introducing concurrent evolutions.

Remark: Macrostates can be nested at any depth. Showing too deep a hierarchy in a
syncChart may hamper readability and understanding. Fortunately, there exists a modularity
notion (reference macrostates presented in Section 8) that allows better organization of deep
hierarchy.

5.3 Concurrency

5.3.1 Example of a Binary Counter
In hardware, starting with 2 T flip-flops, a 2-bit binary counter is easily obtained by cascading
the two flip-flops: the carry output of the first flip-flop is connected to the triggering input of
the second flip-flop. The diagram structure (Figure 5-2) explicitly shows these connections.

Figure 5-2: A 2-bit binary counter.

The syncChart for the 2-bit binary counter named Cnt2 is obtained by a parallel composition
of two syncCharts for T flip-flop (Figure 5-3). Dashed lines are used to separate concurrent
STGs contained in a macrostate. STGs are coupled thanks to shared signals: an STG may emit
the local signal C0, which is a triggering signal for the other STG. A local signal is declared
with the keyword signal, and its scope is the containing macrostate.

Figure 5-3: SyncChart for a 2-bit binary counter.

 23

5.3.2 Behavior of Cnt2
The interface of Cnt2 is:
 input T;
 output B0, B1, C;

Consider the input sequence T-;T+;T+;T+;T+. The associated execution trace is detailed in
Figure 5-4. The first two steps involve only one STG, so the reactions are similar to the ones
studied in Section 2.
Reaction 3 is more complex: two STGs are concerned. In the syncChart two states are active
at the same time (one per STG). The “internal state” of the syncChart is no longer defined by
one active state, but by a set of active states, instead. A set of (concurrent) active state is
called a configuration. This word is the one used in Statechart semantics [Harel and Naamad
1996]. A more formal presentation will be given in Section 6. The configuration of Cnt2 is
{off1, on0}. Since T is present, the transition from on0 to off0 is taken. As a result C0 is
emitted (effect associated with the transition) and B0 is not emitted (strong abortion of state
on0). Now, C0 being the trigger of the transition from off1 to on1, this transition is taken and
state on1 is entered, causing emission of B1. The reaction has been computed as a sequence
of microsteps, all executed during the same instant, but in an order that respects causality (the
cause precedes the effect). An external observer sees the reaction as a whole: Cnt2
instantaneously passes from the configuration {off1, on0} to the configuration {on1, off0}
while emitting B1. Of course, C0, which is a local signal, is not visible to the outside. Figure
 5-5 shows the microsteps that compose the third reaction. Reaction 5 is also a reaction that
results from a sequence of microsteps.

Figure 5-4: A Detailed Execution Trace for Cnt2.

 24

Figure 5-5: Microsteps.

Remark: The microstep evolutions are given to facilitate understanding of reactions. The user
only sees the whole (instantaneous) reaction from a configuration to another one, with the
concomitant emitted output signals.

5.3.3 Another example: Resource Manager
Consider the full controller ResMgr (Figure 5-6) composed of the 2 user’s dialog controllers
and the arbiter. Their cooperation is modeled by a parallel composition of the individual
syncCharts. This example involves several local signals and instantaneous dialogs. While in
the previous example communication was unidirectional (i.e., from one STG to another one),
communication is now bidirectional. An instantaneous dialog is the manifestation of
bidirectional communication among concurrent STGs.

Consider the behavior when Arbiter is in the state granting the resource to User2, while
User1 is requesting the resource by sustaining signal Rq1 (configuration = {Wg1, s2,
Busy2}).
Let k be the instant when S2 occurs. Figure 5-7 represents reactions k and k+1. At instant k,
S2 triggers a transition so that Rl2 is emitted, causing the Arbiter to come back to its Idle
state (configuration = {Wg1, Idle, Idle2}).
At instant k+1, since User1 sends Rq1, Arbiter leaves the Idle state, enters state s1, and emits
G1. Now, G1 being present, state Wg1 is exited, state Busy1 is entered, and signal Rn1 is
emitted (configuration = {Busy1, s1, Idle2}).

 25

Figure 5-6: Controller of the Resource Manager.

Figure 5-7: Partial Execution trace of the Resource Manager Controller.

Figure 5-8 depicts the microsteps of reaction k+1, clearly showing how STGs influence each
other. Instantaneous dialogs enable powerful instantaneous communication protocols. A
drawback of this expressiveness is that mutual influence may be source of instantaneous
cyclic communications. A special section will be devoted to such faulty behaviors.

Figure 5-8: Microsteps in an Instantaneous Dialog.

 26

5.3.4 Concurrency and Normal Termination
To illustrate the combined use of concurrency and normal termination, we choose to model a
Memory Transaction System. This system waits for two concurrent events: availability of an
Address (input signal A), and availability of Data (input signal B). As soon as both events
have occurred, the system performs a Memory Write (output signal O). Note that O is emitted
at the very instant when the last of A and B becomes present.
SyncChart ABO in Figure 5-9 specifies this behavior. As clearly shown on the syncChart, the
system is making two concurrent waits. Suppose that A has occurred and that we are waiting
for B. What happens when B occurs is traced in Figure 5-10. This behavior results from the
following rule: When each (concurrent) STG in a macrostate reaches a final state, then the
macrostate is immediately exited by its normal termination transition. This behavior
generalizes the one presented in Section 5.2, where the macrostate contains only one STG.
Note that the lack of normal termination transition for a macrostate with final states reveals a
ill-structured syncChart.

Figure 5-9: Synchronized Termination.

Figure 5-10: Execution of a synchronized termination.

An equivalent Mealy machine is given in Figure 5-9. It seems even simpler than the
syncChart. In fact, this is no longer the case when the system waits for n > 2 independent

 27

signals. The number of states and transitions of the Mealy machine increases exponentially
with respect to n (2n states), whereas the complexity of the syncChart is linear (n concurrent
STGs). Figure 5-11 is a syncChart that waits for three signals. The corresponding Mealy
machine is left as an exercise for the reader.

Figure 5-11: Waiting for three signals.

Another drawback of the state machine representation is the lack of structure: it is a flat
model, and the same signal appears on many transitions. This is against the good software
engineering principle “Write Things Once”. SyncCharts, like Esterel (as explained in the
Esterel Language Primer [Berry 1997]), often replaces replication by structure.

5.4 Preemption
The preemption is the possibility given to an agent to interrupt the execution of another agent.
This interruption may be either definitive (abortion) or temporary (suspension). SyncCharts
support both kinds of preemption. In this section we analyze abortion, suspension is presented
later (Section 8.3).

Abortion has been presented as the way to exit a state (Section 4.5.2). It can apply to
macrostate as well. When a macrostate is exited by abortion, a strong abortion forbids any
reaction within the aborted macrostate prior to the abortion. On the contrary, a weak abortion
lets the macrostate react before exiting. This explains why output signals associated with a
state are not emitted in case of a strong abortion, and emitted with a weak abortion. Below are
examples of abortions applied to macrostates.

5.4.1 ABRO: Strong Abortion on a Macrostate
The Memory Transaction System is augmented with a possibility to abort a transaction (signal
R). R is a reset signal that erases previously received occurrences. If R occurs simultaneously
with the second awaited signal, the transaction is also aborted.

This behavior is easily expressed with a syncChart: it is sufficient to exit macrostate ABO as
soon as R occurs. This is done by a strong abortion transition whose source is ABO (Figure

 28

 5-12). Nothing has to be changed within the macrostate. As for the re-initialization of the
transaction, it is enforced by the target of the abortion transition that is macrostate ABO itself.

Example of Reaction with Preemption and Hierarchy
Consider ABRO when states dA and wB are active in macrostate WaitAandB. Containing
macrostates ABO and ABRO are also active. What is the reaction of the syncChart when R
and B occur simultaneously?

The triggers of two strong abortion transitions are satisfied: R enables the preemption of
macrostate ABO, B enables the preemption of simple state wB. Since a strong abortion
prevents any execution in the preempted state, the preemption caused by R is taken, while B
preemption is ignored. ABO and all contained states are exited without any internal execution.
Since the target of the abortion transition is macrostate ABO, this macrostate is
instantaneously (re-)entered. Its initial state WaitAandB is also instantaneously entered. And
finally, the initial state of both STGs in WaitAandB is immediately entered. Newly activated
simple state wB is not preempted by B: only a strictly future occurrence of B can do that.
Figure 5-13 shows the reaction. The equivalent Mealy machine (Figure 5-12) is cluttered with
transitions labeled by R. The number of such transitions increases exponentially with the
number of awaited signals.

Figure 5-12: SyncChart for ABRO.

 29

Figure 5-13: A Reaction involving preemption and hierarchy.

5.4.2 ABRO Variant: Weak Abortion on a Macrostate

Figure 5-14: SyncChart (variant) for ABRO.

As with the previous example, we consider ABRO when states dA and wB are active in
macrostate WaitAandB. Containing macrostates ABO and ABRO are also active. Suppose B
and R present. Figure 5-15 describes the microsteps of the reaction. The triggers of two
abortion transitions are satisfied: R enables a weak abortion of macrostate ABO, B enables a
strong preemption of simple state wB.
Since the outermost preemption is weak, the reactions within macrostate ABO are performed:
the strong abortion triggered by B takes place, resulting in a configuration in which states dA
and dB are active (microstep 1). These states being final, the normal termination is taken,

 30

signal O is emitted, and the configuration contains now done as an active state(microstep 2).
There is not any more possible evolution in macrostate ABO. Now, the weak abortion
transition triggered by R is taken, causing re-entering of macrostate ABO, and the nested
macrostate WaitAandB. This results in a configuration with states wA and wB active
(microstep 3). Thus the reaction has emitted signal O and has re-initialized the system.

Figure 5-15: Microsteps in a case of weak abortion.

5.4.3 Abortion and Priority
Priority has been introduced in Section 4.7 to enforce a deterministic choice when several
outgoing transitions of an active state are simultaneously enabled. May the priority be
arbitrary assigned to transitions whatever the type? For flexibility, the user would like a
positive answer, and yet, SyncCharts impose a constraint.

For any state,

• every outgoing transition has a different priority,
• any strong abortion transition has priority over any weak abortion transition,
• any weak abortion transition has priority over a normal termination transition.

This ordering is not the only sensible choice. In the Esterel language, for instance, normal
termination has priority over weak abortion (weak abort statement in Esterel). The above
rules make code generation easier, without reducing the expressiveness of the model.
Imposing another priority ordering is possible by state nesting, which induce structural
priorities. See Figure 5-16 for an example in which the normal termination is given priority

 31

over a weak abortion. The solution resorts to an extra level of nesting and a local signal nt
(supposed not already defined within the scope of the outermost macrostate).

Figure 5-16: Imposing an arbitrary priority ordering.

Giving priority over strong abortion is more dangerous. The reason is that a weak abortion
can be caused by the execution of the body of the state, while a strong abortion requires that
the body of the state is not executed at all. This may cause incorrect behavior known as
Causality Cycle and studied in Section 7. Figure 5-17 shows a syncChart that gives priority to
the weak abortion triggered by wA over the strong abortion triggered by sA. This priority is
enforced by a complex trigger: sA and not wA, not by the structure.

Figure 5-17: Imposing higher priority to weak abortion.

5.4.4 Trigger-less Transitions
The trigger field in a transition label is optional. A trigger-less transition becomes enabled at
the instant just after the activation of its source state. An interpretation is that the default
trigger is the special signal tick whose occurrence is expected. tick is a reserved word that
denotes an implicit signal present at every instant. Thus the behavior consists in waiting for
the first strictly future occurrence of tick, which, by definition, occurs at the next instant.

 32

5.5 Summary
In this section we have explored the constructs for hierarchy, concurrency, and preemption. A
reaction generally involves several microsteps and results from instantaneous dialogs among
concurrent parts of the syncCharts. Thanks to the instantaneous broadcast of signals, and
priority enforcement (through the structure and explicit declarations) these reactions are kept
deterministic. Moreover, through their rich structuring possibilities, SyncCharts make it
possible to apply the good software principle of Write Things Once.

 33

6 Computation of a Reaction: A First Approach

6.1 Abstract
The two previous sections have described in an informal way the reactions of a syncCharts.
A more formal approach is necessary in order to deal with more complex examples. This
section starts with a precise definition of the syntax of SyncCharts, so that the entities that
compose a syncChart will be known and referred to without any ambiguity.
An operational semantics, relying on the structure, is then proposed.

6.2 SyncCharts Structure: Associated Tree
The behavior of a syncChart results from the cooperation of simple functional units we call
reactive-cells. A reactive cell is a state (either a simple-state, or a macrostate), with all its
outgoing transitions. Signal broadcasting is the unique communication medium among
reactive-cells. Since a syncChart is a hierarchical model, its structure should be exploited to
compute its reactions. So far, an informal presentation of the structure has been sufficient. In
order to explain how to compute reactions of SyncCharts, we have adopted a more formal
presentation.

The syncChart’s structure respects a strict state containment policy. A tree representation can
be easily attached to any syncChart. This tree alternates macrostates and state-transition
graphs (STGs). The leaves of the tree are simple-states.

6.2.1 Syntax for SyncCharts
The ABRO example will illustrate the definitions of the abstract syntax. This is a simplified
version, restricted to pure SyncCharts.

Macrostate
With a syncChart is associated a unique macrostate called its top. Top designates the top-
level state that is the root of the state containment hierarchy. A macrostate is composed of a
non empty set of STGs, and three possibly empty sets of signals: input signals, output signals,
local signals. For a macrostate M, these sets are denoted M.G, M.I, M.O, M.L, respectively.

Reactive-Cell
An STG is a non empty set of reactive-cells. One of these reactive-cells is referred to as
initial. A reactive-cell has a body and a possibly empty set of outgoing transitions of different
kinds (strong abort, weak abort, normal termination).
The body is either a simple-state or a macrostate. A simple-state is not refined: it is a leaf of
the tree.
Graphically, no special picture is defined for a reactive-cell. Its body and its outgoing
transitions are drawn, instead (see Figure 6-2).

 34

A

WaitAandB

ABO

done

/ O

ABRO

R

top
The root of the
state containment
hierarchy.

wB

B

dB

wA

dA

Figure 6-1: A SyncChart.

Figure 6-2: Reactive Cells.

Outgoing Transitions
An outgoing transition has a destination cell and a label. The destination cell is a reactive-
cell. Graphically the arrow end of the transition points to the body of the destination cell
drawn as a simple-state or a macrostate. A label is composed of three optional fields: a
trigger, a guard, an effect.
Remark: depending of the kind of transition, some fields may be forbidden. Details are
omitted at this level.

 35

Figure 6-3: Macrostate and STGs.

Naming convention
STGs and reactive-cells cannot be named by the user. Assigning automatic identifiers to
STGs and reactive-cells will make algorithm easier to express.
Let M be a macrostate. Each STG directly contained in M is given a unique identifier M.G_k,
where k is an integer between 1 and n (the number of concurrent STGs in M). As for reactive-
cells, they are called by the name of their body, which is unique.
For a STG G, its set of reactive-cells is denoted by G.S, and its initial state by G.ini.

Example
For syncChart “ABRO” (Section 5.4.1)

The macrostate named ABRO is the top.

ABRO.I = {A, B, R}
ABRO.O = {O}
ABRO.L = ∅

Macrostate ABRO is composed of one STG named ABRO.G_1, by convention, and ABRO.G
= {ABRO.G_1}.

STG ABRO.G_1 is made of only one reactive-cell whose body is macrostate ABO. The set of
reactive-cells ABRO.G_1.S = {ABO}. With our convention, this reactive-cell is also named
ABO. The context easily resolves possible ambiguity between the macro-cell and its body.

ABRO.G_1.S = {ABO}
ABRO.G_1.ini = ABO

Macrostate ABO is composed of one STG.
ABO.I = {A, B}
ABO.O = {O}
ABO.L = ∅
ABO.G = {ABO.G_1}

 36

STG ABO.G_1 is made of two reactive-cells, one with macrostate WaitAandB as its body,
and another the body of which is a simple state named done.

ABO.G_1.S = {WaitAandB, done}
ABO.G_1.ini = WaitAandB

Macrostate WaitAandB is composed of two STGs.

WaitAandB.I = {A, B}
WaitAandB.O = ∅
WaitAandB.L = ∅
WaitAandB.G = {WaitAandB.G_1, WaitAandB.G_2}

Finally, each STG is composed of two reactive-cells with simple states as bodies:

 WaitAandB.G_1.S = {wA, dA}

WaitAandB.G_1.ini = wA
WaitAandB.G_2.S = {wB, dB}
WaitAandB.G_2.ini = wB

ABRO.G_1

ABRO

wA

ABO

ABO.G_1

WaitAandB done

WaitAandB.G_1

dA

wB

WaitAandB.G_2

dB

STG

macrostate

basic-state

Reactive
-cell’s
body

Legend

Figure 6-4: Tree associated with ABRO.

An outgoing transition is denoted as a 4-tuplet: <type-of-arc, trigger, effect, target-identifier>.
Empty fields are left blank. Type-of-arc can be sA for strong abortion, wA for weak abortion,

 37

nT for normal termination. For a reactive-cell R, its outgoing transition set is denoted by
R.out.
 ABO.out = {<sA, R, , ABO>}

WaitAandB.out = {<nT, , O, done>}
done.out = ∅
wA.out = {<sA, A, , dA>}
dA.out = ∅
wB.out = {<sA, B, , dB>}
dB.out = ∅

The tree associated with syncChart ABRO is represented in Figure 6-4.

6.3 Behavior

6.3.1 Configuration
A configuration is a maximal set of states (macrostates or simple-states) that the system could
be in simultaneously. Any subset of states is not a legal configuration.
Let T be the top macrostate associated with a syncChart. A legal configuration C for T (and
for the syncChart) must satisfy the following rules:

1. T is in C,
2. If a macrostate M is in C, then C must also contain for each STG G directly contained

in M, exactly one state directly contained in G,
3. C is maximal and contains only states satisfying rules 1 and 2.

The legal configurations of ABRO are:

{ABRO, ABO, done}
{ABRO, ABO, WaitAandB, wA, wB}
{ABRO, ABO, WaitAandB, wA, dB}
{ABRO, ABO, WaitAandB, dA, wB}
{ABRO, ABO, WaitAandB, dA, dB}

The legality of a configuration relies on structural considerations only. SyncCharts represent
dynamic behaviors that are not simply characterized by the structure. Only a subset of the
legal configurations is of interest for the user: the set of stable configurations.
A stable configuration is a legal configuration that the syncChart can reach after a sequence of
reactions. As shown in Figure 5-12, {ABRO, ABO, WaitAandB, dA, dB} is not a stable
configuration for ABRO.

Macrostates and simple-states in a configuration are said to be active. By extension, a
reactive-cell the body of which is active, is said to be active. An STG with an active reactive-
cell is also qualified as active.

How to compute stable configurations and signals emitted during a reaction is explained in
the next two sections.

6.3.2 Computation of a Reaction: Overview
For the sake of simplicity, only pure syncCharts are considered. Moreover, we assume simple
triggers consisting of a single signal whose presence is expected. These limitations will be
relaxed later. Even for this restricted class of syncCharts, microstep construction may be not
straightforward. In order to make it easier, we decompose a reaction according to the

 38

hierarchy. The reaction of a macrostate relies on the reactions of its STGs. The reaction of an
STG relies on the reaction of its reactive cells. The reaction of a reactive-cell relies on the
reaction of its body (a macrostate or a simple-state). Of course, this approach is recursive and
has to be applied down to the leaves of the tree which are simple-states. Figure 6-5
summarizes the process of computing a reaction.

Figure 6-5: Overview of a Reaction.

 39

6.3.3 Computation of a Reaction: Algorithms.

Termination Code
For computational purpose, the reaction of a component (reactive-cell, STG, macrostate,
simple-state) returns a termination code taking its value in {DONE, DEAD, PAUSE}. This
code is for internal use only and does not appear as a result of the reaction of the syncChart.
Returning PAUSE means that the component has nothing left to do until the next instant.
Returning DONE means that the component has terminated its execution, and that there is
nothing left to do at the next instant. Returning DEAD means that the component has nothing
left to do at the current instant and in the future (final state), and that it is candidate to join a
normal termination. If this normal termination does not take place, then the component will
have nothing to do at the next instant, but returning DEAD again.

The algorithms are given in a pseudo algorithmic language. Comments are allowed. We adopt
the C language notation for comments.

Reaction of the syncChart
This is the upper level.
Given a stable configuration, a reaction is computed by:

Reaction of a syncChart
 1 - Read input signals /* the presence status of all input signals is known */

2 - Set all output signals to the “unknown” presence status (⊥)
3 - Compute reaction of the top macrostate associated with the syncChart
 /* yields emitted signals and the next (stable) configuration */

Reaction of a Macrostate
This reaction returns either DEAD or PAUSE.

Reaction of macrostate M
 1 - Set all local signals to the “unknown” presence status (⊥)

2 - For each STG G (directly contained) in M do in parallel /* Fork */
 Compute the reaction of STG G
 Return the termination code in c(G)
3 - When all parallel executions are done, /* Join */
 Compute C = maximum of c(G) for all STGs in M
4 - Return C

For the calculation of C, consider DEAD < PAUSE, so that a macrostate reaction returns:

1. PAUSE if and only if some concurrent STG in M returns PAUSE,
2. DEAD otherwise.

Comments:
There will be still something to do at the next instant if at least one of the parallel branches
has something to do at the next instant (Rule 1). Conversely, when all the parallel branches
are DEAD, the macrostate returns DEAD, that is, is ready for a normal termination.

 40

Reaction of a Simple-state
This reaction returns either DEAD or PAUSE.

Reaction of simple-state S
 1 - if S is a final state then return DEAD.

2 - If an effect is associated with the simple-state then emit all the signals in “effect”.
3 - Return PAUSE

This is a very simple behavior. A final state has nothing to do but returning DEAD. A non
final state can emit signals, and then returns PAUSE.

Reaction of an STG
This reaction returns either DEAD or PAUSE.

Reaction of STG G
 1 - If there is no current state in G then set current state to the initial state

2 - Compute the reaction of the reactive-cell whose body is the current state
3 - Let r be the termination code.
 If r is equal to DONE then set current state to nextState, and go to 2
4 - Return r /* here r cannot be DONE */

Comments:
When entering a macrostate, the current state of each STG is undefined. Take the initial state
as the current one (Step1). If the STG is already active the current-state is its (unique)
currently active state.
 Step 2 computes the reaction of the active reactive-cell. If this reaction returns DONE, this
means that the state passes the control instantaneously to its successor. In this case, the new
active state must also react. Since several instantaneous reactions can be chained in an STG,
the algorithm uses a while-loop (steps 2 and 3). After a finite number of iterations, step 4 is
executed with a termination code different from DONE. A non terminating loop indicates a
syncChart with infinite instantaneous loop: The syncChart must be rejected.
The choice of the successor state (nextState) is done in the reactive-cell reaction (see below)
according to the outgoing transition taken to exit the active state.

Reaction of a Reactive-Cell
This reaction is the heart of the reaction. It is at the cell-level that presence status of signals is
tested and abortion decisions are taken. It is also the place where the analysis goes deeper in
the hierarchy.
The test of the trigger is especially important. We propose a special function testAbortion
that, given a set of abortion transitions, returns the first passing transition, if any, or null
otherwise. Transitions are considered in a decreasing order of priority. When testing the
presence of a triggering signal, its status may be unknown. If so, the execution is suspended
till another concurrent execution thread will fix the status of the tested signal.

TestAbortion on a set A of abortion transitions
 for each transition t in A, considered in the decreasing order of priority do

 Let S be the trigger of t
 Wait till S can be evaluated
 if S is satisfied then return t

 41

end for
return null

testSA (testWA, respectively) is the testAbortion function applied to strong (weak,
respectively) abortion transitions of the considered reactive-cell.

The outline of the computation of a reactive-cell reaction is as follows:

1. Strong abortion test:
• If a strong abortion transition is enabled then take this transition
• /* don’t execute the body */
• Return DONE

2. Execute the body:
• If a macrostate, then recursive call
• If a simple-state, then terminal call

3. Weak abortion test:
• /* note that, at this point, the body has completed its execution */
• If a weak abortion transition is enabled then take this transition
• Return DONE

4. Normal termination test:
• If the body has returned DEAD then take the normal termination transition
• Return DONE

5. End of the reaction:
• If you reach this point, then return PAUSE

A more precise description of the algorithm is represented by a flowchart (Figure 6-6).

Comments:
The status of a reactive-cell may be either IDLE or ACTIVE. This status is persistent
information, initially set to IDLE and then possibly modified during a reaction.
Upon the activation of a reactive-cell, a Boolean named firstInstant is asserted. This flag
allows the behavior to be different at the first instant and at the following instants: the triggers
are not tested at the first instant.
Usually, the control stays in a state for more than one instant. At the end of the first reaction
the status of the reactive-cell is set to ACTIVE. From now on, firstInstant is false, and the
triggers are tested.
A “standard” reaction (not the first one) is as follows:

1. Check strong abortions. If the trigger of a strong abortion transition is satisfied, then
exit the state, take the corresponding transition and set the status of the reactive-cell to
IDLE. Note that, in case of strong abortion, the body of the reactive-cell is not
executed at all.

2. If no strong abortion is possible, then compute the reaction of the body of the reactive-
cell. This is a recursive call. When this call returns, save the termination code in a
variable (B).

3. Now check for weak abortions. The behavior is then the same as for a strong abortion.
Note that, with weak abortion the body of the reactive-cell has already done a
complete reaction.

4. If no weak abortion is possible, then test for normal termination. The normal
termination occurs if B is equal to DEAD.

 42

5. Finally, if no abortion or normal termination is possible, then the reaction of the
reactive-cell is over for the current instant. Return PAUSE.

Figure 6-6: Reaction of a Reactive-Cell.

The capsules with colored background, in Figure 6-6, are places where the execution of the
reaction can be suspended, waiting for extra information about the presence status of some
signal. Computing the reaction of a reactive-cell usually requires concurrent executions.

When the state is exited, due to abortion or normal termination, a sequence of actions is
performed (rectangle with rounded corners in the right lower side of the picture):

1. “Kill” the body of the reactive-cell. This means a recursive de-activation of all the
components contained in the state. Because of the proposed algorithm, all these
components have already reacted, or not react at all (when strongly aborted), so that
their de-activation will cause no trouble.

2. Exit from the state by taking the transition t. Thus, execute the associated effect, and
set the target of the transition as the new current state of the STG.

3. Set the persistent reactive-cell status to IDLE.

 43

4. Return the termination code DONE to notify that this reactive-cell terminates its
reaction.

Final Reactive-Cell
This is a very special case: the body of the reactive-cell is a final (simple) state. Of course,
there is no need for transition checking. The flowchart degenerates to the one shown in Figure
 6-7.

Figure 6-7: Reaction of a “final” Reactive-Cell.

6.4 Examples of Computation of a Reaction
This section illustrates the execution of a reaction step by step in great details. The reader may
skip this section during the first reading.

6.4.1 Application to ABRO
Consider ABRO in the stable configuration {ABRO, ABO, WaitAandB, dA, wB}. What is
the reaction of the syncChart when R and B occur simultaneously? This question has already
been answered using an informal semantics (Section 5.4.1). The reaction is:

{ ABRO, ABO, WaitAandB, dA, wB } →{R,B} { ABRO, ABO, WaitAandB, dA, dB }

Now, we derive this reaction by applying the above procedures. Comments, line numbering
and indentation clearly show successive calls and their depth.

1 - Read input signals: R+, A-, B+
2 - Set all output signals to unknown: O⊥
3 - Reaction of top.

/* Macrostate ABRO */
1 – Set local signals to unknown: empty set, so nothing to do
2 – For each STG do: only one STG ABRO.G_1

/* Reaction of STG ABRO.G_1*/
1 – ABO is already active
2 – Compute the reaction of the active reactive-cell

/* Reaction of the reactive-cell ABO */
1 – firstInstant is set to false
2 – check for strong abortion: there is only one outgoing arc.
The trigger is R. Since R is present the transition must be taken.

/* abortion procedure */
1 – Kill

/* recursive kill of the body of ABO */
/* recursive kill of the body of WaitAandB */
set the status of dA to IDLE
set the status of wB to IDLE

 44

set the status of WaitAandB to IDLE
2 – nextState = t.target = ABO
/* a special case: the source and the target are the same */
3 – effect (void)
4 – set the status of ABO to IDLE

3 – return DONE
3 – Since termination code is DONE, current state is set to ABO, and go to 2
2 – Compute the reaction of nextState (ABO)

/* Reaction of the reactive-cell ABO */
1 – firstInstant is set to true /* ABO was IDLE */
2 – Compute the reaction of the body, i.e., macrostate ABO

/* Macrostate ABO */
1 – Set local signals to unknown: empty set, so nothing to do
2 – For each stg do: only one STG ABO.G_1

/* Reaction of STG ABO.G_1*/
1 – no current state: WaitAandB becomes the current state
2 – Compute the reaction of the active reactive-cell

/* Reaction of the reactive-cell WaitAandB */
1 – firstInstant is set to true /* WaitAandB was IDLE */
2 – Compute the reaction of the body, i.e., macrostate WaitAandB

/* Macrostate WaitAandB */
1 – Set local signals to unknown: nothing to do
2 – For each STG do:

/* Reaction of stg WaitAandB.G_1 */
1 – no current state: wA becomes the current state
2 – Compute the reaction of the current reactive-cell

/* Reaction of the reactive-cell wA */
1 – firstInstant is set to true
2 – Compute the reaction of the body

/* reaction of reactive-cell wA */
1 – no effect associated
2 – return PAUSE

3 – set the status of wA to ACTIVE
4 – return PAUSE

3 – r = PAUSE which not equal to DONE
4 – return PAUSE

/* Reaction of STG WaitAandB.G_2 */
1 – no current state: wB becomes the current state
2 – Compute the reaction of the active reactive-cell

/* Reaction of the reactive-cell wB */
1 – firstInstant is set to true
2 – Compute the reaction of the body

/* reaction of simple-state wB */
1 – no effect associated
2 – return PAUSE

3 – set the status of wB to ACTIVE
4 – return PAUSE

3 – r = PAUSE which not equal to DONE
4 – return PAUSE

3 – return PAUSE which is the max of PAUSE and PAUSE
4 – return PAUSE

3 – B = PAUSE
4 – set the status of WaitAandB to ACTIVE
5 – return PAUSE

3 – termination code is not equal to DONE
4 – Return PAUSE

 45

3 – the only STG returns PAUSE
4 – return PAUSE

3 – B = PAUSE
4 – set the status of ABO to ACTIVE
5 – return PAUSE

3 – r = PAUSE, which is not equal to DONE
4 – return PAUSE

3 – the only STG returns PAUSE
4 – return PAUSE

The new stable configuration is {ABRO, ABO, WaitAandB, wA, wB}. Signal O has never
been tested during this reaction. Moreover, it has not been emitted. Its presence status is then
set to absent. Thus, the reaction is:

{ ABRO, ABO, WaitAandB, dA, wB } { }
∅→R,B { ABRO, ABO, WaitAandB, wA, wB }

This execution trace, definitely shows that detailed computation of reactions are not suitable
for human users. Of course, the process can be automated, even if concurrent executions and
suspensions due to triggering signal tests, make it not easy.

In fact, a human user should resort to the above procedures when in doubt about the behavior
of a syncChart, or merely to understand the reaction of a syncChart at a micro-step level.

The ABRO example has illustrated preemption on a hierarchy. We explain now an
instantaneous dialog, already studied in Section 5.3.3. On the execution trace, housekeeping
like nested calls are omitted, advantageously replaced by comments and effective actions.
Moreover, concurrent threads are made explicit. The reader is encouraged to use this kind of
description.

6.4.2 Application to ResMgr
SyncChart ResMgr (Figure 5-6) models the expected behavior of the Resource Manager
Controller. Consider the stable configuration {ResMgr, Wg1, Idle, Idle2}. What is the
reaction for all input signals absent?

Input Signals: T1-, T2-, S1-, S2-
Output Signals: Rn1⊥, Rn2⊥

ResMgr
Local Signals: Rq1⊥, Rq2⊥, Rl1⊥, Rl2⊥, G1⊥, G2⊥

ResMgr_stg_1 ResMgr_stg_2 ResMgr_stg_3
Current state = Wg1 Current state = Idle Current state = Idle2
No strong abortion Test of strong abortion by

Rq1
Test of strong abortion by
T2

Reaction of Wg1: Rq1+ -- suspend -- T2-, no abortion
Test of weak abortion by
G1

-- resume -- Return PAUSE

 46

-- suspend -- Strong abortion taken
 Current state = s1

 First instant: no strong
abortion

 Reaction of s1: G1+
-- resume -- First instant: no weak

abortion

Weak abortion taken Return PAUSE
Current state = Busy1
First instant: no strong
abortion

Reaction of Busy1: Rn1+
First instant: no weak
abortion

Return PAUSE
ResMgr
Return PAUSE

All non input signals not tested during the reaction are set to absent

Figure 6-8: Computation of a Reaction of ResMgr.

Therefore, the reaction is:

{ ResMgr, Wg1, Idle, Idle2 } { }
∅→Rn1 { ResMgr, Busy1, s1, Idle2 }

6.5 Summary
This section has introduced the notion of Reactive-Cell, which plays a central role in the
semantics of SyncCharts. The full computation of a reaction resorts on many concurrent
threads, which suspend their execution when a trigger cannot be evaluated and can resume
when new signal statuses are broadcast. This reflects the underlying constructive semantics of
SyncCharts: a transition is taken (i.e., a microstep is executed) only when its trigger is surely
satisfied (no possibility of trial and back tracking).
Strong abortions are easier to understand because there is no need for recursive execution
within the aborted macrostate. On the contrary, a weak abortion takes place after the body of
the preempted macrostate has been executed, which may entail deep recursions. Another
delicate point is that some states can be activated and de-activated during the same reaction.
Sometimes, newly emitted signals are not enough to resume suspended threads. In this case,
the knowledge of certainly not emitted signals may be used. This information can be derived
from the structure of the syncChart, however this a complex process not detailed in this
report.

 47

7 Causality Cycle

7.1 Abstract
In a synchronous reaction, emitted signals may participate to the reaction by causing new
signal emission. This instantaneous feedback may cause cyclic dependency, leading to
incorrect reaction. The example below illustrates such a behavior known as a causality cycle.

7.2 Example of a Causality Cycle
In the Resource Manager Controller studied in Section 5.3.3, suppose we replace the weak
abortion transitions triggered by G by strong abortion transitions (Figure 7-1):

Figure 7-1: An Instance of Causality Cycle.

Starting with configuration = {Wg1, Idle, Idle2}, microsteps could be the same as in Figure
 5-8. Since User1 sends Rq1, Arbiter leaves the Idle state, enters state s1, and emits G1. Now,
G1 being present, state Wg1 is exited, state Busy1 is entered, and signal Rn1 is emitted
(configuration = {Busy1, s1, Idle2}). Unfortunately, this story is not consistent with the
semantics of the strong abortion. The strong abortion of state Wg1 should have prescribed any
execution within Wg1. Therefore, Rq1 should not have been emitted (Figure 7-2-A). This is
an example of causality cycle: signal Rq1 by a causality chain generates G1, which, in turn,
forbids the emission of Rq1. The consequence has a direct influence on the cause! Adopting
this kind of behavior as a legal one would lead to counter-intuitive semantics. Thus,
SyncCharts with causality cycle are rejected as incorrect ones.
On the other side, there is not such a problem with weak abortion (Figure 7-2-B): the weak
abortion does not forbid execution of the preempted state.

 48

The causality problem should also be detected by the procedures given in Section 6.3.3. We
try to compute the reaction in the same way as in Section 6.4.2

Figure 7-2: Analysis of the Causality Cycle.

Input Signals: T1-, T2-, S1-, S2-
Output Signals: Rn1⊥, Rn2⊥

ResMgr

Local Signals: Rq1⊥, Rq2⊥, Rl1⊥, Rl2⊥, G1⊥, G2⊥

ResMgr_stg_1 ResMgr_stg_2 ResMgr_stg_3
Current state = Wg1 Current state = Idle Current state = Idle2
Test of strong abortion by G1 Test of strong abortion by Rq1 Test of strong abortion by T2

-- suspend -- -- suspend -- T2-, no abortion
 Return PAUSE

The computation cannot proceed any further: the first two parallel branches are suspended and
the third terminated. The only way to resume the computation is to know the presence status
of G1 or Rq1. Since no branch is still running, there is no possibility to emit G1 or Rq1.
However, if we might be sure that G1 or Rq1 or both cannot be emitted during the reaction,
then this absence should negatively terminate the test of strong abortion and the computation
should resume. Considering the structure of the syncChart and its configuration, signal Rq2,
for instance, is certainly not emitted in this reaction. Unfortunately, we cannot be so
categorical with signals G1 and Rq1. In fact these signals are potentially emitted signals, i.e.,
if the reaction could proceed, then they could be emitted. Thus, the computation must be
aborted, and the syncChart rejected. Note that computing potentially emitted signals is a
complex task not detailed in this paper.

To sum up, when the computation of a reaction is stuck, with at least a suspended thread, we
have to inject information about certainly absent signals. “Certainly absent” means that the
absence can be proven. If this additional information is not sufficient to resume the
computation, then the computation is aborted, the syncChart is said to be not constructive and
is rejected. The constructive semantics has been defined by Gérard Berry [Berry 1999] for the
Esterel language. The compatibility of SyncCharts with Esterel implies that the SyncCharts
semantics is also a constructive semantics. A full treatment of this semantics is beyond the
scope of this paper.

 49

8 Advanced Constructs

8.1 Abstract
Other discrete state-transition models, like Statecharts, support hierarchy, concurrency and
some limited forms of preemption. SyncCharts offer two additional concepts very useful in
complex reaction specifications: the immediate transition and the suspension. A third
extension concerns Entry and Exit actions. All are presented in this section. The computation
of the reaction of a Reactive-Cell is then revisited to integrate them.
At this point the reader knows the essentials of SyncCharts.

Then, miscellaneous features follow. They are given for a second reading of the model:
Valued SyncCharts, pre operator, reference macrostate, conditional pseudo-state, and the
issue of signal and state reincarnations.

8.2 Immediate transition
Up to now, after entering a state, the state remains active till a strictly future instant when the
trigger of an outgoing transition is satisfied. A modifier, denoted by a sharp symbol (#),
modifies this behavior. When a trigger is prefixed by # (read immediate), the trigger may be
satisfied as soon as the state is entered. Thus, with an immediate transition, the trigger is
checked for present (immediate) or future satisfaction.

Using immediate transitions avoids delays in reactions. For instance, in the Resource
Manager, we showed (Figure 5-7) that starting with configuration {Wg1, s2, Busy2}, when
S2 became present, configuration {Busy1, s1, Idle2} was reached in two reactions (two
instants). Now considering immediate transitions from Idle to s1 and to s2 (Figure 8-1)
results in a unique reaction from configuration {Wg1, s2, Busy2} to configuration {Busy1,
s1, Idle2}. In this case, state Idle is ``bypassed’’ during the reaction. Note that Idle is a
genuine state, because under other circumstances (Rl2 present but Rq1 and Rq2 absent) state
Idle may stay active.

The immediate abortion is a powerful construct that eliminates unnecessary transient states
during a reaction. The difference between weak and strong immediate abortions must be well
understood. An immediate weak abortion may activate, execute and then de-activate a state
during a reaction (see microsteps of the syncChart in Figure 8-2 when a and b are both
present). Signal Y, which is the effect associated with state q, is emitted during the reaction.
On the contrary, an immediate strong abortion (Figure 8-3) forbids any execution in the
(immediately) preempted state, thus Y is not emitted during the reaction.

 50

Figure 8-1: Controller of the Resource Manager using immediate transitions.

Figure 8-2: Immediate Weak Abortion.

 51

Figure 8-3: Immediate Strong Abortion.

8.3 Suspension
Suspension is a form of preemption. Contrary to abortion that forbids future execution,
suspension only “freezes” the execution of the preempted state. Graphically a suspension
appears as a “lollypop” labeled by a trigger. Whenever the trigger is valid, the reaction is
suspended in the target state.

Suppose that the resource is accessed through a shared bus. When signal D is present a DMA
steals bus cycles, so that User1 can not effectively use the resource and signal Rn is not
emitted while the DMA takes place. Figure 8-4 shows the modified STG for the User Dialog
Controller.

Figure 8-4: Suspension.

Suspension generally applies to macrostate, so that complex behaviors can be suspended by a
single signal. For instance, the activity of the binary counter (Section 5.3.1) may be suspended
by signal inhib (Figure 8-5). Whenever inhib is present, a possible presence of T is ignored,
and neither B0 nor B1 can be emitted. As soon as inhib is no longer present, the counter
resumes its activity. Note that the suspension does not prevent abortions. If reset and inhib

 52

are simultaneously present, the strong abortion is taken, and the initial configuration is
reached ({Cnt2withSuspension, Cnt2, off1, off2}). Of course, a normal termination of a
state cannot occur when the state is suspended.

Figure 8-5: 2-bit Counter with Suspension and Reset.

As with abortion, a suspension is not effective when the state is entered: only a strict future
satisfaction of the trigger will suspend the state. This behavior can be changed by the
immediate modifier. In this case, the state is entered but its body is frozen.
Figure 8-6 is an example using immediate suspension. This example mimics a classical
interruption mechanism. irq is the signal that requests interruption of a complex behavior
encapsulated in the macrostate aTask. ISR is the Interrupt Service Routine. When the ISR
terminates (normal termination on the ISR macrostate) the activity of aTask resumes. If irq is
present when ISR terminates, then the ISR is instantaneously re-entered and aTask does not
resume. Note that there is no need for context saving when aTask is suspended: it is only
frozen.

 53

Figure 8-6: Interruption Mechanism.

8.4 Entry and Exit Actions
Entering and exiting states play a central role in the SyncCharts semantics. In SyncCharts,
there is a possibility to execute instantaneous actions when entering or exiting a macrostate.
For pure SyncCharts, instantaneous action can only be signal emitting.

8.4.1 Entry Actions
Macrostate M in Figure 8-7-A can be entered coming from either s1 or s2. In both cases,
signal Z is emitted. The macrostate shown in Figure 8-7-B has the same behavior. Now,
emitting Z is done when entering macrostate M. The actions to do when entering the
macrostate are written as Esterel statements prefixed by the keyword onEntry. In this example
the action is a simple signal emission, but any instantaneous Esterel statement can be used as
well.
Entry actions can be seen as a kind of factorization. They are not strictly necessary, and yet
they are advisable because they are applications of the WTO (Write Things Once) principle,
already illustrated in Section 5.3.4.

 54

Figure 8-7: Entry Actions.

8.4.2 Exit Actions
Contrary to entry actions, exit actions are not simple factorizations of instantaneous actions.
The idea is to execute instantaneous action(s) whenever a macrostate is exited. A macrostate
can be exited for various causes illustrated in Figure 8-8:

• Normal termination (e.g., macrostate M10);
• Strong or weak abortion (e.g., macrostate M2 strongly preempted by the transition

whose trigger is b);
• Abortion of a containing macrostate (e.g., macrostates M2, M10, and M11 preempted

by the strong abortion of macrostate M0 by signal R).
The actions to do when exiting the macrostate are written as Esterel statements prefixed by
the keyword onExit. These exit actions are performed before taking the transition. When
macrostates with exit actions are nested, the exit actions are executed in the innermost to
outermost order. Note that strong and weak abortions have the same effect on exit actions.
This explains why exit actions are primitive constructs: they cannot be expressed by a
combination of the already studied constructs.

Here are some reactions with exit actions:
{Exits, M0, M10, M2, M11} →Y2, X2, Y1, X11

b+ {Exits, M0, done, M11}

{Exits, M0, done, M11} →Z, Y0, X0
R+ {Exits, M0, M10, M2, M11}

{Exits, M0, M10, M2, M11} →Y2, Y1, X10
a+ {Exits, M0, done, M11}

{Exits, M0, M10, M2, M11} →Y2, Z,Y1, Y0, X0
R+ {Exits, M0, M10, M2, M11}

The microsteps of the last reaction are given in Figure 8-9, Figure 8-10, and Figure 8-11. For
simplicity, the top macrostate is not represented in these pictures.

 55

Figure 8-8: Exit Actions.

Figure 8-9: Microsteps of a reaction with exit actions (1).

Figure 8-10: Microsteps of a reaction with exit actions (2).

 56

Figure 8-11: Microsteps of a reaction with exit actions (3).

8.5 Computation of a Reaction (Revisited)

B = body.react ()

t =testWA ()

t = normTerm

return PAUSE

body.kill ()
c.nextState = t.target
exit actions ()
t.effect ()
return DONE

firstInstant = false

t = testSA ()

IDLE ACTIVE

firstInstant = true

Is t null?

Is t null?

Is t null?

B==DEAD?

t = testSA ()

Is t null?

c.nextState = t.target
t.effect ()
return DONE

t = testSusp ()

B = PAUSE

Entry Actions ()

Figure 8-12: Reaction of a Reactive-Cell (extended version).

 57

The computation of a reaction given in Section 6.3.3 has to be extended to support immediate
preemptions, suspensions, and entry/exit actions. These new features affect only the reaction
of a Reactive-Cell. Figure 8-12 is the new version. New elements in the diagram are colored
red.

Comments
Immediate abortions may cause instantaneous abortion of the state. In this case the status
stays IDLE, the transition is taken, DONE is returned: the state is “by-passed”. If there is not
an immediate strong abortion, then the state is effectively entered, and the entry actions are
performed.
Function testSusp () checks for a possible suspension of the body of the macrostate. If the
body must be suspended, it is not executed at all, and B is set to PAUSE, saying that there is
nothing left to do in the macrostate at the current instant. If the body is not suspended, it
reacts in the usual way, returning its termination code in B. The check for weak abortion must
be done even at the first instant (possible immediate weak abortion).
When the state is exited (rounded rectangle in the right bottom corner of the diagram), exit
actions are performed before taking the transition.

The kill() function is also adapted: it recursively calls the kill function on its components,
then performs its possible exit actions, and finally de-activates the caller.

8.6 Valued SyncCharts

Valued Signals
In the examples so far, signals do not convey a value. Since signals are the support for
synchronization and communication, a value of a given type can associated with a signal.
Valued signals are strongly typed.
For input signals the value of a signal is assigned by the environment, for all other signals, the
value is given by a reaction. In any case, the value of a signal can change only when the
signal is present.
The declaration S:T declares a valued signal S whose values are of type T. The variant S:=t:T
declares signal S of type T with t as its initial value. In the absence of initialization, the value
is undefined (⊥). Let t be an expression whose type is T, action S(t) emits signal S conveying
the value of t. The value of signal S is accessed by ?S. The value is persistent, that is a signal
keeps the value assigned during the last presence instant. Thus, the value of a signal seems to
behave like a variable in imperative languages. This interpretation forgets that SyncCharts are
instant-based models. At each instant, a valued signal should have one and only one value
(possibly ⊥ if not initialized and not yet emitted). So, what if a signal is emitted several times
during a reaction? The answer is that multiple simultaneous emissions are forbidden, except
for especially declared signals. The latter are called combined valued signals, the former
single valued signals.
S: combine T with f declares a combined valued signal S of type T, with a combination binary
function or operator f, which must be commutative and associative. S:= t: combine T with f is
a variant with initialization.
For instance, consider a local signal S defined in a macrostate by

S:=3:combine integer with +.
A possible history for S is:

 58

Other logical objects
Like Esterel, SyncCharts support types, functions, procedures, tasks,... The ready may refer to
the Esterel’s Primer [Berry 1997] for their definitions, which have been imported in
SyncCharts without any change. We just explain the notion of variable used in examples
below.

Variables are assignable objects that have a name and a type. The declaration of a variable is
as follows: var v: T or the initialized variant var v:=t: T, where v is an identifier, T a type, t a
value of type T. Concurrent writing of a variable are forbidden. So, the natural scope of a
variable is an STG. Contrary to signals, a variable may hold different values during a reaction.
This poses no problem with our semantics, which rejects possible concurrent writing of a
variable.
To avoid the issue of concurrent writing, it is advisable to use local signals instead of
variables whenever possible. The memorizing role of a variable can now be played by a
valued signal using the pre operator (see Section 8.8).

Guard
In Valued SyncCharts, a transition may be guarded. The more general form of the label
associated with a transition is trigger [guard] / effect. The guard is an expression that
evaluates to true or false. This expression may use signal and variable values, operators,
functions,...
The guard is evaluated when and only when the trigger is satisfied. If the guard is true, then
the transition is enabled. In Pure SyncCharts, transition enabling and trigger satisfaction seem
to be interchangeable concepts, whereas in Valued SyncCharts the enabling implies the
satisfaction, not the converse. Thus, we cannot spare a concept: the satisfaction of a trigger is
distinct from the enabling of the transition.

Remark on Count Delays
Triggers for preemptions are either simple (a single signal) or complex (combination of
signals with and, or, and not operators) (Section 4.4.1). Instead of waiting for the next
satisfaction of a trigger, one may wait for the nth next satisfaction. This is expressed by an
integer factor written before the signal expression. For instance, 3 S waits for the third strictly
future presence of S; 5 [S and not T] waits for the fifth strictly future satisfaction of the

instant Emissions of S Value of S
k: entering the macrostate none 3

k+1 none 3
k+2 S(5) 5
k+3 none 5
k+4 S(2), S(4), S(1) 7
k+5 none 7
k+6 S(0) 0

 59

conjunction of S present and T absent. Such triggers are called count delays. In order to avoid
ambiguity, immediate count delays are not accepted.
Pure SyncCharts (using only pure signals) may have delays with constant counts known at
compile-time. Valued SyncCharts may have integer expressions as counts for delays. The
expression is then evaluated only once when the delay is initiated. If the (run-time) result is 0
or less, it is set to 1.

8.7 Reference Macrostate
A syncChart may use several instances of a macrostate defined elsewhere as another
syncChart. Instead of in-line insertions of the macrostate, a better practice is to use reference
macrostates (denoted with an @). For instance, the syncChart in Figure 8-13 specifies the
behavior of a T Flip-Flop. The top macrostate of Toggle is instantiated 4 times in the 4-bit
counter (Figure 8-14). The interface objects of the reference macrostate can be renamed when
instantiated (e.g., Cell0@Toggle[signal Tog/T, C0/C, B0/ON] denotes an instance of
macrostate Toggle in which the interface signals T, C, and ON are respectively renamed as
Tog, C0, and B0. The instance itself is named Cell0. Other interface objects like type,
functions,... can also be renamed.
Using reference macrostate is encouraged because it adheres to the WTO principle. A
reference macrostate need not be as simple as the Toggle example. Moreover, a reference
macrostate can contain other reference macrostate: for instance, the 4-bit counter might be
defined as a reference macrostate.

Figure 8-13: SyncChart used as a Reference.

Figure 8-14: 4-bit Counter using Reference Macrostates.

 60

8.8 Pre

Delaying signal occurrence
According to the synchronous semantics, the signal presence is a not persistent information,
valid only at the current time. Sometimes, for instance to break a causality cycle, the effects of
the presence of a signal have to be deferred to the next instant. The macrostates Pre and
ValuedPre (Figure 8-15) offer this behavior in the case of pure signal for the former and of
valued signal for the latter. State wait is exited as soon as S is present. The valued version
memorizes the value of S in a variable (effect vS := ?S, written between two back quotes).
State pause has a trigger-less outgoing transition, so that at the next instant the transition is
taken, and signal preS is emitted. For the valued version, preS is emitted with the value
memorized in vS. The target of the transition is state wait. Because of the immediate abortion
of wait by S, this state becomes active only if S is absent. Otherwise wait is by-passed, and
pause is the new active state. See Figure 8-16 for an execution trace of ValuedPre. The third
reaction is explained at the microstep level in Figure 8-17. This reaction illustrates the fact
that a signal may have several values during a reaction: in the first microstep vS is equal to 3
(the memorized value), and during the second microstep value 5 is assigned to vS.
Note that if the preemption of wait is not immediate, occurrences of S may be lost.

Figure 8-15: Macrostates Pre and ValuedPre.

Figure 8-16: An Execution Trace of Pre.

 61

Figure 8-17: Microsteps in a Reaction of Pre.

Pre operators
Esterel in version 5.91 introduced new operators pre: pre(S) gives the presence status of
signal S at the previous instant; pre(?S) returns the value of S at the previous instant.
SyncCharts have adopted these operators whose implementation is more efficient than their
equivalent macrostate representation (Figure 8-15). When entering the scope of a signal S,
pre(S) is absent, and pre(?S) has the same value as S, if this value is defined, and ⊥
otherwise.

Examples with pre
FilteredSR (Figure 8-18) derives from a classical SR Flip-Flop. Its inputs are “filtered”: an
isolated presence of S or R is not sufficient to trigger a change of state: the presence must be
confirmed at the next instant. Thus, instead of a simple trigger S, the transition from state off
to state on is triggered by S and pre(S), that is, S is present and was present at the previous
instant.

Figure 8-18: Filtered SR Flip-Flop.

Shifter3 (Figure 8-19) is an example using pre with valued signals. Whenever the input signal
I:integer is present with a value v, signal O:integer will be emitted 3 instants later with value
v. An execution trace is given in Table 8-1. The value of the signal is written between
brackets, + denotes the presence, - the absence.

 62

Figure 8-19: Shift Register.

instant 1 2 3 4 5 6 7 8

I (⊥)- (1)+ (2)+ (2)- (3)+ (3)- (3)- (4)+
s0 (⊥)- (⊥)- (1)+ (2)+ (2)- (3)+ (3)- (3)-
s1 (⊥)- (⊥)- (⊥)- (1)+ (2)+ (2)- (3)+ (3)-
O (⊥)- (⊥)- (⊥)- (⊥)- (1)+ (2)+ (2)- (3)+

Table 8-1: An Execution Trace for Shifter3.

Local signal, pre and Suspension
Operators pre are sometimes misunderstood. pre(S) refers to the presence status of S in the
previous instant when the scope of the signal was active; this is not necessarily the previous
(absolute) instant. The syncChart in Figure 8-20 illustrates this situation.
Macrostate Mod3Cnt specifies the behavior of a modulo 3 binary counter. The carry signal C
triggers a delayed abortion of macrostate Cnt. Since transitions of the right-hand STG in Cnt
are trigger-less, the counter progresses at each instant. Suspending the evolutions of Mod3Cnt
when signal T is absent makes a counter driven by T. Note that, according to the semantics of
the suspension, Mod3Cnt executes at the first instant whatever the presence status of T.

Figure 8-20: Local Signal, Suspension, and pre.

 63

Table 8-2 contains an execution trace of the syncChart. C is local to macrostate Mod3Cnt.
When T is absent, the body of Reactive-Cell Mod3Cnt is not executed (see Figure 8-12), and
thus, time is frozen for signal C (Colored entries in the C row). Thus the absolute instant 6, is
only the fourth instant with respect to C, and pre(C) at the absolute instant 6 is the presence
status of C at the absolute instant 4 (i.e., present). Considering C absent at the absolute instant
5 will be a mistake, C just does not exit at this instant!

Instant 1 2 3 4 5 6 7 8 9 10 11 12 13
T - + - + - + - - + - + + -

B0 - + - - - - - - + - - - -
B1 - - - + - - - - - - + - -
C - - + - - + -

Table 8-2: An Execution Trace of PreAndSuspend.

8.9 Conditional Pseudo-state
Sometimes a common trigger is shared by several outgoing transitions. Figure 8-21-A shows
such a case. This syncChart is a variant of the Arbiter. It applies a turning priority policy: the
last user is given a lower priority. Consider state s1 active, which means that the resource is
granted to User1. There exist two transitions to exit this state, respectively triggered by Rl1
and Rq2, and Rl1. The former has priority over the latter. Both are triggered by Rl1, which
indicates that User1 has just released the resource. This event is the primary cause of the
preemption of state s1. The presence of Rq2, which is associated with a pending request from
User2, enables the former transition, whereas its absence enables the latter.
Figure 8-21-B introduces a new notation that clearly shows the trigger common to several
transitions (Rl1) and then the selecting triggers or guards. The intermediate node is a
conditional pseudo-state (a grey circle with an inscribed C). Since a pseudo-state is not a
state, it cannot be active. When a transition entering the pseudo-state is taken, there must
always be an enabled transition leaving the pseudo-state. A good practice is to use an
outgoing transition without trigger and guard as a “catch-all” transition. This transition is
given the lowest priority, and it is taken when all the other transitions are disabled.

Figure 8-21: Arbiter with Turning Priority.

 64

The two syncCharts in Figure 8-21 have the same behavior. Conditional pseudo-states do not
increase the expressiveness of SyncCharts. They only make some charts more readable.
Remark: possible triggers on transitions from a conditional pseudo-state are implicitly
immediate.

8.10 Reincarnation

A Simple Signal Reincarnation Example
A local signal has a well-defined scope: the macrostate in which it is declared. A loop may
provoke the simultaneous existence of two different “incarnations” of a local signal. Figure
 8-22 illustrates this situation.
The only place where local signal S can be emitted is the transition from state q to state r.
This transition cannot be enabled at the initial instant, therefore S is absent. Macrostate
Reincarnation is entered and since S is absent, the transition leading to state q is taken. The
control stays in state q until a future occurrence of A. As soon as A is present the transition to
state r is taken, and signal S is emitted. Now, r being a final state, the normal termination is
taken and macrostate Reincarnation is re-entered. Instantaneously the presence of S is
checked to choose between the two outgoing transitions of the conditional pseudo-state.
Surprisingly, the transition to state p is not taken; the transition to q is taken instead. The
reason for this is that a fresh instance of S has been created when entering macrostate
Reincarnation. Since there is no way to emit signal S from the initial state, the new instance
of S is absent. This presence status is independent from the presence status of the former
instance. Figure 8-23 is a possible execution trace. Figure 8-24 contains the microsteps
executed during the third instant (reincarnation).

Figure 8-22: Signal Reincarnation.

Figure 8-23: An execution trace of Signal_Reincarnation.

 65

Figure 8-24: The microsteps of the third reaction.

Nested State Reincarnation
Loop, immediate preemptions, and priority can lead to amazing, but perfectly consistent
behaviors. Figure 8-25 shows an example especially devised for illustrating these complex
interactions.

Figure 8-25: Nested Reincarnations.

Signal v is a combined integer signal with the multiplication as its combination function. The
value emitted by each transition is a different prime number, so that, the value conveyed by v
faithfully reflects the transitions fired during the reaction.
Consider the configuration {reincarnation, innerMacro, s1}, and signals a, b, c, and d
present. The reaction emits v with the value 11550 = 2×3×52×7×11. The new configuration is
{reincarnation, s3}. This reaction is explained as follows:

 66

1. Macrostate innerMacro must be weakly aborted by the transition whose trigger is c,
which has priority over the one triggered by d. Before firing the weak abortion
transition, the body of the macrostate must be executed.

2. Reaction of the body of innerMacro: s1 is strongly aborted by the transition triggered
by a, which has priority over the transition triggered by b. While taking the transition,
signal v is emitted with 3 for value.

3. State s1 is the target of the transition, so s1 is re-entered. In fact, this is a fresh
instance (re-incarnation) of s1.

4. This fresh instance is receptive to a strictly future occurrence of a, and to a present or
future occurrence of b. Hence, the transition triggered by b is taken, and v is emitted
with 5. State s2 is activated.

5. Since state s2 has no outgoing transition, no more evolution is possible in
innerMacro. The transition triggered by c is then fired. v is emitted with value 7.

6. The target of the transition is macrostate innerMacro, which is re-entered. Again, it is
a re-incarnation. This fresh instance is receptive to strictly future occurrences of c, and
to a present or future occurrence of d.

7. The weak abortion triggered by d is to be taken, but before, the inside of innerMacro
must react.

8. The execution of innerMacro starts with emitting v with value 2 (initial arc) and
enters state s1.

9. This fresh instance of s1 is receptive to a strictly future occurrence of a, and to a
present or future occurrence of b. Hence, the transition triggered by b is taken, and v
is emitted with 5. State s2 is activated.

10. Since state s2 has no outgoing transition, no more evolution is possible in
innerMacro. The transition triggered by d is then fired. v is emitted with value 11.

11. State s3 is activated, and the reaction stops.

Hence, v conveys the value 3×5×7×2×5×11: To recapitulate, a fully explainable behavior, all
but obvious.

 67

9 References

[André 1996a] Charles ANDRÉ, “Representation and Analysis of Reactive Behaviors: A
Synchronous Approach”, Computational Engineering in Systems Applications (CESA), Lille
(F), July 1996. Publisher: IEEE-SMC, pp 19–29.

[André 1996b] Charles ANDRÉ, “SyncCharts: a Visual Representation of Reactive
Behaviors”, I3S Research Report # 96.56, Sophia Antipolis (F), April 1996.

[André et al. 2202] Charles ANDRÉ and Jean-Paul RIGAULT, “Variations on the Semantics
of Graphical Models for Reactive Systems”, SMC'02, Hammamet (TN), October 2002. in
IEEE Press, ISBN: 2-9512309-4-x, CD-ROM index TA2L2.

[Berry 1997] Gérard BERRY, “The Esterel v5 Language Primer”, 1997. (Revision v5_91,
August 2000). Available on the web: http://www.esterel-technologies.com.

[Berry 1999] Gérard BERRY, “The Constructive Semantics of Pure Esterel”, 1999. (Version
3, July 1999). Available on the web: http://www.esterel-technologies.com.

[Berry 2000] Gérard BERRY, “The foundations of Esterel”. In G. Plotkin, C. Stirling, and M.
Tofte, editors, Proof, Language, and Interaction: Essays in Honour of Robin Milner, MIT
Press, 2000.

[Boussinot and De Simone 1991] Frédéric BOUSSINOT, Robert De SIMONE, “The
ESTEREL Language. Another Look at Real Time Programming”, Proceedings of the IEEE,
79:1293–1304, 1991.

[Douglass 2003] Bruce P. DOUGLASS, “Real-Time Design Patterns”, Object Technology
Series, Addison-Wesley, 2003.

[Harel 1987] David HAREL, “Statecharts: A Visual Approach to Complex Systems”, Science
of Computer Programming, 8:231–274, 1987.

[Harel and Naamad 1996] David HAREL and Amnon NAAMAD, “The Statemate Semantics
of Statecharts”, ACM Trans. Soft. Eng. Method. 5:4, October 1996.

[Katz 1994] Randy H. KATZ, “Comtemporary Logic Design”, Benjamin/Cummings
Publishing Company, Inc., 1995

 69

10 Annex

10.1 Esterel-Studio notations
SyncCharts used as an input format in Esterel-Studio have a format slightly different from the
one used in this paper. The following pictures show the correspondence between the two
representations.

10.1.1 Initial state

Figure 10-1: Initial state.

10.1.2 Effect associated with states

Figure 10-2: Effect associated with state.

10.1.3 Suspension

Figure 10-3: Suspension.

10.1.4 Entry and Exit Actions

Figure 10-4: Entry and Exit Actions.

 70

10.2 A Resource Management
This is a (simple) typical system, often referred to in this report.

10.2.1 The system
This system consists of

• A shared resource
• Two users that compete to access the resource
• An access controller (ResMgr)

Figure 10-5: A Resource Management System.

The goal is to program the access controller. This controller is made of three cooperating
controllers:

• Two interface controllers with the users: UCtrl1 and UCtrl2
• An arbitration controller: Arbiter

10.2.2 Black-box view

UCtrl

Figure 10-6: Interface of UCtrl.

 71

Arbiter

Figure 10-7: Interface of Arbiter.

 73

11 Glossary

Abortion

 Strong Abortion
Form of preemption that forbids any reaction within the preempted state prior to the
abortion. A strong abortion transition is drawn as

 Weak Abortion
Form of preemption that lets the preempted state react prior to its abortion. A weak
abortion transition is drawn as

Configuration
A configuration is a maximal set of states (macrostates or simple-states) that a
syncChart could be in simultaneously.

Effect
 An effect is a set of instantaneous actions that are associated with a transition or a
simple-state. For Pure SyncCharts, such actions are only signal emissions. An effect
associated with a transition is executed whenever the transition is taken. An effect
associated with a simple-state is executed once at each instant when the state is active.

Execution traces
An Execution Trace is a representation of a particular behavior of a syncChart as a
sequence of alternating configuration and reaction. A configuration can be described
textually or graphically. A reaction is characterized by the set of present input signals
and the set of emitted signals.
The notation for a reaction is emitted signals

present input signals→

FSM: Finite State Machine
Discrete model made of states and transitions. Changes of state are modeled by
transition firings, triggered by events. FSMs are used in many fields with various
syntax and interpretation. Use in SyncCharts only as an informal model.

Normal Termination
A Normal Termination is a spontaneous exit from a macrostate, this exit occurs when
each of STG of the macrostate is in a final state. A normal termination transition is
drawn as . A normal termination transition should have no trigger.

Preemption
Preemption is the possibility to interrupt the activity of a state either definitively
(abortion) or temporarily (suspension).

Signal
A signal is the unique abstraction for handling communication and synchronization. A
signal has a presence status (present or absent). It may convey a value of a given type.

 74

A signal has a scope: either external or local to a macrostate. External signals are
further classified as input signals and output signals. Local signals are bidirectional.

Combined valued signal
A combined valued signal is a valued signal that can be emitted several times within
one reaction. A combination function or operator is associated with this signal. The
operation must be associative and commutative.

Pure signal
A pure signal conveys no value.

Single valued signal
 A single valued signal is a valued signal that can be emitted only once during a
reaction.

Valued signal
A valued signal conveys a value of a given type.

State
In SyncCharts, a state is either a simple-state or a macrostate.

Active state / Idle state
A state is either active (active point of control) or idle. An idle state may be activated.
An active state may be de-activated.

Final state
A final state is a simple-state in which a STG waits for a normal termination. No effect
is associated with a final state. Graphically, a final state is distinguished by its double
outline.

Label associated with a state
An effect can be associated with a simple-state. The syntax of a label is “/ effect”.

Macrostate
A macrostate is a state that is refined. A macrostate contains a non empty set of
concurrent STGs.

Simple-state
A state that is not refined. An effect can be associated with a simple-state.

STG: State Transition Graph
An STG is a connected direct graph made of states and transitions. An STG has one
initial state, and may have final states. At most one state is active in a STG. It is called
its current state.

Suspension
A form of preemption that suspends the activity of a state while a trigger is satisfied. A
suspension is represented by a “lollypop” . A suspension may be immediate.

 75

Transition
A transition is a link between two states (its source and target states). In SyncCharts, a
transition never crosses the macrostate boundary. A label may be associated with a
transition. There are 3 types of transitions: strong abortion transition (sA), weak
abortion transition (wA), and normal termination transition (nt).

Enabled transition
A transition whose source is active is enabled when its trigger is satisfied and its guard
evaluates to true.

Firing/Taking a transition.
Taking a transition de-activates the source state, performs the associated effect, and
activates the target state. The firing of a transition is instantaneous.

Immediate transition
For an immediate transition the trigger can be satisfied at the instant when the source
state is activated, whereas for non immediate transitions the trigger can be satisfied
only at a strictly future instant. The sharp symbol (#) denotes an immediate transition.

Label associated with a transition
The label of a transition has three optional fields: a trigger, a guard, an effect. Pure
SyncCharts do not have a guard. The syntax of a label is “trigger [guard] / effect ”.

Priority
A distinct integer value is associated with each transition leaving a state (the smaller
integer, the higher priority). Strong abortions must be given higher priority than weak
abortions, which in turn have higher priority than a normal termination.

Tick
tick is a predefined signal, present at each instant.

Trigger
 A trigger is an expression on signals using operators and, or, and not. Some triggers
may have a repetition factor (count delay), written “integer-expression signal-
expression”.

Complex trigger
A complex trigger is an expression effectively using operators and, or, or not.

Satisfaction
A trigger is satisfied when its expression evaluates to true. A simple trigger evaluates
to true when the associated signal is present. A complex trigger is evaluated using the
usual semantics of and, or, and not operators.
A trigger with a repetition factor of n is satisfied when the trigger has been satisfied at
n different instants.

Simple trigger
A simple trigger consists of a single signal.

 76

Trigger-less transition
The absence of a trigger for abortion transitions is interpreted as a simple trigger on the
pre-defined signal tick.

