
Abstract Domains
in Constraint Programming

Marie PELLEAU

February 15, 2015

2

Contents

Abstract . 13

Chapter 1. Introduction . 15

1.1. Context . 16
1.1.1. Constraint Programming . 16
1.1.2. Abstract Interpretation . 17

1.2. Problematic . 18
1.3. Outline of this book . 18
1.4. Contributions . 19

Chapter 2. State of the Art . 21

2.1. Abstract Interpretation . 21
2.1.1. Introduction to Abstract Interpretation 21
2.1.2. General Presentation . 24

2.1.2.1. Lattices . 24
2.1.2.2. Concrete/Abstract . 28
2.1.2.3. Transfer Function . 28
2.1.2.4. Fixpoint . 29
2.1.2.5. Local iterations . 36
2.1.2.6. Abstract Domains . 37

2.1.3. Conclusion . 39
2.2. Constraint Programming . 39

2.2.1. Principles . 41
2.2.1.1. Domains Representation . 42
2.2.1.2. Constraint Satisfaction . 43
2.2.1.3. Solutions, Approximations 44

2.2.2. Propagation . 45
2.2.2.1. Consistency for one constraint 45
2.2.2.2. Propagation Loop . 50

9

10 Abstract Domains in Constraint Programming

2.2.3. Exploration . 52
2.2.4. Resolution Scheme . 52
2.2.5. Exploration Strategies . 55
2.2.6. Discrete/Continuous Comparison 57
2.2.7. Conclusion . 58

2.3. Synthesis . 58
2.3.1. Links between Abstract Interpretation and Constraint Programming 58
2.3.2. Analysis . 60

Chapter 3. Abstract Interpretation for the constraints 63

3.1. Introduction . 63
3.2. Unified Components . 64

3.2.1. Consistency and Fixpoint . 64
3.2.2. Splitting Operator . 69
3.2.3. Abstract Domains . 71

3.3. Unified Solving . 72
3.4. Conclusion . 75

Chapter 4. Octagons . 77

4.1. Definitions . 77
4.2. Representations . 80

4.2.1. Matrix Representation . 81
4.2.2. Intersection of Boxes Representation 84

4.3. Abstract Domains Components . 86
4.3.1. Octagonal Splitting Operator . 86
4.3.2. Octagonal Precision . 87

4.4. Abstract Domains . 89
4.5. Conclusion . 90

Chapter 5. Octagonal Solving . 91

5.1. Octagonal CSP . 91
5.2. Octagonal Consistency and Propagation 94

5.2.1. Octogonal Consistency . 94
5.2.2. Propagation Scheme . 95

5.3. Octagonal Solver . 98
5.3.1. Variables Heuristics . 99
5.3.2. Octogonalization Heuristic . 100

5.4. Experimental Results . 103
5.4.1. Implementation . 103
5.4.2. Methodology . 103
5.4.3. Results . 104
5.4.4. Analysis . 105

Contents 11

5.5. Conclusion . 110

Chapter 6. An Abstract Solver: AbSolute . 111

6.1. Abstract Solving Method . 111
6.1.1. Concrete Solving as Concrete Semantics 112
6.1.2. Abstract Domains Existing in Constraint Programming 112
6.1.3. Abstract Domains Operators . 113
6.1.4. Constraints and Consistency . 116
6.1.5. Disjunctive Completion and Split 116
6.1.6. Abstract Solving . 120

6.2. The AbSolute Solver . 122
6.2.1. Implementation . 122

6.2.1.1. Problem Modelization . 123
6.2.1.2. Abstraction . 124
6.2.1.3. Consistency . 124
6.2.1.4. Splitting Operator . 126
6.2.1.5. Polyhedra Particular Case . 127
6.2.1.6. Solving . 128

6.2.2. Experimental Results . 128
6.2.2.1. Continuous solving . 128
6.2.2.2. Mixed discrete-continuous solving 130

6.3. Conclusion . 131

Chapter 7. Conclusion and Perspectives . 133

7.1. Conclusion . 133
7.2. Perspectives . 134
7.3. Bibliography . 135

12

Abstract

Constraint Programming aims at solving hard combinatorial problems, with a com-
putation time increasing in practice exponentially. The methods are today efficient
enough to solve large industrial problems, in a generic framework. However, solvers
are dedicated to a single variable type: integer or real. Solving mixed problems relies
on ad hoc transformations. In another field, Abstract Interpretation offers tools to
prove program properties, by studying an abstraction of their concrete semantics, that
is, the set of possible values of the variables during an execution. Various represen-
tations for these abstractions have been proposed. They are called abstract domains.
Abstract domains can mix any type of variables, and even represent relations between
the variables. In this book, we define abstract domains for Constraint Programming,
so as to build a generic solving method, dealing with both integer and real variables.
We can also study the octagons abstract domain, already defined in Abstract Inter-
pretation. Guiding the search by the octagonal relations, we obtain good results on a
continuous benchmark. In a second part, we define our solving method using Abstract
Interpretation techniques, in order to include existing abstract domains. Our solver,
AbSolute, is able to solve mixed problems and use relational domains.

13

14

Chapter 1

Introduction

Recent advances in computer science are undeniable. Some are visible, others
less known to the general public: today, we are able to quickly solve many problems
known to be difficult (requiring a long computation time). For instance, it is possible
to automatically place in a tens of seconds, thousands of objects of various shapes
in a minimum number of containers, and respecting specific constraints: accessibil-
ity of goods, non-crush, etc. [BEL 07]. Constraint Programming formalizes such
problems using constraints that describe a result one want to achieve (accessibility
of certain objects, for example). These constraints come with efficient algorithms to
solve greatly combinatorial problems. In another research area, semantics, Abstract
Interpretation (AI) attacks an insoluble problem in the general case: the correction
of programs. With strong theoretical tools developed from its creation (fixpoint theo-
rems), Abstract Interpretation manages to prove properties of programs. In this area,
too, the effectiveness of methods allows impressive applications to be solved: tools in
Abstract Interpretation have, for instance managed to prove that there was no overflow
errors in the flight controls of the Airbus A380 which contain almost 500 000 lines of
code.

The work presented in this book is at the interface between Constraint Program-
ming and Abstract Interpretation, two research areas in computer science with a priori
quite different problematic. In Constraint Programming, the goal is usually to get
good computation time for problems that are in general NP, or extend existing tools
to handle more problems. In Abstract Interpretation, the goal is to analyze very large
programs by capturing a maximum of properties. Yet there is in these two disci-
plines a common concern: identifying an impossible or difficult (computationally)
space to exactly compute: the solutions set in Constraint Programming, the semantics

15

16 Abstract Domains in Constraint Programming

of the program in Abstract Interpretation. It is about computing the relevant over-
approximations of this space. Constraint Programming proposes methods to carefully
surround this space (consistency and propagation), but always with Cartesian over-
approximations (boxes in Rn or Zn). Abstract Interpretation uses often less accurate
over-approximations but not only Cartesian: they may have various different shapes
(boxes but also octagons, ellipsoids, etc.). These non-Cartesian approximation allows
more properties to be captured.

In this book, we exploit the similarities of these over-approximation methods to
integrate Abstract Interpretation tools in methods of Constraint Programming. We
redefine tools in Constraint Programming from notions of Abstract Interpretation
(abstract domains). This is not only an intellectual exercise. Indeed, by generalizing
the description of over-approximations, there is a significant gain in expressiveness in
Constraint Programming. In particular, as the problems are treated uniformly for real
and integer variables, which is not currently the case. We also develop the octagon
abstract domain, showing that it is possible to exploit the relationships captured by
this particular domain to solve continuous problems more effectively. Finally, we
perform the opposite task: we define Constraint Programming as an abstract operation
in Abstract Interpretation, and develop a solver capable of handling practically all
abstract domains.

1.1. Context

As mentioned earlier, the Constraint Programming and Abstract Interpretation
have a common concern: compute efficiently and the most accurately possible an
approximation of a difficult or impossible space. However, the issues and problems of
these two areas are different, as well as their fields of application.

1.1.1. Constraint Programming

Constraint Programming, whose origins date back to 1974 [MON 74], is based on
the formalization of problems such as a combination of first-order logic formulas, the
constraints. A constraint defines a relationship between the variables of a problem: for
example, two objects placed in the same container have an empty geometric intersec-
tion, or heavy objects should be placed under a fragile object. So this is a declarative
programming. Constraint Programming provides efficient generic solution methods
for many combinatorial problems. Academic and industrial applications are varied:
job shop scheduling problems [GRI 11, HER 11a], design of substitution tables in
cryptography [RAM 11], scheduling problems [STØ 11], prediction of the RNA sec-
ondary structure in biology [PER 09], optical network design [PEL 09], or automatic
harmonization in music [PAC 01].

Introduction 17

One of the limitations of the expressiveness of Constraint Programming methods
is that they are dedicated to the nature of the problem: solvers used for discrete vari-
ables problems are fundamentally different from techniques dedicated to continuous
variables problems. In a way, the semantics of the problem is different depending on
whether one deals with discrete or continuous problems.

However, many industrial problems are mixed: they contain both integer and real
variables. This is the case for example of the problem of fast power grid repair after
a natural disasters [SIM 12] to restore the power as quickly as possible in the affected
areas. In this problem, we try to establish a plan of action and determine the routes
that should be used by repair crews. Some of the variables are discrete, for example, to
each device (generator, line) is associated to a Boolean variable indicating whether it
is operational or not. Others are real, as the electrical power on a line. Another exam-
ple of application is the design of the topology of a multicast transmission network
[CHI 08]: we want to design a network that is reliable. A network is said reliable,
when it is still effective when one of its components is defective, so that all user com-
munications can pass into the network with the least possible delay. Again, some of
the variables are integers, the number of lines in the network, others are continuous,
the flow of information passing over the network average.

The convergence of discrete and continuous constraints in Constraint Program-
ming is both an industrial need and a scientific challenge.

1.1.2. Abstract Interpretation

The basis of Abstract Interpretation were established in 1976 by Cousot and
Cousot [COU 76]. Abstract Interpretation is the theory of semantic approximation
[COU 77b] which one of the applications is programs proof. The goal is to verify
and prove that a program does not contain a bugs, that is to say, runtime errors.
Industrial stakes are high. Indeed, many bugs have made history as the bug of 2000,
due to system design error. On January 1st 2000, some systems showed the date of
January 1st 1900. This bug should be repeated on January 19th 2038 on some UNIX
systems [ROB 99]. Another example of a bug is that of the infamous inaugural flight
of the Ariane 5 rocket, which, due to an error in the navigation system, caused the
destruction of the rocket only 40 seconds after takeoff.

Every day new softwares are developed, corresponding to thousands or millions
of lines of code. To test or verify these programs by hand would require considerable
time. The soundness of programs can not be proven in a generic way, thus Abstract
Interpretation implements methods to automatically analyze certain properties of a
program. The analyzers are based on operations on the semantics of programs, that
is, the set of values that can be taken by the variables of the program during its exe-
cution. By computing an over-approximations of these semantics, the analyzer can

18 Abstract Domains in Constraint Programming

for example prove that the variables do not take values beyond the permitted ranges
(overflow).

Many analyzers are developed and used for various application areas such as
aerospace [LAC 98, SOU 07], radiation [POL 06] or particle physics [COV 11].

1.2. Problematic

In this book, we focus on Constraint Programming solving methods called com-
plete, that find the solution set or prove that it is empty, if necessary. These methods
are based on an exhaustive search of the space of all possible values, also called search
space. Using operations to restrict the space to visit (consistency and propagation),
these methods can be accelerated. Existing methods are dedicated to a certain type of
variable, discrete or continuous. Facing a mixed problem, containing both discrete and
continuous variables, Constraint Programming offers no real solution and techniques
available are often limited. Typically, variables are artificially transformed so that
they are all discrete as in the solver Choco [TEA 10], or all continuous as in the solver
RealPaver [GRA 06]. In Abstract Interpretation analyzed programs often contain, if
not always, different types of variables. Theories of Abstract Interpretation integrate
many types of domains, and helped develop analyzers uniformly dealing with discrete
and continuous variables.

We propose to draw inspiration from the work of the Abstract Interpretation com-
munity on the different types of domains to provide new solving methods in Constraint
Programming. These new methods should be able, in particular, to approximate with
various shapes and solve mixed problems.

1.3. Outline of this book

This book is organized as follows. Chapter 2 gives the mandatory notions of
Abstract Interpretation and Constraint Programming to understand our work and an
analysis of the similarities and differences between these two research areas. Based on
the similarities identified between Constraint Programming and Abstract Interpreta-
tion, we define abstract domains for Constraint Programming, with a resolution based
on these abstract domains, Chapter 3. The use in Constraint Programming of an exam-
ple of abstract domain existing Abstract Interpretation, the octagons, is detailed Chap-
ter 4. Chapter 5 gives the solving method implementation details presented chapter
3 for octagons. Finally, Chapter 6 redefines the concepts of Constraint Programming
using the techniques and tools available in Abstract Interpretation, to define a method
called abstract resolution. A prototype implementation is finally presented as well as
experimental results.

Introduction 19

1.4. Contributions

The work of this book aims at designing new solving techniques for Constraint
Programming. There are two parts in this work. In the first part, the abstract domains
of Abstract Interpretation are defined for Constraint Programming, so as different
operators required for the solving process. These new definitions allow us to define
a uniform resolution framework that no longer depend on the variables type or on
the representation of the variables values. An example of a solver using the octagon
abstract domain and respecting the framework is implemented in a continuous solver
Ibex [CHA 09a], and tested on examples of continuous problems. In the second
part, the different Constraint Programming operators needed to solve are defined
in Abstract Interpretation, allowing us to define a solving method with the existing
operators in Abstract Interpretation. This method was then implemented over Apron
[JEA 09], a library of abstract domains.

Most theoretical and practical results of the chapters 3, 4, 5 and 6 are the subject
of publications in conferences or journals [TRU 10, PEL 11, PEL 13, PEL 14].

20

Chapter 2

State of the Art

In this chapter we present the notions upon which Abstract Interpretation is based
and the principles of Constraint Programming. We do not do an exhaustive presen-
tation of both areas, but rather give the notions needed for the understanding of this
book. The concepts discussed include those of partially ordered set, lattice and fix-
point, which are at the basis of the underlying theories in both fields. It also includes
the in place tools, such as narrowing and widening operators in Abstract Interpretation
or consistency and splitting operator in Constraint Programming. Finally, this chapter
presents a analysis of the similitudes between Abstract Interpretation and Constraint
Programming upon which rely the works presented in this book.

2.1. Abstract Interpretation

The founding principles of Abstract Interpretation were introduced in 1976 by
Patrick and Radhia Cousot [COU 76]. In this section, we only present some aspects
of Abstract Interpretation that will be needed afterward. For a more complete presen-
tation see [COU 92a, COU 77a].

2.1.1. Introduction to Abstract Interpretation

One of Abstract Interpretation (AI) applications is to automatically prove that a
certain type of bugs does not exist in a program, that there is no error during a program
execution. Let’s see on an example.

Example 2.1.1 – Consider the following program:
1: real x, y

21

22 Abstract Domains in Constraint Programming

2: x← 2
3: y ← 5
4: y ← y ∗ (x− 2)
5: y ← x/y

The backtrace for this program is:

line x y
1 ? ?
2 2 ?
3 2 5
4 2 0
5 2 NaN Error: division by zero

On toy examples like this one, the backtrace allows one to quickly detect that the
program contains errors. However, real life programs are more complex and larger in
term of lines of code, it is thus impossible to try all the possible executions. Moreover,
the Halting theorem states that it is undecidable to prove that a program terminates.

Nowadays, computer science is omnipresent and critical programs may contain
thousands or even millions of lines of code [HAV 09]. In these programs, execution
errors are directly translate into significant cost. For example, in 1996, the destruction
of the Ariane 5 rocket was due to an integer overflow [Ari96]. Or in 1991, American
Patriot missiles failed to destroy an enemy Scud killing 28 soldiers due to a rounding
error that has been propagated through the computations [Mis92]. We must therefore
ensure that such programs do not have any executions errors. Moreover, this shall be
done in a reasonable time without having to run the program. Indeed, sending probes
in space just to check if the program is correct, in the sense that it does not contain
execution errors, is not a viable solution form an economical and ecological point of
view. This is where Abstract Interpretation comes into play. One of its applications
is to verify that a program is correct during the compilation process and thus before
it is executed. The main idea is to study the values that can be taken by the variables
throughout the program. We call semantics the set of these values and specification
the set of all the desired behaviors such as never divided by zero. If the semantics
meets all the given specifications then we can say that the program is correct.

An important application of Abstract Interpretation is the design of static programs
analyzers that are correct and complete. An analyzer is said to be correct if it answers
that a program is correct only when this program does not contain any execution error.
There exist several static analyzers, we distinguish two types, the correct ones such
as Astrée [BER 10] and Polyspace [Pol10], and the non-correct ones such as Coverity
[COV 03]. These analyzers all have industrials applications. For instance, Astrée was
able to automatically prove the absence of runtime errors in the primary flight control

State of the Art 23

software of the Airbus A340 fly-by-wire system. And more recently, it analyzed the
electric flight control code for the Airbus A380 [ALB 05, SOU 07]. Polyspace was
used to analyze the flight control code for the Ariane 502 rocket [LAC 98] and verify
security softwares of nuclear installations [POL 06]. As for Coverity, it has been used
to verify the code of the curiosity Mars Rover [COV 12] and ensure the accuracy of
the Large Hadron Collider (LHC) software [COV 11], the particle accelerator that led
to the discovery of the Higgs Boson particle.

Computing the real semantics, called concrete semantics, is very costly and unde-
cidable in the general case. Indeed, Rice’s theorem states that any non-trivial prop-
erty formulated only on the inputs and outputs of a program is undecidable. Thus,
the analyzers compute an over-approximation of the concrete semantics, the abstract
semantics. The first step is to associate to each instruction of the program a function.
This function modifies the set of possible values for the variables with respect to the
instruction. The program thus becomes a composition of these functions and the set of
observable behaviors corresponds to a fixpoint of this composition. The second step is
to define an abstract domain to restrict the expressivity by keeping only a subset of the
properties on the program variables. An abstract domain is a computable data struc-
ture used to depict some of the program properties. Moreover, abstract domains come
with efficient algorithms to compute different operations on the concrete semantics
and allowing the fixpoint to be computed in a finite time. The analyzer always observe
a superset of the program behaviors, thus all the found properties by the analyzer are
verified for the program, however it can omit some of them.

Example 2.1.2 – Consider the following program:
1: real x, y
2: x← random(1, 10)
3: if x mod 2 = 0 then
4: y ← x/2
5: else
6: y ← x− 1
7: end if

As the variable x takes its value between 1 and 10 (instruction 2), one can deduce
that the variable y takes its value between 0 and 8. However, the fact that for every
execution y < x is an omitted property by the intervals abstract domain but can be
found with the polyhedra abstract domain.

We present in the following subsections the theoretical notions upon which the
Abstract Interpretation relies.

24 Abstract Domains in Constraint Programming

2.1.2. General Presentation

The Abstract Interpretation underlying theory used notions of fixpoint and lattices.
These notions are re-called in this section.

2.1.2.1. Lattices

Lattices are a well-known notion in Computer science. Here they are used to
express operations on abstract domains and require some properties, such as being
closed and complete.

Definition 2.1.1 (Poset). A relation v on a non-empty set D is a partial order (po)
if and only if it is reflexive, antisymmetric and transitive. A set with a partial order
is called partially ordered set (poset). If they exist, we denote by ⊥ the least element
and by > the greatest element of D.

Example 2.1.3 – Let F be the set of floating-point numbers according to the IEEE
norm [GOL 91]. For a, b ∈ F, we can define [a, b] = {x ∈ R, a ≤ x ≤ b} the real
interval delimited by the floating-points numbers a and b, and I = {[a, b], a, b ∈ F}
the set of intervals. Given an interval I ∈ I, we denote by I (resp. I) its lower
(resp. upper) bound and for all point x, x (resp. x) its lower (resp. upper) floating
approximation.

Let In be the set of Cartesian product of n intervals. The set In with the inclusion
relation ⊆ is a partially ordered set.

Remark 2.1.1 – Note that the inclusion relation ⊆ is a partial order. Thus, for any
non-empty set E, P(E) with this relation is a partially ordered set.

Definition 2.1.2 (Lattice). A partially ordered set (D,v,t,u) is a lattice if and only
if for a, b ∈ D, the pair {a, b} has a least upper bound (lub) denoted by a t b, and a
greatest lower bound (glb) denoted by a u b. A lattice is said complete if and only if
any subset has both a least upper bound and a greatest lower bound.

In a lattice, any finite subset has a least upper bound and a greatest lower bound.
In a complete lattice, any subset has a least upper bound and a greatest lower bound,
even if the subset is not finite. A complete lattice thus has a greater element denoted
by >, and a least element denoted by ⊥.

Remark 2.1.2 – Notice that any finite lattice is automatically complete.

Figure 2.1 gives examples of partially ordered sets represented with Hasse dia-
grams. The first one (Figure 2.1(a)) corresponds to the power sets of the set {1, 2, 3}
with the set inclusion⊆. This partially ordered set is finite and has a least element {∅}

State of the Art 25

{∅}

{1} {2} {3}

{1, 2} {1, 3} {2, 3}

{1, 2, 3}

{a, b}

a u b

a t b

(a) (P({1, 2, 3}),⊆,∪,∩)

1

23

4

5

6
10

12

15

2030

60

a u b

a

b

a t b

(b) Set of all the divisors of 60 ordered by the divisibility
relation

{∅}

{1} {2} {3}

{1, 2} {1, 3} {2, 3}{a, b}

a u b

(c) (P({1, 2, 3}) \ {1, 2, 3},⊆,∪,∩)

{∅}

{2} {3}

{1, 2} {1, 3} {2, 3}

{1, 2, 3}

{a, b}

a u b

a t b

(d) (P({1, 2, 3}) \ {1},⊆,∪,∩)

Figure 2.1. Examples of partially ordered sets represented with Hasse diagram.

and a greatest element {1, 2, 3}. Hence, it is a complete lattice. For instance, the pair
{{1, 2}, {1, 3}} has a least upper bound {1, 2} ∩ {1, 3} = {1} and a greatest lower
bound {1, 2} ∪ {1, 3} = {1, 2, 3}.

The second one (Figure 2.1(b)) corresponds to the set of the divisors of 60:
{1, 2, 3, 5, 6, 10, 12, 15, 20, 30, 60} with the divisibility relation. Similarly, this par-
tially ordered set has a least element 1 and a greatest element 60. Thus it is a complete
lattice. The pair {3, 4} has a greatest lower bound 1 (their greatest common divisor)
and a least upper bound 12 (their least common multiple).

26 Abstract Domains in Constraint Programming

On the contrary, the third example (Figure 2.1(c)) is not a lattice. Indeed, the pair
{{1, 2}, {1, 3}} does not have a least upper bound. Likewise, if the element {∅} is
removed from the lattice Figure 2.1(a), the partially ordered set obtained is no longer
a lattice. However, removing any element that is neither the least nor the greatest
element of the lattice does not change the fact that it is a lattice as shown on Figure
2.1(d).

Example 2.1.4 – It is easily verified that the partially ordered set (In,⊆,∪,∩) with
the least element ⊥ = ∅ and the greatest element > = Fn is a complete lattice. Let
I = I1 × · · · × In and I ′ = I ′1 × · · · × I ′n be any two elements of In. The pair {I, I ′}
has a glb

I ∩ I ′ = [max(I1, I
′
1),min(I1, I ′1)]× · · · × [max(In, I

′
n),min(In, I ′n)]

and a lub

I ∪ I ′ = [min(I1, I
′
1),max(I1, I ′1)]× · · · × [min(In, I

′
n),max(In, I ′n)]

It follows that any subset has a least upper bound and a greatest lower bound and
therefore (In,⊆,∪,∩) is a lattice. Moreover, this lattice is finite, thus (In,⊆,∪,∩) is
a complete lattice.

Lattices are the base set upon which rely the abstract domains in Abstract Inter-
pretation. An important feature of the abstract domains is that they can be link by
Galois connexion. Notice that some abstract domains do not have a Galois connexion
(Remark 2.1.5). Galois connexion have been applied to the semantics by Cousot and
Cousot in [COU 77a] as follows.

Definition 2.1.3 (Galois Connexion). Let D1 and D2 be two partially ordered sets, a
Galois Connexion is defined by two morphisms, an abstraction α : D1 → D2 and a
concretization γ : D2 → D1 such that:

∀X1 ∈ D1, X2 ∈ D2, α(X1) v X2 ⇐⇒ X1 v γ(X2)

Galois connexion are usually reprsented as follows:

D1 −−→←−−α
γ D2

Remark 2.1.3 – An important consequence of this definition is that the function α and
γ are monotonic for the order v [COU 92a], that is:

∀X1, Y1 ∈ D1, X1 v Y1 ⇒ α(X1) v α(Y1), and
∀X2, Y2 ∈ D2, X2 v Y2 ⇒ γ(X2) v γ(Y2)

State of the Art 27

(a) (b) (c)

Figure 2.2. Approximations for a circle

Remark 2.1.4 – This definition implies that (α◦γ)(X2) v X2 andX1 v (γ◦α)(X1).
X2 is said to be an approximation (or abstraction) correct of X1.

Remark 2.1.5 – Note that for a given abstract domain there can be no abstraction func-
tion. For instance, the polyhedra abstract domain has no abstraction function. Indeed,
there exists an infinity of approximations of a circle with a polyhedron. Therefore,
there is no Galois connexion for the polyhedra abstract domain.

Figure 2.2 shows three different approximations for a circle using polyhedra. As
there exists an infinity of tangent to the circle, there potentially exists a polyhedron
with an infinite number of sides exactly approximating the circle.

Galois connexion are used in Constraint Programming even thought there are not
named. For instance there are used when solving continuous problems. Indeed, as
the intervals with real bounds are not computer representable, there are approximated
with intervals with floating-point bounds. The transition from one representation to
the other forms a Galois connexion as shown in the following example.

Example 2.1.5 – Let J be the set of intervals with real bounds. Given two partially
ordered sets (In,⊂) and (Jn,⊂), there exists a Galois connexion:

Jn −−−→←−−−αI

γI In

αI([x1, y1]× · · · × [xn, yn]) = [x1, y1]× · · · × [xn, yn]
γI([a1, b1]× · · · × [an, bn]) = [a1, b1]× · · · × [an, bn]

In this example, the abstraction function αI transforms a Cartesian product of real
bound intervals into a Cartesian product of floating-point bounds intervals. It approx-
imates each real bounds by the closest floating-point number rounded in F in the cor-
responding direction. As for the concretization function, it is straightforward since a
floating-point number is also a real.

28 Abstract Domains in Constraint Programming

2.1.2.2. Concrete/Abstract

The concrete domain, denoted by D[, corresponds to the values that can be taken
by the variables throughout the program D[= P(V) with V a set. Computing the
concrete domain can be undecidable, thus an approximation is accepted. The approx-
imation of the concrete domain is called abstract domain and is denoted by D]. If
there exists a Galois connexion between the concrete domain and the abstract domain,
D[−−→←−−α

γ D], then any concrete function f [in D[as an abstraction f] in D] such that

∀X] ∈ D], (α ◦ f [◦ γ)(X]) v f](X])

This is a consequence of the Remark 2.1.4. Moreover, the abstract function f] is said
optimal if and only if α ◦ f [◦ γ = f].

In the following we will write D (resp. f) for a domain (resp. function) in general
(wheter it is concrete or abstract). And we will write D[and f [for a concrete domain
and a concrete function, andD] and f] for an abstract domain and an abstract function.

2.1.2.3. Transfer Function

In order to analyze a program, each line of code is analyzed. To do so, each
instruction is associated to a function, called transfer function, which modifies the
possible values for the variables.

Definition 2.1.4 (Transfer Function). Let C be the line of code to analyze. Given
an initial set of states, a transfer function F : P(D) → P(D) returns a set of envi-
ronments corresponding to all the possible accessible states after the execution of C.
We will write {|C|} the transfer function for the instruction C and {|C|}X when it is
applied to the environments set X .

Example 2.1.6 – Consider the affectation x ← expr with x a variable and expr any
expression. The transfer function {|x ← expr|} only modifies in the initial environ-
ments set the possible values for the variable x.

Let x and y be two variables taken their values in [−10, 10]. The transfer function
{|x ← random(1, 10)|} only modifies the values for x. We now have x in [1, 10] and
y in [−10, 10].

Example 2.1.7 – Let us now consider a boolean expression, the transfer function only
keeps the environments satisfying the boolean expression. Let x and y be two vari-
ables taken their values in [−10, 10]. For the boolean expression x ≤ 0, the transfer
function {|x ≤ 0|} filters the values of x so as to satisfy the boolean expression. We
now have x in [−10, 0] and y in [−10, 10].

Remark 2.1.6 – In the following, any transfer function is supposed to be monotonic.

State of the Art 29

2.1.2.4. Fixpoint

Abstract Interpretation also rely on the notion of fixpoint.

Definition 2.1.5 (Fixpoint). Let F be a function, we called fixpoint of F , an element
X such that F (X) = X . We denote by lfpX F a least fixpoint of F bigger than X ,
and gfpX F a greatest fixpoint of F smaller than X .

Remark 2.1.7 – Note that when F is monotonic, if the least or the greatest fixpoint
exists then it is unique.

Each instruction of the program is associated with a transfer function. The pro-
gram thus corresponds to a composition of these functions. Proving that the program
is correct is equivalent to computing the least fixpoint of this composition of func-
tions. The computation of the fixpoint is mandatory to analyze loops for instance. The
functions associated to the loop are applied several times until the fixpoint is reached.

There exists several possible iterative schemas. Let (X1, . . . , Xn) be the set of
environments set, Xi corresponds to the environments set for the instruction i. We
denote by Xj

i the set of environments for the instruction i at the iteration j. Let Fi be
the transfer function for the instruction i. The most common iterative scheme is the
Jacobi iterations one. The value of Xj

i is computed using the environments sets from
the previous iteration:

Xj
i = Fi(X

j−1
1 , . . . , Xj−1

n)

An another iterative scheme is the Gauss-Seidel iterations one. It computes the value
of Xj

i using the environments sets already computed at the current iteration and the
environments sets from the previous iteration:

Xj
i = Fi(X

j
1 , . . . , X

j
i−1, X

j−1
i , Xj−1

i+1 , . . . X
j−1
n)

In the examples of this section, we use the Gauss-Seidel iterations.

Example 2.1.8 – Consider the following program:
1: int x, y
2: x← 0
3: y ← x
4: while x < 10 do
5: y ← 2x
6: x← x+ 1
7: end while

We have:

30 Abstract Domains in Constraint Programming

X1 = >
X2 = {|x← 0|}X1

X3 = {|y ← x|}X2

X4 = X3 ∪X6

X4′ = {|x < 10|}X4

X5 = {|y ← 2x|}X4′

X6 = {|x← x+ 1|}X5

X7 = {|x ≥ 10|}X4

with X4′ the set of environments if the condition of the while loop is satisfied. All
the environments set are initialized at ⊥ = ∅, except the first one which is initialized
to > = Z2.

By applying a first time all the transfer functions, we obtain:

X1 = >
X2 = {x = 0, y ∈ Z}
X3 = {x = y = 0}
X4 = {x = y = 0}
X4′ = {x = y = 0}
X5 = {x = y = 0}
X6 = {x = 1, y = 0}
X7 = ⊥

By applying a second time all the transfer functions, we obtain:

X1 = >
X2 = {x = 0, y ∈ Z}
X3 = {x = y = 0}
X4 = {x ∈ J0, 1K, y = 0}
X4′ = {x ∈ J0, 1K, y = 0}
X5 = {x ∈ J0, 1K, y ∈ J0, 2K}
X6 = {x ∈ J1, 2K, y ∈ J0, 2K}
X7 = ⊥

where Ja, bK = {x ∈ Z | a ≤ x ≤ b} the intervals of integers between a and b.

The sets of environments X2 and X3 have not been modified and depend on envi-
ronments sets that have not been modified either. We thus said that their fixpoint is
reached and their transfer functions are not applied anymore. On the contrary, the set
of environments X7 have not been modified but depends on environments sets that
have been modified (X4). The other transfer functions are applied until the fixpoint is
reached. After twelve iterations, the fixpoint is reached. We thus have:

State of the Art 31

X1 = >
X2 = {x = 0, y ∈ Z}
X3 = {x = y = 0}
X4 = {x ∈ J0, 10K, y ∈ J0, 18K}
X4′ = {x ∈ J0, 9K, y ∈ J0, 18K}
X5 = {x ∈ J0, 9K, y ∈ J0, 18K}
X6 = {x ∈ J1, 10K, y ∈ J0, 18K}
X7 = {x = 10, y ∈ J0, 18K}

We can thus say that throughout this program, the variable x is between 0 and 10
and that the variable y is between 0 and 18. Furthermore, after the execution of this
program, the variable x is equal to 10 and the variable y is between 0 and 18. This
results is an approximation of the possible values, indeed, at the end of the program
execution, y is always equal to 18.

Analyzing a program is equivalent to over-approximating the value of the environ-
ment at any point in the program. Starting from the least element ⊥, the successive
application of the transfer functions allows the fixpoint to be computed. This fix-
point corresponds to the least fixpoint of the composition of the transfer functions
bigger than⊥. We can say that in Abstract Interpretation, computing the least fixpoint
lfp⊥ F with F : D → D the composition of the transfer functions and D a complete
partially ordered set or lattice, is equivalent to analyzing the program.

However, the least fixpoint may not be reached when its computation is undecid-
able. In this case, an approximation is computed. Additionally, the computation of the
fixpoint can converge very slowly, especially when analyzing a loop. To accelerate
this process, a widening operator is used.

Definition 2.1.6 (Widening). The binary abstract operator O] from D] ×D] to D] is
a widening if and only if:

1) ∀X], Y] ∈ D], (X] O] Y]) w] X], Y], and

2) for any chain (X]
i)i∈N, the increasing chain (Y]i)i∈N defined by:

{
Y]0 =X]

0

Y]i+1 =Y]i O
] X]

i+1

is stable after a finite number of iterations, i.e., ∃K such that Y]K+1 = Y]K .

The widening operator allows the lest fixpoint lfp to be computed. It computes,
in function of several previous iterations, an approximation of the least fixpoint by
staying above it in the lattice. This operator performs increasing iterations, that is
iterations that make the set of possible values for the variables grows.

32 Abstract Domains in Constraint Programming

Remark 2.1.8 – For any partially ordered set, the widening computes an approxima-
tion of the least fixpoint in a finite number of iterations. In particular, when the consid-
ered partially ordered set has an infinite increasing chain, the widening is required to
reach an approximation of the least fixpoint in a finite number of iterations. It ensures
the termination of the analysis.

Remark 2.1.9 – Notice that if the widening and the transfer functions are correct, then
the correction of the analysis is ensured.

Remark 2.1.10 – If the result obtain with the widening meet the specifications, then
the program is correct. In fact, if the set of environments X meets the specifications
then a smaller set of environments X ′ v X also meets them. However, nothing can
be deduced if the result obtain with the widening does not meet the specifications.

Example 2.1.9 – Let us consider the program in Example 2.1.8. This time we use
a widening operator to analyze the while loop. We thus redefine the environment
corresponding to the loop condition:

X4 = X4 O
] (X3 ∪X6)

with O] a widening operator such that:

Ja, bK O] Jc, dK =

s{
a if a ≤ c
−∞ otherwise ,

{
b if b ≥ d
+∞ otherwise

{
and,

X O] ⊥ = X and ⊥ O] X = X

This operator sets the upper bound for the variable x to +∞ if between two iterations
the interval of the variable x grows toward +∞. Conversely, the lower bound is set to
−∞ if the interval for the variable decreases.

Let’s look at the evolution of the environment for X4. After the first iteration, we
have:

X4 =⊥ O] {x = y = 0}
= {x = y = 0}

Which corresponds to the result obtained after the first iteration in Example 2.1.8.
After the second iteration, we obtain:

X4 = {x = y = 0} O] {x ∈ J0, 1K, y = 0}
= {x ∈ J0,+∞K, y = 0}

The widening operator deduces from the previous iteration that the interval for x
grows in the loop et thus modifies its upper bound. Similarly, at the following iteration,
the widening deduces that the interval for y grows in the loop and modifies its upper
bound. After two iterations, the fixpoint is reached. We now have:

State of the Art 33

X1 = >
X2 = {x = 0, y ∈ Z}
X3 = {x = y = 0}
X4 = {x ∈ J0,+∞K, y ∈ J0,+∞K}
X4′ = {x ∈ J0, 9K, y ∈ J0,+∞K}
X5 = {x ∈ J0, 9K, y ∈ J0, 18K}
X6 = {x ∈ J1, 10K, y ∈ J0, 18K}
X7 = {x ∈ J10,+∞K, y ∈ J0,+∞K}

We can thus say that after the execution of instruction 7, the variable x is greater
or equal to 10 and that the variable y is positive. This is less precise than the result
obtained in Example 2.1.8. However, only four iterations were required to reach the
fixpoint, which is three times less than without using the widening.

Remark 2.1.11 – Note that the number of iterations required to reach the fixpoint with
the widening operator does not depend on the constants in the program. By replacing
the constant 10 by 100 or 1000, the iterations without the widening will converge more
slowly, while those with the widening will not be affected by this change.

This operator can generate a very large over-approximation of the fixpoint, as
shown in Example 2.1.9 where the only information that we obtained for y is that
it is positive while in Example 2.1.8 we were able to infer that y was less or equal to
18. Similarly, the variable x is greater or equal to 10 while in Example 2.1.8 it was
equal to 10. In order to refine this approximation, a narrowing operator can be used.

Definition 2.1.7 (Narrowing). The abstract binary operator M] from D]×D] to D] is
a narrowing if and only if:

1) ∀X], Y] ∈ D], (X] u] Y]) v] (X] M] Y]) v] X], and

2) for any chain (X]
i)i∈N, the chain (Y]i)i∈N defined by:

{
Y]0 =X]

0

Y]i+1 =Y]i M
] X]

i+1

is stable after a finite number of iterations, i.e., ∃K such that Y]K+1 = Y]K .

Like the widening, the narrowing deduces form the previous iterations an over-
approximation of a fixpoint. However the computed fixpoint is not necessary the least
fixpoint lfp. Indeed, the narrowing operator computes an approximation of a fixpoint
(gfp or lfp) while remaining above it. Unlike the widening, the narrowing performs
decreasing iterations, that is iterations that make the set of possible values for the
variables lessens.

34 Abstract Domains in Constraint Programming

Example 2.1.10 – Let us consider the program in Example 2.1.8. In the previous
example (Example 2.1.9), we used a widening operator in order to speed up the com-
putation of the fixpoint. Using this operator generated a large over-approximation.
Starting from the result obtained in Example 2.1.9, we use a narrowing operator to
refine this result. The environment corresponding to the loop condition is thus rede-
fined as:

X4 = X4 M
] (X3 ∪X6)

with M] a narrowing operator such that:

Ja, bK M] Jc, dK =

s{
c if a = −∞
a otherwise ,

{
d if b = +∞
b otherwise

{
and,

X M] ⊥ = ⊥ and ⊥ M] X = ⊥

This operator only reduces the infinity bounds. The bounds are thus reduced at most
one time.

Let us see the evolution of the environment X4, after the first iteration, we have:

X4 = {x ∈ J0,+∞K, y ∈ J0,+∞K} M] {x ∈ J0, 10K, y ∈ J0, 18K}
= {x ∈ J0, 10K, y ∈ J0, 18K}

Which correspond to the result obtained after eleven iteration in the Example 2.1.8.
After only two iterations, the fixpoint is reached and is the same as in Example 2.1.8.
By using the widening and the narrowing operators, the fixpoint is reached in six
iterations, which is two times less that without using them. Note that in this example
the reached fixpoint is the same in both case. In general, if a fixpoint is reached in
a finite number of iterations without using a widening and a narrowing operator then
this fixpoint may be more precise than the one obtained using these two operators.

Notice that starting from Example 2.1.9, applying the transfer functions as defined
in Example 2.1.8 generates decreasing iterations. These decreasing iterations reduce
the environments without using the narrowing operator.

The schema of an approximation of a fixpoint using a widening and a narrow-
ing operator is given Figure 2.3. Starting from the least element ⊥, two increasing
iterations are performed. The set of possible values for the variables grows. Then
a widening operator O] is used making the environment go above the least fixpoint
lfp. Note that the widening may make the environment go above the greatest fixpoint
gfp. The narrowing operator M] is then used in order to refine the obtained approxi-
mation. This decreasing iteration refine the approximation while staying above of the
considered fixpoint, which in our case is the least fixpoint lfp. To sum up, starting
from an environment under the desired fixpoint the widening operator makes the set
of variables values grows allowing a point above the fixpoint to be reached. As for

State of the Art 35

⊥

>

lfp

gfp

O]

M]

Figure 2.3. Schema of an approximation of the least fixpoint using a widening and a
narrowing operator.

the narrowing, given an environment above a fixpoint, it reduces the set of variables
values while staying above the considered fixpoint.

While a lot of work has been devoted to designing smart widenings [BAG 05a,
BAG 05b, BAG 06, SIM 06, D’S 06, COR 08, MON 09, SIM 10], narrowings have
gathered far less attention [COU 92b, MOR 93, ALP 93, HIC 97, COR 11]. Some
major domains, such as polyhedra, do not feature any. This difference of interest
between the widening and the narrowing may be explained by three facts: firstly, nar-
rowings are not necessary to achieve soundness unlike widenings which are manda-
tory. Indeed, the widening allows an approximation of the least fixpoint to be com-
puted even if the partially ordered set has an infinite increasing chain. So if the result
obtained with the widening meets the given specifications then the considered pro-
gram is sound. However if the result obtained with the widening does not meet the
specifications, this does not mean that the program is not sound. This can be due to
a toot large over-approximation. Therefore, it is mandatory for the widening to be
properly designed to minimize the over-approximation and thus avoid false alarms.

Secondly, applying the transfer function without widening and narrowing opera-
tors may performs a bounded number of decreasing iterations and is sometimes suf-
ficient to recover enough precision after widening [BER 10]. This is the case for the
program used to illustrate this section (Example 2.1.8). After the widening, the use of
the transfer functions without widening reduces the environments leading to a more
precise approximation of the least fixpoint. In this example, the resulting fixpoint is

36 Abstract Domains in Constraint Programming

the same as the one obtained with the narrowing. Moreover, the termination is guar-
anteed as the number of decreasing iterations is finite and generally fixed in advance.

Finally, when this simple technique is not sufficient, narrowing operators do not
actually help further in practice to improve the accuracy and other methods beyond
decreasing iterations must be considered such as the one presented by Halbwachs
and Henry in [HAL 12]. After a series of both increasing and decreasing iterations,
the fixpoint is reached, however the achieved precision is not satisfactory. In this
article, the authors propose to apply a series of iterations and keep only a portion of
the previous result. In other words, to keep for each environment only the possible
values for a subset of variables. The performed experiments show a reduction of the
over-approximation generated by the widening operator.

Nevertheless, when the over-approximation is due to imprecise transfer functions,
another solution is to used local iterations introduced by Granger in 1992 [GRA 92].
A series of decreasing iterations is applied several times. This method is detailed in
the next section.

2.1.2.5. Local iterations

The abstract transfer function F] w (α ◦ F [◦ γ) does not always compute
efficiently the smallest abstract domain containing the considered expression, even
though when it is optimal (γ ◦ F] ◦ α) = F [. To efficiently compute the result of the
transfer functions, transfer functions often involve lower closure operators [GRA 92].

Definition 2.1.8 (Lower Closure Operator). An operator ρ : D → D is a lower cloture
operator if and only if ρ is:

1) monotonic, ∀X,Y ∈ D, X v Y ⇒ ρ(X) v ρ(Y)

2) reductive, ∀X ∈ D, ρ(X) v X , and
3) idempotent, ∀X ∈ D, ρ(X) = (ρ ◦ ρ)X .

Granger’s work [GRA 92] shows that by iterating several times lower closure oper-
ators the approximation of the fixpoint may be improved. Given a correct abstrac-
tion ρ] of ρ[, the limit Y]δ of the sequence of the narrowing operator, Y]0 = X],
Y]i+1 = Y]i M ρ

](Y]i) is an abstraction of (ρ[◦ γ)(X]). Note that even if ρ] is not
an optimal abstraction of ρ[, Y]δ may be significantly more precise than ρ](X]). A
relevant application is the analysis of complex test conjunction C1 ∧ · · · ∧ Cp where
each atomic test Ci is modeled in the abstract as ρ]i . Generally, ρ] = ρ]1 ◦ · · · ◦ ρ]p is
not optimal, even when each ρ]i is.

Lower closure operators may be reformulated as a fixpoint. This unifies the use
of narrowings and brings out the similarities in the iterative computations. Given an

State of the Art 37

element X , ρ computes the greatest fixpoint smaller than X , that is ρ(X) = gfpX ρ.
Local iterations may be used at any time in the analysis and not only after a widening.

Given a program to analyze, an abstract domain is chosen to best represent the pro-
gram properties. Ther exists several types of abstract domains. A short presentation
of abstract domains is given in the next subsection.

2.1.2.6. Abstract Domains

Abstract domains play a key role in Abstract Interpretation. Because of the
importance of numerical properties and variables in a program, many numerical
abstract domains are developed. Major ones include intervals [COU 77a] and poly-
hedra [COU 78]. Recent years have seen the development of many new abstract
domains capturing other properties, such as octagons [MIN 06], ellipsoids [FER 04],
octahedra [CLA 04] and even varieties [ROD 04]. In addition, support libraries for
abstract domains such as Apron [JEA 09] were designed. These new domains can
handle all kinds of numeric variables, mathematical integers, rationals, reals, machine
integers and floating-point numbers [MIN 12]. They even express relationships
between variables of different types [MIN 04], and between numeric and boolean
variables [BER 10]. Moreover, generic operators can be used to build new domains
from existing abstract domains such as disjunctive completion [COU 92a], reduced
products [COU 79, COU 07, COU 11] and partitioning [BOU 92, RIV 07]. These
abstract domains are bricks in static analyzers, which generally use different abstract
domains simultaneously. It is crucial to carefully choose (or design) abstract domains
for a given problem. This is usually done by hand based on the properties that must
be deducted.

These various representations are grouped according to their expressiveness. The
more expressible properties by an abstract domain are complex, the more it will be
accurate. Expressible properties by an abstract domain corresponds to the relations
between different variables that can be represented by the abstract domain. In other
words, the more representable relations between variables are complex, the more the
abstract domain is accurate. This precision usually comes at a cost in terms of compu-
tation time. There are three main categories: the non-relational, relational and weakly
relational domains. In the first family, the properties are expressed on a single vari-
able, the abstract domains of this family are the least expressive. To represent several
variables, we use a Cartesian product of the selected domain. The best known in this
area is the intervals abstract domains [COU 76] where each variable is represented
with an interval of possible values for this variable.

In the other two families of abstract domains, we can, as their name suggests,
have relations between variables. Relational domains are very expressive. There
exist a large diversity of these abstract domains. For instance, there is the polyhedra
abstract domains [COU 78], which expresses linear relationships between variables,

38 Abstract Domains in Constraint Programming

(a) Intervals (b) Octagons (c) Polyhedra

Figure 2.4. Different abstract domains representing the same set of points

and the ellipsoids abstract domain [FER 04], expressing second degree polynomials of
ellipses. The last family, the weakly relational domains is a tradeoff between the two
families named above. It is composed of abstract domains offering a tradeoff between
accuracy and computation time. These weakly relational domains can represent some
of the possible expressible properties between variables. They were introduced in
2004 by Miné [MIN 04]. Among these abstract domains there exists the zone abstract
domain expressing inequalities of the form v1 − v2 ≤ c with v1 and v2 variables
and c a constant, and the octagon abstract domain expressing inequalities of the form
±v1 ± v2 ≤ c.

Figure 2.4 shows for a same set of points an example of abstract domain of each of
the three categories previously named. The first one corresponds to a non-relational
domain, the intervals (2.4(a)), the second to a weakly relation domain, the octagons
(2.4(b)), and the last one to a relational one, the polyhedra (2.4(c)). We can see that
the more the properties representable by an abstract domain are complex, the more the
abstract domain is accurate. The polyhedra are more precise than the octagons which
are more precise than the intervals.

An abstract domain corresponds to a computable set D] with the partial order
@] to handle computable elements. Therefore, every operators in D[must have an
abstraction in D]. These different operators are listed below.

Operators on abstract domains:
– a concretization function γ : D] → D[, and if it exists an abstraction function

α : D[→ D] forming a Galois connexion D[−−→←−−α
γ D],

– a least element⊥] and a greatest element>] such that γ(⊥]) = ∅ et γ(>]) = V
with D[= P(V),

– efficient algorithms to compute transfer functions,
– efficient algorithms for the meet ∪] and join ∩],

State of the Art 39

– efficient algorithms for the widening O] if D] has an infinite increasing chain,
and

– if it exists and D] has an infinite decreasing chain, efficient algorithms for the
narroxing M].

Note that there may be no abstraction function et no narrowing operator, and,
although relatively rare, there can be no join. As mentioned Remark 2.1.5, the poly-
hedra abstract domain has no abstraction function and therefore no Galois connexion.
Moreover, it does not feature any narrowing operator. Although they may not exist,
these different operators are useful in order to have only one possible representation
for a given concrete domain (abstraction) and to refine the over-approximation while
computing the fixpoint (narrowing).

2.1.3. Conclusion

The previous sections have briefly presented Abstract Interpretation. The main
definitions and notions needed in the following are given. For a more detailed presen-
tation the reader is advised to read [COU 77a] for instance.

To sum up, Abstract Interpretation automatically analyzes programs in order to
certify that they do not contain any execution errors. This analyze relies on the compu-
tation of the program semantic, the set of all the possible values for the variables of the
program. Directly computing the concrete semantic can be very consuming in terms of
computation time and even be undecidable. Thus the semantic is abstracted. In other
words, only some characteristics are kept in order to simplify and speed up the process
while keeping the process sound. For each concrete operators, an abstract operator is
defined and efficient algorithms are designed. The abstract semantic is approximated
using an abstract domain. There exists several abstract domains in Abstract Interpre-
tation offering different tradeoff between precision and computation time.

After this survey of Abstract Interpretation general theory and techniques, the next
section briefly presents Constraint Programming, its principles, scientific challenges
and resolution techniques.

2.2. Constraint Programming

Constraint Programming (CP) has been introduced in 1974 by Montanari
[MON 74]. It relies on the idea that combinatorial problems can be expressed
as a conjunction of first-order logic formulas, called constraints. A problem is said
combinatorial when it contains a very large number of combinations of possible
values. Take the example of a Sudoku puzzle: each cell that does not already have
a value can take the value between 1 and 9. The number of all the possible grids,

40 Abstract Domains in Constraint Programming

corresponding to the enumeration of all the possible values for all the empty boxes, is
very large. If only 10 cells are empty, this number is larger than 3 million. It is equal
to 9k where k is the number of empty cells as each empty cell has 9 possible values.
This is a combinatorial problem. Listing all these grids to check if they correspond
to a solution would take too long. Constraint Programming implements techniques
to efficiently solve such combinatorial problems. As described by E. Freuder, in
Constraint Programming, the user specifies the problem and the computer solves it:

“Constraint Programming represents one of the closest approaches computer
science has yet made to the Holy Grail of programming: the user states the
problem, the computer solves it.”

– Eugene C. Freuder [FRE 97].

In order to define the problem, the user defines the constraints, that are the speci-
fications of the problem. A constraint represents a specific combinatorial relationship
of the problem [ROS 06]. Still with the example of Sudoku, the fact that each number
between 1 and 9 appears exactly once in each row is a constraint. Each constraint
comes with ad hoc operators using the structure expressed by the constraint to reduce
combinatorics. The constraints are then combined into solving algorithms. Most
research efforts in Constraint Programming focuses on defining and improving con-
straints [FAG 11], developing efficient algorithms [BES 11, PET 11] or fine tuning for
the solvers [ANS 09, ARB 09]. There are many global constraints [BES 03, BEL 10]
and each comes with an algorithm reducing its combinatorics.

Constraint Programming provides effective techniques for combinatorial res-
olution with many real-life applications, among which are scheduling [GRI 11,
HER 11a], cryptography [RAM 11], rostering [STØ 11], music [TRU 11], biology
[PER 09], or network design problems [PEL 09].

However, there are still limitations to the use of Constraint Programming, one of
the most important being the lack of solving algorithms capable of handling both dis-
crete and continuous variables. In 2009, works [BER 09, CHA 09b] have proposed
methods to solve mixed problems, however, the techniques used transform the vari-
ables in order to only have discrete or continuous variables.

Finally, Constraint Programming offers only limited choices of variables represen-
tations which are integer or real Cartesian product of a set of base.

In the following we present the basics of Constraint Programming necessary for
the understanding of this book. We will focus only on the aspects that interest us. For
a more detailed presentation, see [ROS 06].

State of the Art 41

2.2.1. Principles

In Constraint Programming, the problems are modeled in a specific format, as a
Constraint Satisfaction Problem (CSP). Variables can either be integer or real.

Definition 2.2.1 (Constraint Satisfaction Problem). A constraint satisfaction problem
(CSP) is defined by a set of variables (v1 . . . vn) taking values in domains (D̂1 . . . D̂n)
and a set of constraints (C1 . . . Cp). A constraint is a relation on a subset of variables.

Domain Di is the set of possible values for the variable vi. The set of all possible
assignments for the variables D = D1 × · · · ×Dn is called search space. The search
space is modified throughout the resolution, we note the initial search space D̂ =
D̂1 × · · · × D̂n. Problems can either be discrete (D̂ ⊆ Zn) or continuous (D̂ ⊆ Rn) .
Domains are always bounded in R or Z.

The CSP solutions are the elements of D̂ satisfying the constraints. We denote by
S the solution set S = {(s1 . . . sn) ∈ D̂ | ∀i ∈ J1, pK, Ci(s1 . . . sn)}. For a constraint
C, we note SC = {(s1 . . . sn) ∈ D̂ |C(s1 . . . sn)} the solution set for C

Example 2.2.1 – Let’s consider the following 4× 4 Sudoku grid:

3 1

4

1 2

1

A possible model is to associate to each cell a variable as follows:

v1 v2 v3 v4

v5 v6 v7 v8

v9 v10 v11 v12

v13 v14 v15 v16

Each variable can take a value between 1 and 4. We thus have D̂1 = D̂2 = · · · =
D̂16 = J1, 4K. To specify that a cell has a fixed value, one can either modify its
domain D̂3 = {1}, or add the constraint v3 = 1. In a Sudoku each row, each column
and each block must contains exactly once each value. For the first row, we thus have
v1 6= v2, v1 6= v3, v1 6= v4, v2 6= v3, v2 6= v4, and v3 6= v4. Specifying that all

42 Abstract Domains in Constraint Programming

the variables of a subset have to be different can be done using the global constraint
alldifferent: for the first row, we can replace the six constraints listed above by the
constraint alldifferent(v1, v2, v3, v4).

We obtain a CSP with sixteen variables (v1 . . . v16) taking their values in the
domains D̂2 = {3}, D̂3 = D̂9 = D̂16 = {1}, D̂8 = {4}, D̂10 = {2}, all the other
domains being equal to J1, 4K, and twelve constraints, (C1 . . . C4) corresponding to
the rows, (C5 . . . C8) to the columns, and (C9 . . . C12) to the blocks:

C1 : alldifferent(v1, v2, v3, v4) C5: alldifferent(v1, v5, v9, v13)

C2 : alldifferent(v5, v6, v7, v8) C6: alldifferent(v2, v6, v10, v14)

C3 : alldifferent(v9, v10, v11, v12) C7: alldifferent(v3, v7, v11, v15)

C4 : alldifferent(v13, v14, v15, v16) C8: alldifferent(v4, v8, v12, v16)

C9 : alldifferent(v1, v2, v5, v6)

C10: alldifferent(v3, v4, v7, v8)

C11: alldifferent(v9, v10, v13, v14)

C12: alldifferent(v11, v12, v15, v16)

Solutions of this CSP correspond to all the Sudoku grids properly filled. In this
example there is one unique solution:

4 3 1 2

2 1 3 4

1 2 4 3

3 4 2 1

2.2.1.1. Domains Representation

Depending on the variables type, the domain may be stored as a range or a set of
points. In the case of an integer variable vi, the domain can be represented as a subset
of points Di or as a sub-interval of Di.

Definition 2.2.2 (Integer Cartesian Product). Let v1, . . . , vn be variables with discrete
finite domains D̂1, . . . , D̂n. We call integer Cartesian product any Cartesian product
of any integer set in D̂. Integer Cartesian products of D̂ form a finite lattice for the
inclusion:

S =

{∏

i

Xi | ∀i,Xi ⊆ D̂i

}

State of the Art 43

Definition 2.2.3 (Integer Box). Let v1, . . . , vn be variables with discrete finite
domains D̂1, . . . , D̂n. We call integer box any Cartesian product of integer intervals
in D̂. Integer boxes of D̂ form a finite lattice for the inclusion:

IB =

{∏

i

Jai, biK | ∀i, Jai, biK ⊆ D̂i, ai ≤ bi
}
∪ ∅

For real variables, as the reals are not computer representable, their domains are
represented by floating bounds intervals.

Definition 2.2.4 (Box). Let v1, . . . , vn be variables with bounded continuous domains
D̂1, . . . , D̂n ∈ I. We call box any Cartesian product of floating bounds intervals in D̂.
The boxes in D̂ form a finite lattice for the inclusion:

B =

{∏

i

Ii | ∀i, Ii ∈ I, Ii ⊆ D̂i

}
∪ ∅

2.2.1.2. Constraint Satisfaction

For integer variables, given an instantiation for the variables, a constraint answers
true if this variables assignment satisfies the constraint and false otherwise.

Example 2.2.2 – Let v1 and v2 be two integer variables with domains D1 = J0, 2K,
D2 = J0, 2K. LetC : v1 +v2 ≤ 3 be a constraint. Given the assignment of the variable
v1 at 2 and of the variable v2 at 0, the constraint C answers true, i.e. C(2, 0) is true.
In contrast, C(2, 2) is false.

In the case of real domains, an important feature is that constraints can answer:
– true, if the box only contains solutions,
– false, if the box contains no solution at all,
– and maybe, when one cannot determine if the box contains solutions. This can

happen when a box contains both solutions and non solutions elements

These different answers are due to the interval arithmetic [MOO 66]. In order to know
whether a constraint is satisfied, each variable is replaced by its domain. Then the
constraint is evaluated given the rules of interval arithmetic.

Let I1, I2 ∈ I be two intervals such that I1 = [a1, b1] and I2 = [a2, b2], we have
the following formulas:

44 Abstract Domains in Constraint Programming

I1 + I2 =
[
a1 + a2, b1 + b2

]

I1 − I2 =
[
a1 − b2, b1 − a2

]

I1 × I2 = [min
(
a1 × a2, a1 × b2, b1 × a2, b1 × b2

)
,

max
(
a1 × a2, a1 × b2, b1 × a2, b1 × b2

)
]

I1/I2 = I1 × [1/a2, 1/b2] if 0 /∈ I2

I2
1 =

[
min

(
a2

1, b
2
1

)
,max

(
a2

1, b
2
1

)]
if 0 /∈ I1[

0,max
(
a2

1, b
2
1

)]
otherwise

Example 2.2.3 – Let v1 and v2 be two continuous variables with domains D1 = [0, 2]
et D2 = [0, 2]. Consider the three following constraints:

C1: v1 + v2 ≤ 6
C2: v1 − v2 ≥ 4
C3: v1 − v2 = 0

Given the variables domains, the first constraint C1 answers true. Indeed, by
replacing v1 and v2 by their domains, we have [0, 2] + [0, 2] = [0, 4], and so [0, 4] ≤ 6
which is true since any point of the interval [0, 4] is less than or equal to 6. The sec-
ond constraint C2 answers false, indeed [0, 2] − [0, 2] = [−2, 2] and the condition
[−2, 2] ≥ 4 is always false. As for the last constraint, it answers maybe: we have
[−2, 2] = 0, the only possible deduction is that there maybe are values of v1 and v2

for which the constraint is satisfied.

2.2.1.3. Solutions, Approximations

Given a problem, we try to solve it, that is to find solutions to this problem. In
the case of discrete variables, a solution is an instantiation of all variables, which
corresponds to have a single value in each domain. In the case of continuous variables,
it is considered as a solution a box containing only solutions or small enough. The
fact that a solution is contained in small solution boxes is unclear. By being small, it
reduces the chances of not containing any solution but does not delete them.

Solving a Constraint Programming problem is equivalent to compute the solution
set or an approximation of it. In the case of discrete variables, list all the solutions is
possible but can be expensive. Depending on the application, when a problem has a
large number of solutions, we do not necessarily want to list them all. For example,
consider x ∈ Z an integer variable, the constraints x ≥ 0, x ≤ 999 have a very
large number of solutions (1000), and one can only want one or a subset of solutions.
For continuous variables, the set of solutions can be infinite and to list them is then
impossible. It is, for example, impossible to enumerate the real numbers between 0
and 1. Moreover, for a finite set of solutions, it is unlikely that the actual solutions are
computer representable. In this case, an approximation of the solution set is accepted.

State of the Art 45

Definition 2.2.5 (Approximation). A complete approximation (resp. sound approxi-
mation), of the solution set is an union of domain sequences or products D1 . . . Dn

such that Di ⊆ D̂i and S ⊆ ⋃(D1 × · · · ×Dn) (resp.
⋃

(D1 × · · · ×Dn) ⊆ S).

Soundness guarantees that we find only solutions, while completeness guarantees
that no solution is lost. On discrete domains, constraint solvers are expected to be
sound and complete, i.e., compute the exact set of solutions. This is generally impos-
sible on continuous domains given that the reals are not computer representable, and
one usually withdraw either soundness (most of the time) or completeness. In the
first case, the resolution returns boxes that may contain points that are not solutions
[BEN 99], we speak of outer approximation or over-approximation. This approxima-
tion is the most common. For most problems one seeks to know all the answers, and
more importantly one wants to be sure not to lose any.

In the second case, all the returned boxes contain only solutions [COL 99,
CHR 06]. In this case, we speak of inner approximation or under-approximation.
This type of approximation appears in problems where we want to be sure that
all points are good solutions, for example when controlling a robot arm surgery
[ABD 96], we want to ensure that the robot arm remains in the area of operation.
Another example is the control of a camera [BEN 04]. In this problem we want to
determine the movements that must be performed by a camera (travel, zoom, etc.) to
achieve an animation of a scene and a plan type specified by the user.

Remark 2.2.1 – The notions of correctness and completeness are different in Abstract
Interpretation and Constraint Programming. To avoid ambiguity, we use the term over-
approximation for a CP-complete AI-sound approximation and under-approximation
for an AI-complete CP-sound approximation.

To solve a problem, that is, to compute the set of solutions (or an approximation in
the case of reals) of the CSP, the CP-complete solving methods alternate two phases:
propagation and exploration.

2.2.2. Propagation

First, propagation algorithms try to reduce the domains based on the constraints.
The domains values that cannot be part of a solution, are deleted form domains. These
values are called inconsistent.

2.2.2.1. Consistency for one constraint

Given a constraint C and domains, the consistency deletes all the inconsistent
values for the constraint C from the domains. Several version of consistency have

46 Abstract Domains in Constraint Programming

been proposed, such as generalized arc consistency, also known as hyper-arc consis-
tency or domains consistency [MAC 77b], path-consistency [MON 74], k-consistency
[FRE 78, FRE 82] or even bound consistency, also called interval consistency
[DEC 03, HEN 95, APT 03, SCH 05]. They differ according to the domains type
and their "strength". The strength is evaluated by the number of inconsistent values
deleted from the domains. The stronger a consistency is, the more expensive it is in
term of computation time and memory. We will come back to this point later. Theses
consistencies are based on the notion of support.

Definition 2.2.6 (Support). Let v1 . . . vn be variables on finite discrete domains
D1 . . . Dn, Di ⊆ D̂i, and C a constraint. The value xi ∈ Di has a support if and only
if ∀j ∈ J1, nK, j 6= i,∃xj ∈ Dj such that C(x1, . . . , xn) is true.

The most usual consistencies are the following.

Definition 2.2.7 (Generalized Arc-Consistency). Given variables v1 . . . vn on finite
discrete domains D1 . . . Dn, Di ⊆ D̂i, and C a constraint. The domains are called
generalized arc-consistent (GAC) for C if and only if ∀i ∈ J1, nK,∀x ∈ Di, x has a
support.

The Generalized Arc-Consistency only keeps the values for which there is a solu-
tion for the constraint C, namely, values having a support.

Remark 2.2.2 – This consistency is also known as hyper-arc consistency or domains
consistency [MAC 77b].

Example 2.2.4 – Let (v1, v2) be two variables on discrete domains D1 = D2 =
{−1, 0, 1, 2, 3, 4} and v1 = 2v2 + 2 be a constraint. The arc-consistent domains for
this CSP are D1 = {0, 2, 4} and D2 = {−1, 0, 1}.

Values−1 and 1 have been removed from v1 domain because there exists no value
for v2 such that the constraints is satisfied. Similarly, if v2 ≥ 2 we can deduce that
v1 ≥ 6. However the maximum value for v1 is 4. Thus, the values greater than or
equal to 2 can be removed from the domain of v2.

The generalized arc-consistency for a binary constraint C has a time complexity
in the worst case of O(d2) [MOH 86], with d the size of the largest domain. Note
that this complexity does not take into account the complexity of the constraint. For
each variable, every values must be tested in order to ensure that they have a sup-
port. For constraints with more than two variables, verifying that the domains are
arc-consistent is NP-complete, and even when the constraints are linear [CHO 06].
However, there are specific algorithms for certain types of constraints. For instance

State of the Art 47

there exists a dedicated algorithm for different versions of the alldifferent global con-
straint [SEL 02, HOE 04, GEN 08].

Other consistencies on discrete variables have been defined, such as the bound
consistency based on the integer box representation. It is defined as follows.

Definition 2.2.8 (Bound Consistency). Let v1 . . . vn be variables on finite discrete
domains D1 . . . Dn, Di ⊆ D̂i, and C a constraint. The domains are said bound-
consistent (BC) for C if and only if ∀i ∈ J1, nK, Di is and integer interval, Di =
Jai, biK, and ai and bi have a support.

This consistency is weaker than the generalized arc-consistency, in fact it only
checks whether the bounds of the domains have a support.

Remark 2.2.3 – There exist many different definition of the bound-consistency
[CHO 06] (bound(D)-consistency, bound(Z)-consistency, bound(R)-consistency or
even range consistency). The one we define above corresponds to the bound(Z)-
consistency.

Example 2.2.5 – Let (v1, v2) be two variables on discrete domains D1 = D2 =
J−1, 4K and v1 = 2v2 + 2 be a constraint. The bound-consistent domains for this CSP
are D1 = J0, 4K and D2 = J−1, 1K.

The bound-consistent and arc-consistent domains D2 for the variable v2 are the
same (−1, 0, and 1) although the representations are different (integer interval or
set). On the contrary the bound-consistent domain D1 = J0, 4K for the variable v1

is a more compact representation than the arc-consistent domain D1 = {0, 2, 4} but
contains more values for v1.

By intuition, one can say that the complexity of computing the bound consistency
for a binary constraint is in the worst case O(d2) with d the maximum domains size.
Indeed, in the worst case, the bound consistency keeps only one value in the domains.
Thus it has to check if each value has a support. Deciding bound consistency of a
constraint is NP-hard [SCH 05, CHO 06]. Note that there exist several studies giving
effective algorithms to compute the bound consistency of specific constraints, such as
the global constraint alldifferent [PUG 98, MEH 00, LÓP 03], the global constraint
gcc [KAT 03, QUI 03] or set constraints [HEN 08].

There are also different consistencies for continuous variables domains, such as
Hull-consistency, Box-consistency or the extension of the generalized arc consistency
for continuous constraints [BEN 94]. We only present here the Hull-consistency as
defined in [BEN 97b].

48 Abstract Domains in Constraint Programming

Definition 2.2.9 (Hull-Consistency). Let v1 . . . vn be variables on continuous
domains represented with intervals D1 . . . Dn ∈ I, Di ⊆ D̂i, and C a constraint.
Domains D1 . . . Dn are said Hull-consistent (HC) for C if and only if D1× · · · ×Dn

is the smallest box with floating-point bounds containing the solutions for C in
D1 × · · · ×Dn.

Example 2.2.6 – Consider two variables (v1, v2) on continuous domains D1 = D2 =
[−1, 4] and the constraint v1 = 2v2 + 2. The hull-consistent domains for this CSP are
D1 = [0, 4] and D2 = [−1, 1].

There exist several algorithms computing the Hull-consistency for a constraint. In
1999, Benhamou et al. in [BEN 99] propose and algorithm HC4-Revise based on the
a tree representation of the constraint in order to compute the Hull-consistency in a
linear time O(e) with e the number of unary or binary operators in the constraint.
More recently a new algorithm Mohc-Revise [ARA 10] studies the monotony of the
constraint so as to compute the Hull-consistency.

Example 2.2.7 – Let us consider the CSP from Example 2.2.6. The constraint v1 =
2v2 + 2 is represented with the following syntax tree:

=

v1 +

× 2

2 v2

[−1, 4]

[−1, 4]

The nodes corresponding to a variable are tagged with the corresponding variable
domain. The HC4-Revise algorithm performs a first pass in tree from the leaves to
the root. During this first pass, it uses the interval arithmetic [MOO 66] in order to
tag each node by its interval of possible values. For instance, the node (×) is tagged
2 × [−1, 4] = [−2, 8]. The root tag is computed using its children but also given the
type of constraint. In this example, the constraint being an equality the root tag is
equal to the intersection of its children nodes interval.

State of the Art 49

=

v1 +

× 2

2 v2

[−1, 4]

[−1, 4]

[−2, 8]

[0, 10]

[0, 4]

Then a second pass is performed, but this time from the root to the leaves. It gives
to all the nodes the information obtained at the root and can modify the possible values
at each node. The node (×) is now tagged [0, 4]− 2 = [−2, 2].

=

v1 +

× 2

2 v2

[0, 4]

[−1, 1]

[−2, 2]

[0, 4]

[0, 4]

By applying this algorithm, we obtain the same results as in the example 2.2.6
(D1 = [0, 4], D2 = [−1, 1]).

Remark 2.2.4 – Note that it is not always the case, as the HC4-Revise algorithm can
computes an approximation of the Hull-consistency. For instance when there exists
multiple occurrences of a variable in the constraint, the result obtained with the HC4-
Revise algorithm can be an over-approximation of the hull-consistent domains.

Figure 2.5 shows the different consistencies obtained in examples 2.2.4, 2.2.5 and
2.2.6. In Figures 2.5(a) and 2.5(b) the points correspond to the Cartesian product
of the consistent domains. There are 3 solution points and are represented by green

50 Abstract Domains in Constraint Programming

v1

v2

(a) GAC

v1

v2

(b) BC

v1

v2

(c) HC

Figure 2.5. Différentes consistances pour la contrainte v1 = 2(v2 + 1).

squares. With the Cartesian product of the arc-consistent domains (Figure 2.5(a)), we
obtain 9 points, while with the bound-consistent domains (Figure 2.5(b)), we obtain
15 points. We can deduce that, the stronger the chosen consistency is, the higher the
ratio of number of solution points on the total number of points is. Figure 2.5(c) shows
the hull-consistent box. The solutions are also in green and correspond to the diagonal
in the box. We can see that in this box there are more non-solution points than solution
points.

For a given constraint C, an algorithm taking as input the domains and remov-
ing from them the inconsistent values is called a propagator and is denoted by ρC .
The HC4-Revise algorithm is a propagator for the Hull-consistency. The propagators
usually return and over-approximation of S. Sometimes they compute exactly the
consistent domains, but as this can be very expensive or intractable, they generally
return an over-approximation of the consistent domains.

For several constraints, the propagators of each constraint are iteratively applied
until a fixpoint is reached. This is called the propagation loop.

2.2.2.2. Propagation Loop

As the domains representation, previously introduced (Definitions 2.2.2, 2.2.3,
2.2.4), form finite complete lattices for inclusion, it is sufficient to compute the consis-
tency for each constraint until the fixpoint is reached. It has been demonstrated by Apt

State of the Art 51

in 1999 in [APT 99] or by Benhamou in 1996 in [BEN 96] that the order in which the
consistences are applied is irrelevant. Indeed, as the lattices are complete, any subset
has a unique least element: the consistent fixpoint.

However the order in which the consistencies, and therefore the propagators, are
applied influences the speed of convergence, that is the number of iterations required
to reach the fixpoint. Different propagation strategies are possible. The naive strategy
is to execute all the constraints propagator at each iteration. Another one is to execute
only the propagator of the constraints containing at least one variable that has been
modified in the previous iteration. This strategy is generally used. Finding an efficient
algorithm computing the consistent domains for a conjunction of constraints in the
general case is a real scientific challenge. In the following, the term “complexity” is
used to refer to the worst case complexity.

Since the 1970s, many algorithms have been developed for the generalized arc con-
sistency for binary constraints (AC) or for any constraints (GAC), each one improving
the complexity of the previous algorithm. The first algorithm AC1 described by Mack-
worth in 1977 [MAC 77a] computes the arc-consistent domains for binary constraints.
It verifies for each constraint (p), for each variable (n), and for each possible value (at
most d) if it has a support (d2). This algorithm has a time complexity of O(d3np)
where d is the size of the largest domain, n is the number of variables and p the num-
ber of constraints. This algorithm is rather basic and an improved version, called AC3
is given in the same paper [MAC 77a]. AC3 uses a list in order to only propagate the
constraints in which at least one variable has been modified. AC3 has a time complex-
ity of O(pd3) and a memory complexity of O(p). The same year, an extended version
of AC3 no longer restricted to binary constraint is presented, GAC3 [MAC 77b]. This
algorithm has a time complexity of O(pk3dk+1) and a memory complexity of O(pk),
with k the maximum constraint arity, which is the maximum number of variables that
can be in a constraint.

The algorithms AC4, proposed by Mohr and Henderson in 1986 [MOH 86], and
GAC4, proposed by Mohr and Masini in 1988 [MOH 88], have a worst case time
complexity which is optimal [BES 06]. AC4 has a time and memory complexity of
O(pd2). GAC4 has a time complexity of O(pkdk).

Since then, several algorithms have been designed: AC5 [HEN 92], AC6
[BES 94], AC7 [BES 99], AC2001 [BES 01], AC3.2 [LEC 03] to name few, ingen-
uously competing to reduce in practice the memory complexity and particularly the
computation time. A comparison and the complexity of some of these algorithms as
well as those given above can be found in [MAC 85] and [BES 06].

While there have been many papers and algorithms for the efficient computation of
generalized arc consistency, the bound consistency has been the subject of less studies.
Moreover, there exist several different definitions of the bound consistency [CHO 06]

52 Abstract Domains in Constraint Programming

(bound(D)-consistency, bound(R)-consistency, range consistency) in addition to the
one considered in this book which has changed names several times over the years.

In the continuous variables case, the HC3 algorithm proposed in 1995 [BEN 95]
computes an approximation of the hull consistency for a conjunction of constraints.
Then in 1999 [BEN 99], the HC4 algorithm is proposed. The propagation loop applies
the HC4-Revise algorithm seen earlier for each constraint containing at least one
variable that has been modified. More recently, the Mohc algorithm studying the
monotony of the constraints to propagate has been developed [ARA 10, ARA 12].

2.2.3. Exploration

Generally, the propagation is not sufficient to find the solutions. During the second
step of the resolution process, assumptions about the variables values are made. In the
case of integer variables, values are given to variables iteratively until a success (a
solution is found) or a fail (a constraint is false, an empty domain) is obtained. For
real variables, the idea is the same except that the domains are split into two smaller
sub-domains. This exploration mechanism introduces the notion of choice point in the
resolution process.

2.2.4. Resolution Scheme

The solving process alternates between phases of reduction and choice. At any
point of the resolution, the propagation is first performed to remove as soon as possible
inconsistent values from the domains and avoid unnecessary computations. Thus,
consistency is maintained throughout the resolution. Three cases are possible:

1) a solution is found, it is stored;
2) no solution is possible, in other word, at least one domain is empty or a con-

straint is false;
3) or none of the above.

In the first two cases, the process returns to a previous choice point to make a new
hypothesis. Several cases are possible, return to the last choice point, called backtrack-
ing, or in the case of a failure, returning to the most likely point of choice responsible
for the failure, in this case it is called backjumping [DEC 90]. Several techniques are
used to determine the node to go back to, it can be based on the dependencies between
the variables or use learning during the solving process. In any case, if the search
space is not yet fully explored, a choice is made, a variable and a value are chosen in
the discrete case or a domain in the continuous case. This choice is taken into account
by instantiating the variable or cutting the chosen domain, then back to the first step:
the propagation is performed in this new point of resolution. Thus, consistency is
maintained throughout the resolution.

State of the Art 53

This solving mechanism correspond to a search tree in which the nodes are the
choice points, and the arcs correspond to a variable instantiation or a domain split.

Example 2.2.8 – Consider a CSP on boolean variables v1, v2 and v3 on domainsD1 =
D2 = D3 = {0, 1} and with the constraint: v1 and not v2 and v3. We have the
following search tree:

D

1 2

3 4

5 6

v1 = 1v1 = 0

v2 = 1v2 = 0

v3 = 0 v3 = 1

where D = D1 ×D2 ×D3. Starting from the initial search space, a first choice is
made: v1 = 0. After this instantiation (node 1) the constraint is false. The exploration
is stopped and goes back to the root where a new choice is made: v1 = 1 (node 2).
The exploration continues until all the nodes are visited. In this example, a red cross
corresponds to a failure and a green tick to a solution.

The general scheme of a discrete solver using the generalized arc consistency is
exemplified Algorithm 2.1. Note that the branching can also be binary (v1 = a on one
branch, and v1 6= a on the other with a a value in D1). Similarly, a continuous solver
is given Algorithm 2.2. It uses the hull-consistency. In these examples, the resolution
stops when:

– all solutions are found, that is when:
- all solutions have been listed in the discrete case;
- all computed boxes only contain solutions or are smaller than a certain accu-

racy in the continuous case.
– it has been proven that there is no solution, in other words, the search space has

been fully explored without success.

Note that in both the discrete and the continuous case, the resolution process can be
modified in order to stop as soon as the first solution is found.

54 Abstract Domains in Constraint Programming

int j ← 0 /* j indicates the depth in the search tree */
int op[] /* at depth j, stores the index of the variable on which the hypothesis is made,
uniformly initialized at 0 */
int width[] /* at depth j, stores the width of the tree already explored, uniformly initialized
at 0 */
integer Cartesian product e ∈ S
list of integer Cartesian product sols /* stores the solutions */
e← D /* initialization with the initial domains */
repeat
e← generalized arc-consistency(e)
width[j]+ +
if e is a solution then

/* success */
sols← sols ∪ e

end if
if e = ∅ or e is a solution then

/* back to the last backtrackable point */
while j ≥ 0 et width[j] ≥ |Dop[j]| do

width[j]← 0
j– –

end while
else

/* new hypothesis */
choose a variable vi to instantiate
op[j]← i
j+ +

end if
if j ≥ 0 then

assign vop[j−1] to the (width[j] + 1)-th possible value /* backtrackable point */
end if

until j < 0

Algorithm 2.1: A discret solver using integer Cartesian product to represent the
domains.

In both solving methods, the selection criteria of the variable to instantiate or
domain to cut is not explicitly given. This is because there is no unique way to choose
the domain to be cut or the variable to instantiate and it often depends on the prob-
lem to solve. The next section describes some of the choice strategies or existing
exploration strategies.

State of the Art 55

list of boxes sols← ∅ /* stores the solutions */
queue of boxes toExplore← ∅ /* stores the boxes to explore */
box b← D /* initialization with the initial domains */
push b in toExplore
while toExplore 6= ∅ do
b← pop(toExplore)
b← Hull-consistency(b)
if b 6= ∅ then

if b only contains solutions or b small enough then
/* success */
sols← sols ∪ b

else
/* new hypothesis */
cut b in b1 and b2 by splitting along one of its dimensions
push b1 and b2 in toExplore

end if
end if

end while

Algorithm 2.2: A classical continuous solver.

2.2.5. Exploration Strategies

Several choice strategies have been designed to determine the order in which the
variables should be instantiated or the domains should be split. Depending on the
choices made, performances may be very different. In the discrete case, the best
known is maybe the one presented in 1979 by Haralick and Elliott [HAR 79] called
first-fail. It chooses the variable with the smallest domain. The idea is the following:
the earlier one fails, the bigger is the subtree cut in the search tree.

“To succeed, try first where you are most likely to fail”
– Robert M. Haralick et Gordon L. Elliott [HAR 79].

Figure 2.6 shows that the earlier the failure appears in the search tree, then the
bigger is the subtree cut from the search tree. In Figure 2.6(a) failure occurs later and
only a small subtree in the search tree is cut. However in Figure 2.6(b) failure occurs
earlier and a larger subtree in the search tree is cut.

Figure 2.7 compares the search tree obtained with the strategy first-fail (Figure
2.7(b)) to the one obtained with the strategy instantiating variables with large domains
first. Note that these two trees have the same area. In case of failure, the cut in the
search tree is greater when the strategy first-fail is used.

56 Abstract Domains in Constraint Programming

(a) (b)

Figure 2.6. Comparison of the subtree cut in the search tree given the node where the failure
appears.

(a) Plus grands domaines
d’abord

(b) Plus petits domaines d’abord

Figure 2.7. Comparaison de la stratégie qui consisterait à instancier les variables de grands
domaines en premier (2.7(a)) à la stratégie first-fail (2.7(b)).

Following this idea, the heuristic proposed in [BRÉ 79] chooses the variable with
the smallest domain (dom) and appearing in the biggest number of constraints deg.
In other words, the chosen variable is the one maximizing dom + deg. Then in 1996
another strategy is presented [BES 96] choosing the variable maximizing the ratio
dom/deg. In 2004 [BOU 04], a heuristic choosing the variable maximizing the ratio
dom/wdeg, with w a weight associated to each constraint, is introduced. The weights
are uniformly initialized to 1 at the beginning of the resolution. Then, each time a
constraint is the reason of a failure, its weight is augmented. The idea is the following:
instantiate in priority variables appearing in constraints difficult to satisfy. The earlier
this constraint generates a failure, the bigger is the subtree cut from the search tree.
Other heuristics as a survey is given in [GEE 92, GEN 96, BEE 06].

Once the variable to instantiate is chosen, one needs to choose to which value it
should be instantiated. Here too, many strategies have been developed, choosing the
value maximizing the number of possible solutions[DEC 87, KAS 04], the product
of the domains size (promise) [GIN 90], the sum of the domains size (min-conflicts)
[FRO 95].

In the case of continuous variables, a domain is generally cut in half. Several
heuristics to split a domain are available, largest-first [RAT 94] choosing the largest

State of the Art 57

domain, thus the domains size is rapidly reduced; round-robin splitting the domains
one after the other, to ensure that all the domains are cut; or even Max-smear [HAN 92,
KEA 96] choosing to split the domain maximizing the smear function of the con-
straints Jacobian matrix (containing the partial derivatives of each constraint). This
strategy corresponds to splitting the domain of the variable with the biggest slope in
the constraints.

2.2.6. Discrete/Continuous Comparison

It is important to note that the resolution scheme is significantly different depend-
ing on the type of variable (integer or real). In practice, the solvers are dedicated to a
particular type of variable. There are many discrete solvers. Among the most known
are GeCode [SCH 02], GnuProlog with constraints [DIA 12], Jacop [WOL 04],
Comet [HEN 05], Eclipse [APT 07] and Minion [GEN 06]. There are much less con-
tinuous solvers in Constraint Programming. The best known are Declic [BEN 97a],
Numerica [HEN 97], RealPaver [GRA 06] and Ibex [CHA 09a]. Prolog IV [COL 94]
and Choco 3.0 [PRU 14, FAG 14] incorporates both a discrete and a continuous
solver.

Implementation tricks are needed to solve problems containing both integer vari-
ables and real variables. In the following, we use the terms “mixed problem” or
“continuous-discrete problem” for this type of problems. If the selected solver is
discrete, real variables are discretized, the possible values for the variables are listed
for a given step.

Example 2.2.9 – Let x be a real variable which value is between 0 and 0.5, with a step
of 0.1. Once discretized, its domain is {0, 0.1, 0.2, 0.3, 0.4, 0.5}.

This method offers the possibility to treat mixed problems but strongly depends
on the chosen step. Indeed, if the chosen step is large, solutions could be lost but the
variables domain is small and can easily be stored. On the contrary, if the step is too
small, there are less chances of losing solutions but the domains size is very large and
it explodes the combinatory of the problem. This method is used among others in the
discret solver Choco 2.0 [TEA 10]. In this case, the solver is no longer CP-complete,
it no longer guarantees that no solution is lost. But it is still CP-sound, if it returns an
assignment, it is a solution.

If the selected solver is continuous, integrity constraints can be added to the prob-
lem. These new constraints specify which variables are integer and thus allows the
solver to refine the bounds of these variables domain. During the propagation of these
constraints, the domains bounds are rounded to the nearest integer in the proper direc-
tion. This method requires the bound consistency for the discrete variables and does

58 Abstract Domains in Constraint Programming

not allow the generalized arc consistency to be used. This method has been developed
in the continuous solver RealPaver [GRA 06].

Another alternative is to add discrete global constraints to a continuous solver
[BER 09] or to create mixed global constraints [CHA 09b] to treat within the same
constraint both continuous and discrete variables. Thus, each variable benefit from a
suitable constraint for its type (discrete or continuous). However, this method depends
on the problem and demands for each problem the necessary global constraints as well
as an ad hoc consistency.

2.2.7. Conclusion

Constraint Programming can efficiently solve constraint satisfaction problems.
While solving methods do not depend on the problem at hand, they are highly
dedicated to the type of variables (discrete or continuous) of the problem. This
specialization, although restrictive, makes solving methods effective. Many heuristics
have been developed and used during the exploration phase to improve the results
obtained in terms of both the quality of the solutions and the computation time.
However, one major obstacle to the development of Constraint Programming is the
lack of tools and methods to solve mixed problems (with both discrete and continuous
variables). For instance, there is no representation for mixing in a single CSP integers
and reals while maintaining their types.

2.3. Synthesis

In the previous sections, we have introduced some concepts of Abstract Interpre-
tation and Constraint Programming, two areas of research that seems very distant. Yet
there are similarities both in the underlying theory and in the techniques used. This
section highlights some of these links and some significant differences.

2.3.1. Links between Abstract Interpretation and Constraint Programming

There are links between Constraint Programming and Abstract Interpretation, for
instance, both research areas rely on the same theoretical framework (lattices and
fixpoint). But if you look closer there are also notable differences. We present here
some of the similarities and differences between these two research areas.

As mentioned previously, Constraint Programming and Abstract Interpretation
rely on the same theoretical framework, and more importantly, the main goal is the
same: compute an over-approximation of a desired set, expressed as solutions of con-
straints in Constraint Programming and as the properties of a program in Abstract

State of the Art 59

Interpretation. In the particular case of discrete CSP, the approximation should be
equal to the desired set. Consistency and propagation can be seen as a narrowing on
abstract domains, because they both help reduce the domains while remaining above
the fixpoint. In Abstract Interpretation, the narrowing operator can either be used after
a widening, which ensures that the abstract domains stay larger than the desired fix-
point, or in the particular case of local iterations. In Constraint Programming, domains
are always reduced and the propagation is used to reduce the domains as soon as pos-
sible. Note that in both cases, it is allowed not to reach the fixpoint. For example, in
Constraint Programming for certain constraints, such as the global constraint nvalue,
computing the consistency is NP-hard [BES 04] and it is allowed to compute an over-
approximation of the consistent domains even for discrete constraints.

Remark 2.3.1 – On the theoretical framework, another significant difference between
Constraint Programming and Abstract Interpretation should be noted. In Abstract
Interpretation, fixpoints theorems are fundamental and the basis of loops analysis,
a key step in the analysis of a program. In Abstract Interpretation, the lattices are
usually infinite, while in Constraint Programming, lattices used for consistencies are
always finite. They are built from sets starting bounded (initial domains) and their
components must be computer representable (integers or floating point), so in a finite
number.

These two research areas rely on the computation of fixpoint or of over-
approximations of fixpoints. However, the techniques used to compute them are
significantly different. First, in Constraint Programming, while solving a given prob-
lem, for a series of choice point, the approximations are strictly decreasing, except
when the fixpoint is reached. While in Abstract Interpretation the approximations can
increase, for instance when approximating a loop. Secondly, Constraint Program-
ming aims at completeness by improving solutions using refinement, while Abstract
Interpretation generally embraces incompleteness.

Furthermore, the static analyser precision is conditioned by the chosen abstract
domain and the used operators. When a refinement is performed, domains become
more precise, which can be done by either restarting the analyzer with the obtained
domains [CLA 03], either manually, which requires changing the analyzer [BER 10].
Another way to improve the accuracy is to add local iterations [GRA 92]. To sum up,
the accuracy of an abstract domain is not defined as such it is implied by the choice
made for the analysis (abstract domains, transfert function, widening, narrowing. . .)
In contrast, Constraint Programming integrates for continuous domains an explicit
definition of accuracy. The choice of abstract domain in a Constraint Programming
solver does not change its precision (which is fixed), but its efficiency (the amount of
computation needed to achieve the desired accuracy).

Another significant difference is that all the techniques in Abstract Interpreta-
tion are parametrized by abstract domains. On the contrary, Constraint Programming

60 Abstract Domains in Constraint Programming

solvers are highly dependent on the variables type (integer or real) and are especially
dedicated to one domain representation. There exists no Constraint Programming
solver for which the domains representation is a parameter, in particular, there is no
mixed solvers. Section 2.2, we saw that in Constraint Programming there is only three
representations for the variables domain given the type of the variable. On the con-
trary, in Abstract Interpretation, an important research effort has been made on abstract
domains. This has lead to the development of many Cartesian or relational domains
such as polyhedra, octagons, ellipsoid, to name a few. Note that they can depend on
the variable type, like the binary decision diagrams for binary variables [BER 10], but
more importantly, they can analyse different variables type within the same analyzer.

2.3.2. Analysis

Constraint Programming allows one to model a wide variety of problems under a
same and unique form, the CSP. It offers a wide variety of constraints, including, in
the case of discrete variables, more than three hundreds global constraints. They can
be used to describe complex relations between the variables and come with efficient
propagation algorithms. Number of studies have focused on improving the complexity
and therefore the efficiency of these algorithms. Another strong point of Constraint
Programming is that it provides generic solving methods that do not depend on the
problem to solve, and a single constraint can be used in different problems. In order
to improve these solving methods performances, many heuristic have been developed,
such as the variable or value choice heuristic for the instantiation, or the choice heuris-
tic for the domain to split. However, Constraint Programming offers very few repre-
sentations for the domains, and the solving methods are restricted to only one type of
variables (discrete or continuous).

On its side, Abstract Interpretation provides a large number of representations,
abstract domains. These can be of different shapes (box, polyhedron, ellipse, . . .) and
are not defined for a particular type of variables. Thus, they may represent both dis-
crete and continuous variables. Moreover, using several abstract domains allows the
analyzers to effectively deal with very large programs, containing a large number of
variables and lines of code. Another advantage of abstract domains is that they come
with efficient algorithms for the widening and narrowing operators to compute in a
small number of iterations an approximation of the fixpoint. However this approxi-
mation is not always very precise, even after applying the narrowing operator or local
iterations.

To sum up, Constraint Programming offers very few representations for the
domains but efficient algorithms, while in Abstract Interpretation there are very rich
representations for the domains and algorithms to compute over-approximations but
no solving algorithm (in the sense that the accuracy is not easily configurable).

State of the Art 61

There have already been works at the frontier between Abstract Interpretation and
Constraint Programming. For instance, Constraint Programming has been used to
verify programs [COL 07], to analyse characteristic models and automatically gen-
erate configuration tests [HER 11b], to verify constraint satisfaction problems model
[LAZ 12], or even to improve the results obtained by a static analyzer [PON 11].

Another approach to program verification is to use a satisfiability solver [KIN 69].
Recent years have seen significant improvements in the methods of Boolean satis-
fiability (SAT) and non-Boolean satisfiability (SMT) [KRO 08], as well as in their
applications (e.g.,, the model checker CBMC [KRO 14]). Furthermore, D’Silva et
al., [D’S 12] have recently proposed to express the SAT algorithms in the context of
Abstract Interpretation (using fixpoints and abstractions), a promising way to cross-
pollination between these two research areas.

The work presented in this book is similar, except that we are at the intersection of
Abstract Interpretation and Constraint Programming. There are of course similarities
between the solving process in Constraint Programming and in SAT/SMT, however
both the model and the solving methods differ. Resolution methods in SAT and SMT
used a model based on Boolean variables, for which the algorithms are dedicated.
Constraint Programming combines the constraints on any type of variables and some-
times loses efficiency to gain expressiveness.

62

Chapter 3

Abstract Interpretation for the constraints

In this chapter we give unified definitions for the different components of the reso-
lution process in Constraint Programming. With these new definitions an unique reso-
lution method can be defined for any abstract domain. This new resolution scheme
does not depend on the variables type anymore. Moreover, the definition of the
abstract domains in Constraint Programming gives the possibility to solve problems
using non-Cartesian domains representations.

3.1. Introduction

In Constraint Programming, solving techniques strongly depend on the variables
type, and even are dedicated to a type of variables (integer or real). If a problem
contain both integer and real variables, there exist no more solving methods. Three
solutions are possible to solve this kind of problem with Constraint Programming: the
integers are transformed into reals and integrity constraints are added to the problem
(the propagation of these new constraints refine the bound of the integer variables
[GRA 06]); the reals are discretized, the possible values for the real variables are
enumerated with a given step [TEA 10]; or a discrete and a continuous solver are
combined [COL 94, FAG 14]

By looking more closely, we can see that regardless of the resolution method used,
it alternates propagation and exploration phases. We can even go further and say that
these two methods differ only on three points: the representation of the domains, the
consistency used and the way domains are cut. The splitting operator used during the
solving process strongly depend on the chosen representation. Indeed, one needs to
know some characteristics of the chosen representation, such as the size to cut it in

63

64 Abstract Domains in Constraint Programming

smaller elements. Similarly, the consistency used strongly depend on the chosen rep-
resentation. Indeed, the generalized arc consistency would not be used if the domains
are represented using integer intervals. If domains are represented using integer inter-
vals, the bound consistency is used. If the integer Cartesian product is used, then the
generalized arc consistency is more appropriate. And if the domains are represented
using floating point intervals, the hull-consistency is more suitable. Finally the consis-
tency does not depends only on the domains representation but also on the constraints.

Inspired by abstract domains in Abstract Interpretation, we define abstract domains
Constraint Programming, as an object that contains, among other things, a computer
representation, a splitting operator and a function to compute its size. The consistency
could be added to the abstract domains, but we prefer to dissociate it since it does not
depend only on the domains representation. With this definition of abstract domains in
Constraint Programming, we obtain an unique solving method that no longer depend
on the variables type, or the domains representation. In this new solving method, the
abstract domain is a parameter. In addition, we are no longer restricted to existing
Cartesian representations, but can define new representation in the same way that in
Abstract Interpretation.

3.2. Unified Components

First, we define all the necessary bricks for the development of an unique solving
method. Namely, the consistency, the splitting operator and of course the abstract
domains for Constraint Programming. These definitions are based on notions of order,
lattices and fixpoint.

3.2.1. Consistency and Fixpoint

Given a partially ordered set with the inclusion and a constraint, we can define the
consistent element as the least element of the partially ordered set if it exists. Similarly
for a conjunction of constraints, the set of least elements for each constraint forms a
partially ordered set with the inclusion and the consistent element is therefore defined
as the least element of this set. From this observation derived the following definitions
and propositions.

Let E be a subset of P(D̂), where D̂ is the initial search space, with the inclusion
as a partial order. This set corresponds to the chosen representation for the domains.
We will write Ef for E\∅. In the following, we will restrain the definitions to cases
where E is closed by intersection, as this is sufficient for classical cases. Note that
if E is closed by intersection then it possess a greatest lower bound and is a directed
lattice.

Abstract Interpretation for the constraints 65

Definition 3.2.1 (E-Consistency). Consider a constraint C. An element e is
E-consistent for C if and only if it is a least element of E containing all the
solutions for C, SC . In other words, it is the least element of

CEC = {e′ ∈ E,SC ⊆ e′}

All the main consistencies defined section 2.2.2, whether discrete or continuous,
are included in this definition. The following propositions combine each existing con-
sistency to its corresponding subset. These propositions ensure that the main consis-
tencies are properly included in Definition 3.2.1.

Proposition 3.2.1. Let S be the set of Cartesian products of finite subsets of integers.
The S-consistency is the generalized-arc-consistency (GAC) (Definition 2.2.7).

Proof.

GAC =⇒ S-consistent.

We first prove that GAC =⇒ S-consistent. Let D = D1 × ... × Dn GAC for a
constraint C. D obviously contains all the solutions, and we need to prove that
it is the smallest such element of S. Let D′ ∈ S strictly smaller than D. Then
there is a i such that D′i ⊂ Di and a v ∈ Di \D′i. Since v ∈ Di and D is GAC,
there also exist xj ∈ Dj for j 6= i such that (x1 . . . v . . . xn) is a solution. This
solution is not in D′ and thus any D′ ⊂ D loses solutions. �

S-consistent =⇒ GAC.

We now prove that S-consistent =⇒ GAC. Let D = D1× · · · ×Dn S-consistent
for a constraintC. Let i ∈ J1, nK and v ∈ Di. Suppose that for all other xj ∈ Dj ,
(x1 . . . v . . . xn) is not a solution. We can construct the setD1×· · ·×(Di\{v})×
· · · ×Dn strictly smaller that D containing all the solutions. Hence D is not the
smallest element. There can be no such i and v, and D is GAC. �

A domain is GAC if and only if it is S-consistent.

�

Proposition 3.2.2. Let IB the set of integer boxes (Cartesian product of finite interval
of integers). The IB-consistency is the bound-consistency (BC) (Definition 2.2.8).

Proof.

BC =⇒ IB-consistent.

66 Abstract Domains in Constraint Programming

We first prove that BC =⇒ IB-consistent. Let D = D1 × · · · × Dn BC for a
constraint C. D obviously contains all the solutions, and we need to prove that
it is the smallest such element of IB. Let D′ ∈ IB strictly smaller than D. Then
there is a i such that D′i ⊂ Di. Let v be one of the bound of Di such that v /∈ D′i.
Since D is BC, there also exists xj ∈ Dj for j 6= i such that (x1 . . . v . . . xn) is
a solution. This solution is not in D′ and thus any D′ ⊂ D loses solutions. �

IB-consistent =⇒ BC.

We now prove that IB-consistent =⇒ BC. LetD = D1×· · ·×Dn IB-consistent
for a constraint C. Let Di = Jai, biK. Suppose that for all other xj ∈ Dj ,
(x1 . . . ai . . . xn) is not a solution. We can construct the set D1 × · · · × Jai +
1, biK × . . . Dn strictly smaller that D containing all the solutions. Hence D is
not the smallest element. There can be no such i and v, and D is BC. �

A domain is BC if and only if it is IB-consistent.

�

Proposition 3.2.3. Let B be the set of boxes. The B-consistency is the Hull-
consistency (HC) (Definition 2.2.9).

Proof.

HC =⇒ B-consistent.

We first prove that HC =⇒ B-consistent. Let D = D1 × · · · × Dn HC for a
constraint C. D obviously contains all the solutions, and we need to prove that
it is the smallest such element of B. Let D′ ∈ B strictly smaller than D. Then
there is a i such that D′i ⊂ Di. Let I ∈ Di \ D′i. Since I ∈ Di and D is HC,
there also exists Ij ∈ Dj for j 6= i such that C(I1, . . . , I, . . . , In). This solution
is not in D′ and thus any D′ ⊂ D loses solutions. �

B-consistent =⇒ HC.

We now prove that B-consistent =⇒HC. Let I ∈ B, B-consistent for a constraint
C. Then I is the least element of CB

C which corresponds to the smallest Cartesian
product of intervals with floating-point bounds containing all the solutions for C.
Hence, by Definition 2.2.9, I it is HC. �

A domain is HC if and only if it is B-consistent.

�

Definition 3.2.1 of E-consistency thus generalizes the existing consistency. For
any E ⊆ P(D̂) closed by intersection, consistency is well-defined. From this defini-
tion of E-consistency derives the following proposition:

Abstract Interpretation for the constraints 67

Proposition 3.2.4. If E is closed under infinite intersection, CEC is a complete lattice
and there exists a unique E-consistent element for C in E. If it exists, this element is
written CE

C .

Remark 3.2.1 – Note that if E is not closed under intersection, then the least element
of CEC does not always exist. For instance, in the particular case where C is a circle
and E the set of convex polyhedra, there exists no smallest polyhedron containing all
the solutions. This is due to the fact that polyhedra are not closed by intersection.

Proof.
Let CE

C =
⋂

e∈E,SC⊆e
e.

Least elements.

We first prove that CE
C is the least element of CEC . Let A ∈ CEC strictly smaller

than CE
C , we have SC ⊆ A. Since CE

C is the intersection of all the elements
containing the solutions SC , A cannot be smaller than CE

C . Thus CE
C is the least

element of CEC . �
Unicity.

We now prove that CE
C is unique. Suppose that there is an element B ∈ CEC

such that B is also a least element of CEC . If such an element exists, then it
also contains all the solutions, SC ⊆ B. since CE

C is the intersection of all the
elements containing the solutions SC , we have CE

C ⊆ B. Hence CE
C is unique.

�
CE
C is unique and the least element of CEC .

�

Definition 3.2.1 can easily be extended for a conjunction of constraints as follows:

Definition 3.2.2 (E-consistency for a conjunction of constraints). Let e ∈ E, e
is E-consistent for C1 . . . Cp (or a subset) if and only if it is a least element for
CEC1∧···∧Cp

= {e′ ∈ E,SC1∧···∧Cp
⊆ e′}. If such an element exists, it is written

CE
C1∧···∧Cp

. If there is no ambiguity CEC1∧···∧Cp
is written CE and its least element

CE .

This definition will preferably be used in the case where E is closed under inter-
section.

Proposition 3.2.5. If E is closed by intersection then CE exists and is unique. In
addition, the set of all CE

Ci1
∧···∧Cik

for i1 . . . ik ∈ J1, pK forms a lattice for inclusion
and CE

C1∧···∧Cp
is its least element.

68 Abstract Domains in Constraint Programming

Proof.
Unicity.

Unicity of CE directly comes from Proposition 3.2.4. �
Complete Lattice.

We first prove that the set of all CE
Ci1
∧···∧Cik

for i1 . . . ik ∈ J1, pK forms a lattice
for inclusion. Let CE

Ci
and CE

Cj
for i, j ∈ J1, pK be any two elements of the set.

Then the pair {CE
Ci
,CE

Cj
} has both a greatest lower bound

CE
Ci
∩CE

Cj
=

⋂

e∈E,SCi
⊂e∨SCj

⊂e
e

and a least upper bound

CE
Ci
∪CE

Cj
=

⋂

e∈E,SCi
⊂e,SCj

⊂e
e

Thus, any pair {CE
Ci
,CE

Cj
} has a glb and a lub. Hence, the set of all CE

Ci1
∧···∧Cik

for i1 . . . ik ∈ J1, pK is a lattice. �
Least Element.

We now prove that CE
Ci∧Cj

is the least element for CE
Ci
,CE

Cj
, that is CE

Ci∧Cj
is

included in CE
Ci
∩ CE

Cj
. Let us first prove that CE

Ci∧Cj
⊆ CE

Ci
. As SCi∧Cj

=

{(s1 . . . sn) ∈ D,Ci(s1 . . . sn) ∧ Cj(s1 . . . sn)} and SCi
= {(s1 . . . sn) ∈

D,Ci(s1 . . . sn)}, then SCi∧Cj ⊆ SCi . Thus
⋂

e⊆E,SCi∧Cj
⊆e
e ⊆ ⋂

e⊆E,SCi
⊆e
e.

Hence CE
Ci∧Cj

⊆ CE
Ci

. Similarly, we prove that CE
Ci∧Cj

⊆ CE
Cj

. As CE
Ci∧Cj

⊆
CE
Ci

and CE
Ci∧Cj

⊆ CE
Cj

, then CE
Ci∧Cj

⊆ CE
Ci
∩CE

Cj
. Therefore CE

Ci∧Cj
is the

least element for CE
Ci
,CE

Cj
. �

�

This proposition provided that each constraint of the CSP comes with a propagator,
it is sufficient to apply these propagators iteratively, no matter the order, until the
fixpoint is reached, to achieve consistency for the CSP. On existing consistencies, a
similar idea has been proposed in [APT 99] or in [BEN 96].

Example 3.2.1 – Consider the CSP on real variables v1, v2 on domains D1 = [0, 5],
D2 = [0, 5] and the constraints

C1: 5v1 + v2 ≥ 10
C2: 2v1 + 5v2 ≤ 20
C3: 2v2 − v1 ≥ 1

Abstract Interpretation for the constraints 69

Figure 3.1 shows the lattice with inclusion of this CSP B-consistencies. For each
element in this lattice, we have in dark pink the set of solutions and in light pink
the set approximated by the B-consistency represented by a green box. The dotted
black boxes are only there to framed the elements. For the elements corresponding
to intersections, the dashed boxes correspond to the boxes in the intersection and the
result is a plain box.

We can see that ∀i1, . . . , ik ∈ J1, 3K,CB
Ci1
∧···∧Cik

⊆ CB
Ci1
∩ · · · ∩ CB

Cik
⊆

CB
Ci1

, . . . ,CB
Cik

. For instance, we have CB
C1∧C3

⊆ CB
C1
∩CB

C3
⊆ CB

C1
,CB

C3
.

3.2.2. Splitting Operator

Once the consistent element computed, we still need to explore it in order to find
the solutions. This is done by cutting the remaining search space into smaller ele-
ments. An element is cut using a splitting operator as defined below.

Definition 3.2.3 (Splitting Operator in E). Let (E,⊆) be a partially ordered set. A
splitting operator is an operator ⊕ : E → P(E) such that ∀e ∈ E,

1) | ⊕ (e)| is finite, ⊕(e) = {e1, . . . , ek},
2)

⋃
i∈J1,kK

ei = e,

3) ∀i ∈ J1, kK, e 6= ∅ =⇒ ei 6= ∅,
4) ∃i ∈ J1, kK, ei = e =⇒ e is a least element of Ef .

The first condition is needed for the search process to terminate. Indeed, the width
of the search tree must be finite so that the search tree can be. The second condition
ensures that the solving process is complete, in other words, that the splitting operator
does not loose solutions. Moreover, this condition ensures that no element is added.
The third condition forbids the splitting operator to return an empty domain. The
fourth condition means that the splitting operator actually splits: it is forbidden to
keep the same domains.

Remark 3.2.2 – It is important to notice that the definition implies that if e is not a
least element of Ef , then ∀i ∈ J1, kK, ei (e.

Remark 3.2.3 – Also note that this definition of the splitting operator does not ask
for ⊕(e) to be a partition of e. This is mandatory in order to include the split on
intervals with floating-point bounds. This does not affect the completeness of the
solving process. As shown on Figure 3.2, a splitting operator is applied to the element
on the left (3.2(a)), giving us the two elements on the right (3.2(b)). We can see that
the starting element is included in the union of the elements obtained with the splitting
operator and that the intersection of these elements is not empty.

70 Abstract Domains in Constraint Programming

>

CB
C1

CB
C2

CB
C3

CB
C1
∩CB

C2
CB
C1
∩CB

C3
CB
C2
∩CB

C3

CB
C1∧C2

CB
C1∧C3

CB
C1
∩CB

C2
∩CB

C3
CB
C2∧C3

CB
C1∧C2∧C3

Figure 3.1. Example of finite lattices for the inclusion, which elements are the B-consistencies
of the CSP given in Example 3.2.1.

Abstract Interpretation for the constraints 71

We show below that the discrete instantiation and the continuous split are included
in the definition. We will use the following notation for Cartesian domains: let ⊕1 :
E1 → P(E1) be an operator for a partially ordered setE1. LetE2 be another partially
ordered set and Id the identity function on E2. We write ⊕1 × Id the operator on
E1 × E2 such that ⊕1 × Id(e1, e2) = ∪e∈⊕1(e1)e × e2. We also write Idi for the
Cartesian product of i times Id.

Example 3.2.2 – Instantiation of a discrete variable is a splitting operator on P(N):
⊕N(d) = ∪v∈d{v}. For every i ∈ J1, nK, the operator ⊕Nn,i(d) = Idi−1 × ⊕N ×
Idn−i−1, where⊕N, at the i-th place, is a splitting operator. This consists in choosing
a variable vi and a value v in Di.

Example 3.2.3 – The continuous splitting operator is defined on P(I) : ⊕I(I) =
{I`, Ia } with I` and Ia two non empty subintervals of I such that I` ∪ Ia = I with
whatever way of managing the rounding errors on floats. The most usual splitting
operator for continuous CSP, for I = [a, b], returns I` = [a, h] and Ia = [h, b]
with h ∈ F, h = a+b

2 rounded in any direction. To ensure that the splitting operator
terminates, it stops when a and b are two consecutive floats.

Example 3.2.4 – The usual splitting operator for a Cartesian product of intervals is
defined in P(B). Let I ∈ B, D = I1 × · · · × In. The splitting operator first chooses
an interval Ii, i ∈ J1, nK. Then this interval is split using ⊕I. We thus have:

⊕B(I) = {I1 × · · · × I`i × · · · × In, I1 × · · · × Iai × · · · × In }

with {I`i , Iai } = ⊕I(Ii). The most common continuous splitting operator in Con-
straint Programming, generally splits the domain maximizing max

i∈J1,nK
(Ii − Ii).

In the following, we will write, for any E, ⊕E the splitting operator in E. Thanks
to these generic definitions of consistency and splitting operator, we can now define
abstract domains in Constraint Programming.

3.2.3. Abstract Domains

Given that our goal is to define a generic solver totally independent from the
domains representation, we define in this section the abstract domains for Constraint
Programming. Those are defined such that they have the requirements to be part of a
solving process.

Definition 3.2.4 (Abstract Domain for Constraint Programming). An abstract domain
is defined by:

– a complete lattice E,

72 Abstract Domains in Constraint Programming

– a concretization γ : E → D, and an abstraction α : D → E forming a Galois
connection between E and the search space,

– a computer representable normal form,
– a sequence of splitting operators for E,
– a monotonic size function τ : E → R+ such that τ(e) = 0⇔ e = ∅.

The Galois connection connects the abstract domain to a computer representation
of the CSP domains. However, as for the abstract domains in Abstract Interpretation,
it may not exist. The normal form ensures that there exists a unique representation for
each abstract domain and that they can be comparable. The size function τ represents
some measure of the abstract domain. It is an artificial technique to express the pre-
cision of an abstract domain. It is used later as a termination criterion in the solving
method.

Abstract domains can be defined independently from the domains of a particular
CSP. They are intended to represent the shape of the domains representation. Of
course, they can be cartesian, but this is no longer mandatory. Note that we do not
formalize the propagators as a part of an abstract domain. Because they depend both
on the constraints and on the shape of the abstract domain, they have to be ad hoc.

With this definition, one can, for instance, define a Shadok 1 abstract domain.
Given that they find a way to compute it, that they are computer representable and
that there exist a Shadok consistency computing, if it exists, the smallest Shadok con-
taining the solutions. Figure 3.2(b) shows the result of a possible splitting operator.

As the abstract domains are now defined for Constraint Programming, a solving
method based on abstract domains can be defined.

3.3. Unified Solving

With the definitions of consistency (Definition 3.2.1) and splitting operator (Def-
inition 3.2.3) that no longer depend on the domains representation, and with the def-
inition of abstract domains in Constraint Programming (Definition 3.2.4), it is now
possible to define an unified solving method based on abstract domains. This method
is defined as the classical iteration of propagations and splits, but is no longer dedi-
cated to a representation.

Algorithm 3.1 gives the pseudo-code of a solving method based on abstract
domains. This algorithm looks a lot like the one for the continuous solving method

1. http://www.lesshadoks.com/ or http://en.wikipedia.org/wiki/Les_Shadoks

Abstract Interpretation for the constraints 73

(a) a Shadok (b) an example of a Shadok split

Figure 3.2. One can define a Shadok abstract domain. A Shadok in its normal form is given
(3.2(a)) as well as the result of a possible splitting operator (3.2(b))

list of abstract domains sols← ∅ /* stores the abstract solutions */
queue of abstract domains toExplore← ∅ /* stores the abstract elements to explore */
abstract domain e ∈ E /* data structure for the abstract domain */

e = α(D̂) /* initialization with initial domains */
push e in toExplore

while toExplore 6= ∅ do
e← pop(toExplore)
e← E-consistance(e)
if e 6= ∅ then

if τ(e) ≤ r or e ⊆ S then
sols← sols ∪ e

else
choose a splitting operator ⊕E
push ⊕E(e) in toExplore

end if
end if

end while

Algorithm 3.1: Solving with abstract domains.

(Algorithm 2.2). Indeed, if one replaces everywhere in the pseudo-code “abstract
domain” by “box”, the continuous solver is obtained. The same apply for the integer
cartesian product.

74 Abstract Domains in Constraint Programming

The following proposition gives the hypothesis under which this algorithm is com-
plete and terminates.

Proposition 3.3.1. IfE is closed by intersection (H1), has no infinite decreasing chain
(H2), and if r ∈ τ(Ef) (H3), then the solving process in Figure 3.1 terminates and is
complete, in the sense that no solution is lost.

Proof.

Termination.

We first prove that this algorithm terminates. Suppose that the search tree is
infinite. By Definition 3.2.3 of the splitting operator, the width of the search tree
is finite. Thus, it exists an infinite branch. Along this branch abstract domains
are strictly decreasing as long as e is not the least element of Ef . By hypothesis
(H2), there is aK such that ∀k ≥ K, ek = eK . Let us study the different possible
cases:

– if eK = ∅ then the algorithm terminates as eK contains no solution,
– if eK 6= ∅ and (τ(eK) ≤ r or eK ⊂ S), then the algorithm terminates as

eK is a solution or contains no solution,
– if eK 6= ∅ and τ(eK) > r then eK is split and eK 6= eK+1 which contra-

dicts the definition of K.

We can thus conclude that the solving process in Algorithm 3.1 terminates. �
Completeness.

As the splitting operator (Definition 3.2.3) and the consistency (Definition 3.2.1)
are complete, the Algorithm 3.1 is complete. �

Under hypothesis (H1), (H2) and (H3), the solving Algorithm 3.1 terminates and is
complete.

�

This proposition defines a generic solver on any abstract domain E with some
hypothesis. Indeed, hypothesis (H1) and (H2) must be true, and r well chosen. If r is
too large, the abstract element returned as solutions by the algorithm will be too large
and can contain a large number of non solution points. On the contrary, if r is too
small, the solving can take a long time and even worst, in the case of integer cartesian
products, given the precision function τ , solutions may not be found. The efficiency
of this solver will of course depend on the consistency algorithms on E and on the
computer representation of the chosen abstract domain.

Usual solving algorithm in Constraint Programming are included in this definition
as shown below.

Abstract Interpretation for the constraints 75

Example 3.3.1 – For a fixed n, the set S with the splitting operator ⊕Nn,i and the
precision τS(e) = max(|Xi|) for i ∈ J1, nK is an abstract domain satisfying (H1) and
(H2). In order to model the fact that the search process ends when all the variables
are instantiated, one can take r = 1. As mentioned earlier, the S-consistency is the
generalized arc-consistency.

Example 3.3.2 – For a fixed n, the set IB with the splitting operator ⊕Nn,i and the
precision τIB(e) = max(bi − ai) for i ∈ J1, nK is an abstract domain satisfying (H1)
and (H2). In order to model the fact that the search process ends when all the variables
are instantiated, one can take r = 1. As mentioned earlier, the IB-consistency is the
bound-consistency.

Example 3.3.3 – For a fixed n, the set B with the splitting operator ⊕B,i and the
precision τB(I) = max(Ii − Ii) for i ∈ J1, nK is an abstract domain satisfying (H1)
and (H2). In order to model the fact that the search process ends when a precision r
is reached, one can stops when τB ≤ r. Solving with B corresponds to the generally
used solving process in continuous solvers with Hull-consistency.

These three examples show how to retrieve the usual abstract domains, which are
cartesian and of a single type (integer cartesian products or intervals). It is now possi-
ble to define an abstract solver as an alternation of propagations and splits, see Figure
3.1. This solver returns an array of abstract domains containing only solution (e ⊆ S)
or whose precision is less than r. The union of all of these elements is an approxima-
tion of the solution set.

3.4. Conclusion

In this chapter, we showed that it is possible to define a solver that is independent
of the domains representation and therefore of the variables type of the problem. This
solver includes usual Constraint Programming solving methods, regardless of the vari-
ables type (discrete or continuous). Furthermore, the domains are no longer limited
to Cartesian representations. With this new definition, it is now possible to use differ-
ent representations for domains. There exists a large number of abstract domains in
Abstract Interpretation, such as the polyhedra, ellipsoids and zonotopes to name a fez.
In the next chapter, we describe a non-Cartesian representation: the octagons.

76

Chapter 4

Octagons

In the generic solver presented in the previous chapter, abstract domains can be
used to solve constraints satisfaction problems. In the same way as in Abstract Inter-
pretation, we define the octagon abstract domain for Constraint Programming. This
abstract domain already exists in Abstract Interpretation, it has been introduced by
Miné [MIN 06]. We first define a representation that is computer representable, a
splitting operator and a precision function. Then a Galois connection between the
octagons and the boxes is given.

4.1. Definitions

In geometry, an octagon is, in R2, a polygon with eight sides 1. As part of this
work, we use a more general definition that was introduced in [MIN 06]. In the fol-
lowing, the term “octagon” is used to denote the octagons as defined below, when
we want to talk about octagons as described in geometry, the term “mathematical
octagon” will be used.

Definition 4.1.1 (Octagonal Constraint). Let vi, vj be two variables. We call octago-
nal constraint constraints of the form ±vi ± vj ≤ c with c ∈ R a constant.

Remark 4.1.1 – Interval constraints (vi ≥ a, vi ≤ b) are particular cases of octagonal
constraints.

Remark 4.1.2 – In a conjunction of constraints, two octagonal constraints are said
redundant if and only if they have the same left side. For instance, the following

1. http://mathworld.wolfram.com/Octagon.html

77

78 Abstract Domains in Constraint Programming

v1

v2

−v1 ≤ −1

v1 ≤ 5−v2 ≤ −1

v2 ≤ 5

v2 − v1 ≤ 2

v1 − v2 ≤ 2.5

−v1 − v2 ≤ −3

Figure 4.1. Example of an octagon in R2.

constraints v1− v2 ≤ c and v1− v2 ≤ c′ are redundant. Only one of these constraints
is effective, the one with the smallest constant (the smallest right side).

For instance in R2, octagonal constraints define straight lines which are parallel
to the axis if i = j and diagonal if i 6= j. This stays true in Rn, where octagonal
constraints define half-spaces (cut by hyperplanes). Consider a cube in R3, by adding
octagonal constraints (±vi±vj ≤ c), the edges are going to be cut, but not the corners.

Definition 4.1.2 (Octagon). An octagon is the set of points in Rn satisfying a con-
junction of octagonal constraints.

Remark 4.1.3 – The geometric shape defined above includes the octagons but also
other polygons. For instance, in R2 an octagon can have less than eight sides. In
general, in Rn, an octagon has at most 2n2 faces, which is the maximum number
of possible non-redundant octagonal constraints on n variables. Moreover, octagons
satisfying a conjunction of octagonal constraints are necessarily convex.

Also note that an octagon is a set of real points, but, like for the intervals, they can
be restricted to have floating-points bounds (c ∈ F). We thus have a real octagon with
floating-point bounds.

An example of an octagon in Rn is given figure 4.1. We can see that an octagon
can only have seven sides.

The first part of Figure 4.2 is composed of examples of octagons (4.2(a)). We
can see that an octagon does not have necessarily 8 sides in 2 dimensions, and that

Octagons 79

v1

v2

v1

v2

v1

v2

(a) Examples of octagons

v1

v2

v1

v2

v1

v2

(b) Examples of polygons that do not correspond to definition 4.1.2

Figure 4.2. Examples of octagons 4.2(a) and polygons that do not respect the definition of
octagons 4.2(b).

all the sides are parallel to the axis or to the diagonals. The second part (4.2(b))
shows polygons that do not correspond to the definition of octagons given previously
(Definition 4.1.2). The first example has all its sides parallel to the axis or to the
diagonals but is not convex. The next two exemples are mathematical octagons but
their sides are not all parallel to the axis or the diagonals, they do not corresponds to
Definition 4.1.2.

This definition of octagons offers interesting properties, that do not exist for math-
ematical octagons, such as the closure under intersection. Indeed, the intersection of
any two octagons is still an octagon.

Remark 4.1.4 – The octagons are closed under intersection. Consider any two
octagons O = {±vi ± vj ≤ c} and O′ = {±vi ± vj ≤ c′} for i, j ∈ J1, nK. Their
intersection is also an octagon

O ∩O′ = {±vi ± vj ≤ min(c, c′)}

Octagons are not closed under union, but the smallest octagon containing the union
of any two octagons can easily be computed.

80 Abstract Domains in Constraint Programming

v1

v2

−v1 ≤ −1
v1 ≤ 5
−v2 ≤ −1
v2 ≤ 5

−v1 − v2 ≤ −3
v2 − v1 ≤ 2
v1 − v2 ≤ 2.5

−v1 ≤ −3
v1 ≤ 7
−v2 ≤ −2
v2 ≤ 6

−v1 − v2 ≤ −6
v2 − v1 ≤ 1
v1 − v2 ≤ 3.5

v1

v2

union

−v1 ≤ −1
v1 ≤ 7
−v2 ≤ −1
v2 ≤ 6

−v1 − v2 ≤ −3
v2 − v1 ≤ 2
v1 − v2 ≤ 3.5

intersection

−v1 ≤ −3
v1 ≤ 5
−v2 ≤ −2
v2 ≤ 5

−v1 − v2 ≤ −6
v2 − v1 ≤ 1
v1 − v2 ≤ 2.5

Figure 4.3. Example of the union and the intersection of two octagons. The union gives the
dashed orange octagon ant the intersection gives the dotted octagon.

Remark 4.1.5 – Consider any two octagons O = {±vi ± vj ≤ c} and O′ = {±vi ±
vj ≤ c′} for i, j ∈ J1, nK. The smallest octagon including the union is:

O ∪O′ = {±vi ± vj ≤ max(c, c′)}

Figure 4.3 gives, geometrically and with conjunctions of constraints, the union and
the intersection of the pink and the blue octagon. The orange octagon (dashed) corre-
sponds to the smallest octagon including the union of the pink and blue octagons. The
green octagon (dotted) corresponds to the intersection of the pink and blue octagons.

In the following, octagons are restricted to octagons with floating-point bounds
(c ∈ F). Without loss of generality, we assume octagons to be defined with no redun-
dancies.

4.2. Representations

A necessary feature of abstract domains is that their elements must be computer
representable. There exist no unique way to represent an abstract domain, however

Octagons 81

some representations are better suited for certain types of computations. We detail
here two possible representations for octagons. The first one, the matrix representa-
tion, has been introduced in 1983 by Menasche and Berthomieu in [MEN 83]. It is
used in [MIN 06]. The second one, the box representation, is part of the contribution
of this work and is more suited for some computations in Constraint Programming,
such as the consistency.

4.2.1. Matrix Representation

An octagon can be represented with a difference bound matrix (DBM) as described
in [MEN 83, MIN 06]. This representation is based on a normalization of the octago-
nal constraints as follows.

Definition 4.2.1 (Difference Constraint). Let w,w′ be two variables. A difference
constraint is a constraint of the form w − w′ ≤ c with c ∈ F a constant.

By introducing new variables, it is possible to rewrite an octagonal constraint as
an equivalent difference constraint. Let C ≡ (±vi ± vj ≤ c) an octagonal constraint.
New variables w2i−1, w2i are introduced such that w2i−1 corresponds to the positive
form of vi and w2i to the negative form of vi. In other words, ∀i ∈ J1, nK, w2i−1 =
vi and w2i = −vi. Then:

– for i = j
- if C ≡ (vi − vi ≤ c), then, if c ≥ 0, C is pointless, and can be removed;

otherwise the corresponding octagon is empty and we stop. Indeed, there exists no
value of vi verifying the constraint vi − vi < 0,

- if C ≡ (vi + vi ≤ c), then C is equivalent to the difference constraint
(w2i−1 − w2i ≤ c),

- if C ≡ (−vi − vi ≤ c), then C is equivalent to the difference constraint
(w2i − w2i−1 ≤ c),

– for i 6= j
- if C ≡ (vi − vj ≤ c), then C is equivalent to the difference constraints

(w2i−1 − w2j−1 ≤ c) and (w2j − w2i ≤ c),
- if C ≡ (vi + vj ≤ c), then C is equivalent to the difference constraints

(w2i−1 − w2j ≤ c) and (w2j−1 − w2i ≤ c),
- if C ≡ (−vi − vj ≤ c), then C is equivalent to the difference constraints

(w2i − w2j−1 ≤ c) and (w2j − w2i−1 ≤ c),
- if C ≡ (−vi + vj ≤ c), then C is equivalent to the difference constraints

(w2i − w2j ≤ c) and (w2j−1 − w2i−1 ≤ c).

In the following, original variables are denoted by (v1 . . . vn) and the correspond-
ing new variables by (w1, w2, . . . w2n) with w2i−1 = vi et w2i = −vi. Miné showed

82 Abstract Domains in Constraint Programming

v1

v2

−v1 ≤ −1

v1 ≤ 5−v2 ≤ −1

v2 ≤ 5

v2 − v1 ≤ 2

v1 − v2 ≤ 2.5

−v1 − v2 ≤ −3

(a)

w4

w3

w2

w1

w4w3w2w1

0 −2 2 −3
10 0 +∞ 2.5
2.5 −3 0 −2
+∞ 2 10 0

(b)

Figure 4.4. Equivalent representations of an octagon: with octagonal constraints 4.4(a) and
with a difference bound matrix 4.4(b).

in [MIN 06] that the difference constraints created by replacing positive and negative
occurrences of the variable vi by the corresponding wi, represent the same octagon
as the one obtained with octagonal constraints. Difference constraints can be stored
in a difference bound matrix and octagonal constraints can be translate into difference
constraints, hence, a difference bound matrix is a possible representation for octagons.

Definition 4.2.2 (Difference Bound Matrix). Let O be an octagon in Fn, and its set of
difference constraints as defined previously. The difference bound matrix is a square
matrix 2n × 2n such that the element line i and column j is the constant c from the
difference constraint wj − wi ≤ c.

An example is given Figure 4.4(b), the octogone is given graphically (4.4(a)) and
corresponds to the difference bound matrix (4.4(b)). The element on line 1 and column
3 and the element line 4 and column 2 correspond to the same constraint: v2−v1 ≤ 2.

At this stage, different difference bound matrices may represent the same octagon.
For example Figure 4.4(b) the element line 2 column 3 can be replaced by 100 for
instance without changing the corresponding octagon. In [MIN 06], an algorithm is
defined to optimally compute the smallest values for the difference bound matrix.
This algorithm is an adaptation of Floyd-Warshall shortest path algorithm [FLO 62].
It is modified in order to take advantages of the difference bound matrix structure. It
exploits the fact that w2i−1 and w2i correspond to the same variable.

Algorithm 4.1 gives the pseudo-code of the modified version of Floyd-Warshall
shortest path algorithm for octagons. The instruction i′ ← (i mod 2 = 0) ? i−1 : i+1

Octagons 83

float dbm[2n][2n] /* square difference bound matrix of 2n× 2n */
int i, j, k, i′, j′ /* indexes for the difference bound matrix */

for k from 1 to n do
for i from 1 to 2n do

for j from 1 to 2n do
/* Computation of the shortest path */
dbm[i][j]← min(dbm[i][j], dbm[i][2k] + dbm[2k][j],

dbm[i][2k − 1] + dbm[2k − 1][j],
dbm[i][2k − 1] + dbm[2k − 1][2k] + dbm[2k][j],
dbm[i][2k] + dbm[2k][2k − 1] + dbm[2k − 1][j])

end for
end for

/* Added to the original version */
for i from 1 to 2n do

for j from 1 to 2n do
i′ ← (i mod 2 = 0) ? i− 1 : i+ 1
j′ ← (j mod 2 = 0) ? j − 1 : j + 1
dbm[i][j]← min(dbm[i][j], dbm[i][i′] + dbm[j′][j])

end for
end for

end for
for i from 1 to 2n do

if dmb[i][i] < 0 then
return error

else
dbm[i][i]← 0

end if
end for

Algorithm 4.1: Modified version of Floyd-Warshall shortest path algorithm for the
octagons.

signifies : if i is even then i′ takes the value i − 1, otherwise i′ takes the value i + 1.
The beginning of this algorithm corresponds to Floyd-Warshall (computation of the
shortest path part). The rest has been added and exploits the fact that w2i−1 and w2i

corresponds to the same variable vi. Moreover, elements on the main diagonal must
be greater or equal to zero, otherwise an error is raised because the corresponding
octagon is empty. Indeed, ∀i, wi−wi ≤ c, c cannot be less than 0. Another version of
Algorithm 4.1 is proposed in [BAG 09]. These two versions have the same complexity
(O(n3)).

84 Abstract Domains in Constraint Programming

v1

v2

−v1 ≤ −1

v1 ≤ 5−v2 ≤ −1

v2 ≤ 5

v2 − v1 ≤ 2

v1 − v2 ≤ 2.5

−v1 − v2 ≤ −3

(a)

v1,2
1

v1,2
2

v1

v2

π
4

(b)

Figure 4.5. Equivalent representations for the same octagon:the octagonal constraints 4.5(a)
and the intersection of boxes 4.5(b).

The execution of this modified version of Floyd-Warshall on the difference bound
matrix given Figure 4.4(b) replaces both +∞ by 10, which corresponds to adding the
constraint v1 + v2 ≤ 10 at the conjunction of octagonal constraints. Note that the
implementation of the Floyd-Warshall algorithm replaces the +∞ by 12.

We introduce a new representation for octagons based on the boxes (Definition
2.2.4). This representation combined with a difference bound matrix will be used to
define, from an initial set of continuous constraints, an equivalent system taking into
account the octagonal domains.

4.2.2. Intersection of Boxes Representation

In two dimensions, an octagon can be represented by the intersection of one box
in the canonical basis for F2, and one box in the basis obtained from the canonical
basis by a rotation of angle π/4. Figure 4.5 gives the representation by intersection
of boxes (Figure 4.5(b)) corresponding to the octagon illustrated Figure 4.5(a). In this
example, the octagon is define by 7 non redundant octagonal constraints, one of the
boxes is thus unbound.

To generalize this notion to bigger dimensions, we introduce the notion of rotated
basis as follows.

Definition 4.2.3 (Rotated basis). Let B = (u1, . . . , un) be the canonical basis of Fn.
Let α = π/4. The (i,j)-rotated basis Bi,jα , for i, j ∈ J1, nK, is the basis obtained
after a rotation of α in the subplane defined by (ui, uj), the other vectors remaining

Octagons 85

unchanged:

Bi,jα = (u1, . . . , ui−1, (cos(α)ui+sin(α)uj), . . . uj−1, (− sin(α)ui+cos(α)uj), . . . un)

By convention, for any i ∈ J1, nK, Bi,iα represents the canonical basis. In what
follows, α is always π/4 and will be omitted. Finally, for i, j, k ∈ J1, nK, every
variable vk living in the Bi,j rotated basis and whose domain is Dk will be denoted
by vi,jk and its domain by Di,j

k .

Remark 4.2.1 – Note that the idea of rotating variables and constraints has already
been proposed in [GOL 10] in order to better approximate the solution set. However,
their method is dedicated to under-constrained systems of equations.

The difference bound matrix can also be interpreted as a representation of the
intersection of one box in the canonical basis and n(n − 1)/2 other boxes, each one
living in a rotated basis.

Let O be an octagon in Fn and M its difference bound matrix, with the same
notations as above (M is a 2n × 2n square matrix). For i, j ∈ J1, nK, with i 6= j,
let Bi,j

O be the box I1 × · · · × Ii,ji × · · · × Ii,jj · · · × In, in the basis Bi,j , such that
∀k ∈ J1, nK

Ik = [− 1
2M [2k − 1, 2k] , 1

2M [2k, 2k − 1]]

Ii,ji = [− 1√
2
M [2j − 1, 2i] , 1√

2
M [2j, 2i− 1]]

Ii,jj = [− 1√
2
M [2j − 1, 2i− 1] , 1√

2
M [2j, 2i]]

Example 4.2.1 – Considering the difference bound matrix Figure 4.4(b), the boxes
are I1 × I2 = [1, 5]× [1, 5] et I1,2

1 × I1,2
2 =

[
3/
√

2,+∞
]
×
[
−2.5/

√
2,
√

2
]
, which

correspond to the boxes Figure 4.5(b).

Proposition 4.2.1. Let O be an octagon in Fn, and Bi,j
O the boxes as defined above.

Then O =
⋂

i,j∈J1,nK
Bi,j

O .

Proof.

86 Abstract Domains in Constraint Programming

Let i, j ∈ J1, nK. We have vi,ji =
vi+vj√

2
et vi,jj =

vj−vi√
2

by Definition 4.2.3. Thus

(v1 . . . v
i,j
i . . . vi,jj . . . vn) ∈ Bi,j

O if and only if it satisfies the octagonal constraints
on vi and vj , and the unary constraints for the other coordinates, in the difference
bound matrix. The box Bi,j

O is thus the solution set for these particular octagonal
constraints. The points in

⋂
i,j∈J1,nK

Bi,j
O are exactly the points which satisfy all the

octagonal constraints.

�

To summarize, there exist different way to represent an octagon. An octagon can
be represented using a difference bound matrix interpreted as a set of octagonal con-
straints (definition in intension). Or equivalently as an intersection of boxes (definition
in extension). Moreover the conversion from one representation to the other is at the
cost of a multiplication/division with the appropriate rounding mode.

We now have computer representable forms for the octagons. To define the
octagon abstract domain, we need to define some operators, such as the splitting
operator and the size function for the octagons. In the following, we suppose that
the octagons are closed by the modified Floyd-Warshall algorithm, that they are only
define by non-redundant octagonal constraints.

4.3. Abstract Domains Components

In the second phase of the solving process (exploration), if the current abstract
element isn’t considered as a solution, a splitting operator is used to cut the current
abstract element into smaller abstract elements. To solve using octagons, a splitting
operator is necessary, as well as a precision function to compute the size of an octagon.
To define these operators, we use the intersection of boxes representation. Naturally
these operators can be equivalently defined on the difference bound matrix.

4.3.1. Octagonal Splitting Operator

The octagonal splitting operator defined here extends the usual split operator to
octagons. Splits can be performed in the canonical basis, thus being equivalent to the
usual splits, or in a rotated basis. It can be defined as follows:

Definition 4.3.1 (Octagonal Splitting Operator). Let O be an octagon defined
as the intersection of boxes I1, . . . , In, I

1,2
1 , . . . , In−1,n

1 , . . . , In−1,n
n , such that

∀i, j, k ∈ J1, nK, Ii,jk = [a, b] with a, b ∈ F. The splitting operator ⊕o(O) for
variable vi,jk computes the two octagonal subdomains I1, . . . , [a, h], . . . , In−1,n

n and
I1, . . . , [h, b], . . . , I

n−1,n
n with h = a+b

2 rounded in F.

Octagons 87

v1

v2

v1

v2

v1

v2

Figure 4.6. Example of a split: the octagon on the left is cut in the B1,2 basis.

It is easily verified that the union of the two octagonal subdomains is equal to the
original octagon. Thus this splitting operator does not lose solutions and corresponds
to Definition 3.2.3. Note that this operator has three parameters i, j and k and not
only one parameter i like in the interval splitting operator. However this definition
does not take into account the correlation between the variables of the different basis.
We take advantage again of the octagonal representation to communicate the domain
reduction to the other basis. A split is thus immediately followed by a Floyd-Warshall
propagation to update the octagonal constraints.

Figure 4.6 shows an example of the octagonal splitting operator. The octagon on
the left is split allng the red dashed line.

4.3.2. Octagonal Precision

In most continuous solvers, the precision is defined as the size of the largest
domain. For octagons, this definition leads to a loss of information because it takes the
domains separately and does not take into account the correlation between the vari-
ables. In other words, this definition does not take into account that variables v{1,2}1

and v{1,2}2 depend on v1 and v2. Thus, we define an octagonal precision function tak-
ing the correlations of variables into account and corresponding to the diameter on all
axis and diagonals.
Definition 4.3.2 (Octagonal Precision). Let O be an octagon with its box representa-
tion I1 . . . In, I

1,2
1 . . . In−1,n

n . The octagonal precision is

τo(O) = min
i,j∈J1,nK

(
max
k∈J1,nK

(
Ii,jk − I

i,j
k

))

For a single regular box, τo would be the same precision as usual. On an octagon,
we take the minimum precision of the boxes in all the bases because it is more accu-
rate. Moreover, this definition allows us to retrieve the operational semantics of the

88 Abstract Domains in Constraint Programming

v1,2
1

v1,2
2

v1

v2

Figure 4.7. Example of the octagonal precision: the usual continuous precision returns the the
size of I1 (the blue plain double arrow) while the octagonal precision returns the size of I1,21

(the red dashed double arrow).

precision, as shown by the following proposition: in an octagon of precision r over-
approximating a solution set S, every point is at a distance at most r from S.

Proposition 4.3.1. Consider a constraints satisfaction problem on variables
(v1 . . . vn), with domains (D̂1 . . . D̂n), and constraints (C1 . . . Cp). Let O be an
octagon over-approximating the solution set S of this problem and containing
at least a solution s. Let r = τo(O). Let (x1, . . . , xn) ∈ Fn be a point in
I1 × · · · × In,∀i ∈ J1, nK, Ii ⊆ D̂i. Then ∀i ∈ J1, nK, mins∈S |vi − si| ≤ r, where
s = (s1 . . . sn). Each coordinate of all the points in O is at a distance at most r of a
solution.

Proof.

By Definition 4.3.2, the precision r is the minimum of some quantities in all the
rotated basis. Let Bi,j be the basis that realizes this minimum. The box Bi,j

O =

I1×· · ·×Ii,ji ×· · ·×Ii,jj · · ·×In is Hull-consistent and thus contains all the solutions
S. Let s ∈ S. Because r = maxk(Ik − Ik),∀k ∈ J1, nK, |sk − vk| ≤ Ik − Ik ≤ r.
Hence, any point is at a distance at most r of a solution.

�

Figure 4.7 shows an example of the octagonal precision. Consider the octagon
obtained with the intersections of the canonical box (in blue) and the box in the rotated
basis (in pink). The usual precision function on boxes returns for this octagon the size
of I1. The octagonal precision function returns the size of I1,2

1 which seems more
adequate for the given octagon.

Octagons 89

To define the octagon abstract domain in Constraint Programming, it only remains
to prove that all octagons form a complete lattice and define a Galois connection
between the octagons and floating-point bound boxes.

4.4. Abstract Domains

In this section, we first show that the set of octagons forms a complete lattice with
inclusion.

Proposition 4.4.1. The set of octagons forms a complete lattice O.

Proof.

Let O and O’ be any octagons. The set {O,O′} has both a lub O ∪O′ (Remark
4.1.4) and a glb O ∩O′ (Remark 4.1.5). Thus, any finite set has both a lub and a
glb. Hence O forms a complete lattice with inclusion.

�

We now show that there exists a Galois connection between octagons and floating-
point bound boxes.

Proposition 4.4.2. There exists a Galois connection O −−−→←−−−αo

γo B.

Proof.
– αo : O→ B,O 7→ {±vi ≤ c, i ∈ J1, nK}with O = {±vi±vj ≤ c}: only the

constraints of the form ±vi± vi ≤ c are kept, which correspond to the box bounds,
– γo : B→ O,B 7→ B: is straightforward and exact as a box is an octagon.

The abstraction function αo and the concretization function γo form a Galois con-
nection.

�

From Proposition 4.4.1 and Proposition 4.4.2, we can say that octagons can be the
base set of an abstract domain.

Definition 4.4.1 (Octagons Abstract Domain). The octagon abstract domain is defined
by:

– the complete lattice O,

– the Galois connection O −−−→←−−−αo

γo B,

– the representation with intersection of boxes,

90 Abstract Domains in Constraint Programming

– the octagonal splitting operator ⊕o,
– the octagonal precision function τo.

Remark 4.4.1 – In this definition we have chosen the representation with intersection
of boxes, but it can be replace with the matrix representation as they are equivalent.

This definition of octagons rely on the generation of all the possible basis n(n+1)
2 .

This transforms a CSP with n variables into a representation with n2 variables. Among
all these basis some are maybe less relevant than others. We present in the following
a partial definition of the octagons.

Definition 4.4.2 (Partial Octagon). Let J ,K ∈ P(J1, nK) be sets of indexes. Let O
be a set of octagonal constraints {±vi ± vj ≤ c | i ∈ J , j ∈ K}∪ {±vi ± vi ≤ c | i ∈
J1, nK}. The subset of Rn points satisfying all the constraints in O is called a partial
octagon.

Example 4.4.1 – Let (v1, v2, v3) be a set of variables. Let J = {1} and K = {2, 3}.
The partial octagon correspond to the set of points satisfying the following set of
octagonal constraints {±v1 ± v2 ≤ c,±v1 ± v3 ≤ c′} ∪ {±vi ± vi ≤ c | i ∈ J1, nK}.

The definition of partial octagons is very similar to the octagons. In both cases, it
is a set of points satisfying a set of octagonal constraints. However, in the partial case,
only a subset of all the possible non redundant octagonal constraints are expressed.
Note that this definition includes the octagons. Indeed, when J = K = J1, nK,
we have the Definition 4.1.2. Based on this observation, it can easily be shown that
the properties of octagons hold for partial octagons, and hence that the set of partial
octagons can be the base set for an abstract domain.

The choice of rotated basis to generate for a partial octagon depends on the prob-
lem to solve. Different octagonalization heuristics are presented Section 5.3.2.

4.5. Conclusion

In this chapter, we gave two equivalent and computer representable forms for the
octagons. We have shown that the set of closed octagons by the modified version
of Floyd-Warshall algorithm forms a complete lattice. Moreover, we have defined the
octagonal splitting operator and size function as well as the Galois connection between
the octagons and the boxes with floating-point bounds. With all these elements, we
were able to define the octagons as an abstract domain in Constraint Programming.
Since the octagon abstract domain relies on the generation of all the possible basis,
we defined the partial octagons set. This set is the base set of an abstract domain. The
next chapter gives additional details regarding the implementation of a solving method
based on octagons.

Chapter 5

Octagonal Solving

In this chapter we define a consistency based on octagons as well as a propaga-
tion schema. Thanks to this consistency and to the octagonal abstract domain defined
in the previous chapter, we obtain a resolution method based on octagons. A proto-
type of this method has been implemented in a continuous solver. The details of this
implementation are given in this chapter along with some preliminary results.

Consider a constraint satisfaction problem (CSP) on variables (v1 . . . vn) in Rn.
The first step is to represent this problem in an octagonal form. We detail here the
construction of an octagonal CSP from a CSP. We show that these two systems are
equivalent.

5.1. Octagonal CSP

First, the CSP is associated to an octagon, by stating all the possible non-redundant
octagonal constraints ±vi ± vj ≤ c pour i, j ∈ J1, nK. The constants c represent the
bounds of the boxes in the rotated basis, or octagonal boxes, and the bound of the boxe
in the canonical basis. These constants are dynamically modified during the solving
process. They are initialized to +∞.

The rotations defined in the previous chapter (Definition 4.2.3) introduce new axes,
corresponding to new variables vi,ji and vi,jj in the (i, j)-rotated basis. These variables
are redundant with the variables vi and vj in the canonical basis. If variables vi and vj
are linked through constraints then the new variables vi,ji and vi,jj have to be linked as
well. The CSP constraints C1 . . . Cp have to be rotated as well. We explain here how
constraints are rotated.

91

92 Abstract Domains in Constraint Programming

v1

v2
v1,2

1

v1,2
2

(a) The constraints in the canonical basis.

v1,2
1

v1,2
2

(b) The constraints in B1,2 the (1, 2)-
rotated basis.

Figure 5.1. Example of rotated constraints: comparison between the initial CSP 5.1(a) and
the rotated CSP 5.1(b).

Given a function f on variables (v1 . . . vn) in the canonical basis B, the expres-
sion of f in the (i, j)-rotated basis is obtained by symbolically replacing the i-th and
j-th coordinates by their expressions in Bi,jα . Precisely, variable vi is replaced by(

cos(α)vi,ji − sin(α)vi,jj

)
and variable vj by

(
sin(α)vi,ji + cos(α)vi,jj

)
where vi,ji

and vi,jj are the coordinates for vi and vj in Bi,jα . The other variables are unchanged.

Definition 5.1.1 (Rotated constraint). Given a constraint C holding on variables
(v1 . . . vn). The (i, j)-rotated constraint Ci,j is the constraint obtained by replacing
each occurrence of vi by

(
cos(α)vi,ji − sin(α)vi,jj

)
and each occurrence of vj by

(
sin(α)vi,ji + cos(α)vi,jj

)
.

Example 5.1.1 – Let v1and v2 be two variables. Let C be the constraint 2v1 +v2 ≤ 3.
The (1, 2)-rotated constraint is:

C1,2 ≡ 2
(

cos
(π

4

)
v1,2

1 − sin
(π

4

)
v1,2

2

)
+
(

sin
(π

4

)
v1,2

1 + cos
(π

4

)
v1,2

2

)
≤ 3

given that sin
(π

4

)
= cos

(π
4

)
=

1√
2

, it can be simplified:

C1,2 ≡ 3v1,2
1 − v1,2

2 ≤ 3
√

2

Figure 5.1 graphically compares the constraints in the canonical basis to the rotated
ones. Figure 5.1(a) shows two constraints (pink and blue) like given in the initial
CSP. The equivalent constraints after rotation of π

4 are given Figure 5.1(b). Rotated
constraints live in the (1, 2)-rotated basis B1,2.

Octagonal Solving 93

Given a continuous CSP on variables (v1 . . . vn), with continuous domains
(D̂1 . . . D̂n) and constraints (C1 . . . Cp), we defined an octagonal CSP by adding the
rotated variables, the rotated constraints and the rotated domains stored in a difference
bound matrix.

To sum up, an octagonal CSP contains:
– the initial variables (v1 . . . vn);
– the rotated variables (v1,2

1 , v1,2
2 , v1,3

1 , v1,3
3 . . . vn−1,n

n), where vi,ji is the i-th vari-
able in the (i, j)-rotated basis Bi,jα ;

– the initial constraints (C1 . . . Cp);

– the rotated constraints (C1,2
1 , C1,3

1 . . . Cn−1,n
1 . . . Cn−1,n

p);

– the initial domains (D̂1 . . . D̂n);
– a difference bound matrix which represents the rotated domains. It is initialized

with the bounds of the regular domains D̂i for the cells at position (2i, 2i − 1) and
(2i− 1, 2i) for i ∈ J1, nK, and +∞ everywhere else.

In these conditions, the initial CSP is equivalent to this octagonal CSP, restricted
to the variables v1 . . . vn, as shown in the following proposition.

Proposition 5.1.1. Consider a CSP on variables (v1 . . . vn), with domains (D̂1 . . . D̂n)
and constraints (C1 . . . Cp), and the corresponding octagonal CSP as defined above.
The solution set of the original CSP S is equal to the solution set of the octagonal
CSP restricted to variables (v1 . . . vn).

Proof.

Octagonal Solution =⇒ Solution.

First we prove that an octagonal solution is a solution in the original CSP. Let
s ∈ Rn a solution of the octagonal CSP restricted to variables (v1 . . . vn). We
have C1(s) . . . Cp(s) and s ∈ D̂1 × · · · × D̂n. Hence s is a solution for the
original CSP. �

Solution =⇒ Octagonal Solution.

We now prove that a solution for the original CSP is an octagonal solution.
Reciprocally, let s ∈ Rn a solution of the original CSP. The initial constraints
(C1 . . . Cp) are true for s. Let us show that there exist values for the rotated
variables such that the rotated constraints are true for s. Let i, j ∈ J1, nK, i 6= j
and k ∈ J1, pK. Let Ck be a constraint in the original CSP and Ci,jk the corre-
sponding rotated constraint. By Definition 5.1.1 Ci,jk (v1 . . . vi−1, cos(α)vi,ji −
sin(α)vi,jj , vi+1 . . . sin(α)vi,ji + cos(α)vi,jj . . . vn) ≡ Ck(v1 . . . vn). Let us
define the two reals si,ji = cos(α)si+sin(α)sj and si,jj = − sin(α)si+cos(α)sj

94 Abstract Domains in Constraint Programming

the image of si and sj by the rotation of angle α. By reversing the rota-
tion, cos(α)si,ji − sin(α)si,jj = si and sin(α)si,ji + cos(α)si,jj = sj , thus
Ci,jk (s1 . . . s

i,j
i , . . . s

i,j
j . . . sn) = Ck(s1 . . . sn) is true. It remains to check that

(s1 . . . s
i,j
i , . . . s

i,j
j . . . sn) is in the rotated domain, which is true because the

difference bound matrix is initialized at +∞. Hence s is a solution for the
octagonal CSP. �

�

For a CSP on n variables, this representation has an order of magnitude n2. Indeed
the octagonal CSP has n2 variables and domains, and at most p

(
n(n−1)

2 + 1
)

con-
straints. Of course, many of these objects are redundant. We explain in the next
sections how to use this redundancy to speed up the solving process.

As said when defining abstract domains in Constraint Programming Section 3.2.3,
propagators have to be ad hoc as they depend both on the abstract domain and con-
straints. The next sections show how the consistency and propagation scheme can be
defined for the octagons.

5.2. Octagonal Consistency and Propagation

First, we generalize the definition of Hull-consistency on intervals (Definition
2.2.9) to the octagons and define the propagators for the rotated constraints. Then
we define an efficient propagation scheme for both the rotated constraints and octag-
onal constraints using the modified version of Floyd-Warshall algorithm (Algorithm
4.1).

5.2.1. Octogonal Consistency

We generalize the definition of Hull-consistency on intervals for any continuous
constraint to the octagons. With the intersection of boxes representation, we show that
any propagator for Hull-consistency on boxes can be extended to a propagator on the
octagons. For a given n-ary relation on Rn, there is a unique smallest octagon (w.r.t.
inclusion) which contains the solutions of this relation, as shown in the following
proposition.

Proposition 5.2.1. Consider a constraintC (resp. a constraints sequence (C1 . . . Cp)),
and SC its set of solutions (resp. S). Then there exist a unique octagon O such that:
SC ⊆ O (resp. S ⊆ O), and for all octagons O′, SC ⊆ O′ implies O ⊆ O′. O
is the unique smallest octagon containing the solutions, w.r.t. inclusion. O is said
Oct-consistent for the constraint C (resp. constraints sequence (C1 . . . Cp)).

Octagonal Solving 95

Proof.

Octagons are closed by intersection (Remark 4.1.4) and the set of floating bound
octagons forms a finite lattice and thus complete (Proposition 4.4.1). Hence the
proof comes directly form Proposition 3.2.5.

�

Proposition 5.2.2. Let C be a constraint, and Ci,j the (i, j)-rotated constraint for
i, j ∈ J1, nK. Let Bi,j be the Hull-consistent box for Ci,j , and B the Hull-consistent
box for C. The Oct-consistent octagon for C is the intersection of all the Bi,j and B.

Proof.

The intersection of boxes representation is an exact representation for octagons
(Proposition 4.2.1). The proof comes directly form Proposition 5.2.1.

�

The consistency indicates how to filter the inconsistent values for a constraints, We
now have to chose in which order the constraints are propagated.

5.2.2. Propagation Scheme

The modified version of Floyd-Warshall shortest path (Algorithm 4.1) efficiently
and optimally propagates octagonal constraints [DEC 89]. The initial constraints
(C1 . . . Cp) and the rotated constraints (C1,2

1 . . . Cn−1,n
p) are filtered using the Oct-

consistency. So we need to integrate in the same propagation scheme both propa-
gators. Octagonal constraints corresponding to the bounds of the boxes, we rely in
the informations gathered during the propagation of these constraints to propagate the
initial and rotated constraints. This allows us to take full advantage of relational prop-
erties of octagons. It is important to note that all the propagators defined above are
monotonous and complete, we can then combine them in any order to compute the
consistency, as shown in Proposition 3.2.5 or in [BEN 96].

The key idea for the propagation scheme is to interleave the refined Floyd-Warshall
algorithm and the propagators for the initial and rotated constraints. A pseudocode is
given Algorithm 5.1. During the first iteration of the propagation loop, all the propa-
gators for the initial and rotated constraints are executed. This first stage reduces the
domains with respect to the constraints of the problem. As the domains are stored in
the difference bound matrix, the values in the matrix are thus modified and the modi-
fied version of Floyd-Warshall must be applied to compute the new minimal bounds.
The second part of the propagation loop corresponds to Algorithm 4.1 except that
every time that an element is modified, the corresponding propagators are added to

96 Abstract Domains in Constraint Programming

float dbm[2n][2n] /* difference bound matrix containing the variables domain */
set of propagators propagSet /* set of propagators to execute */
int i, j, k, i′, j′ /* indexes for the difference bound matrix */
float m /* auxiliary variable */

propagSet← {ρC1
, . . . , ρCp

, ρC1,2
1
, . . . , ρCn−1,n

p
}

while propagSet 6= ∅ do
/* initial and rotated constraints propagation */

apply all the propagators in propagSet
propagSet← ∅

/* octagonal constraints propagation */
for k from 1 to n do

for i from 1 to 2n do
for j from 1 to 2n do
m← min(dbm[i][2k] + dbm[2k][j], dbm[i][2k − 1] + dbm[2k − 1][j],

dbm[i][2k − 1] + dbm[2k − 1][2k] + dbm[2k][j],
dbm[i][2k] + dbm[2k][2k − 1] + dbm[2k − 1][j])

if m < dbm[i][j] then
dbm[i][j]← m /* update of the DBM */
propagSet← propagSet ∪{ρCi,j

1
. . . ρCi,j

p
} /* get the propagators to

apply */
end if

end for
end for
for i from 1 to 2n do

for j from 1 to 2n do
i′ ← (i mod 2 = 0) ? i− 1 : i+ 1
j′ ← (j mod 2 = 0) ? j − 1 : j + 1
if (dbm[i][i′] + dbm[j′][j])) < dbm[i][j] then

dbm[i][j]← dbm[i][i′] + dbm[j′][j]
propagSet← propagSet ∪{ρCi,j

1
. . . ρCi,j

p
}

end if
end for

end for
end for
for i from 1 to 2n do

if dbm[i][i] < 0 then
return failure

else
dbm[i][i]← 0

end if
end for

end while

Algorithm 5.1: Pseudo code for the propagation loop mixing the modified version
of Floyd Warshall algorithm (octagonal constraints propagation) and the initial and
rotated propagators ρC1

. . . ρCp
, ρC1,2

1
. . . ρCn−1,n

p
, for an octagonal CSP as defined

Section 5.1.

Octagonal Solving 97

v1

v2
v1,2

1

v1,2
2

(a)

v1

v2
v1,2

1

v1,2
2

(b)

v1

v2
v1,2

1

v1,2
2

(c)

v1

v2
v1,2

1

v1,2
2

(d)

Figure 5.2. Example of an iteration of the propagation for the Oct-consistency: an usual
consistency algorithm is applied in each basis (Figures 5.2(a) and 5.2(b)) then the different
boxes are made consistent using the modified Floyd-Warshall algorithm (Figure 5.2(c)). The

consistent octagon is given Figure 5.2(d).

the set of propagators to execute. The propagators in this set are applied once the
propagation of the octagonal constraints is done. Hence, if an element is modified
several times, its corresponding propagators are called only once. We can say that this
propagation scheme is guided by the additional information of the relational domain.

An example of an iteration of the propagation loop is given Figure 5.2: propaga-
tors of the initial constraints ρC1

, ρC2
are first applied (Figure 5.2(a)), then the prop-

agators of the rotated constraints are applied ρC1,2
1
, ρC1,2

2
(Figure 5.2(b)). The two

boxes are made consistent with respect to each other using the refined Floyd-Warshall
algorithm(Figure 5.2(c)). In this example, the box in the canonical basis is slightly
reduced, thus the propagators ρC1

, ρC2
have to be applied again. The application of

these propagators do not modify the box in the canonical basis and the consistent
octagon corresponds to the intersection of theses two boxes (Figure 5.2(d)).

98 Abstract Domains in Constraint Programming

We show here that the propagation as defined Algorithm 5.1 is correct, in other
words, it computes the consistent octagon for a sequence of constraints.

Proposition 5.2.3 (Correctness). Given a CSP on variables (v1 . . . vn), domains
(D̂1 . . . D̂n), and constraints (C1 . . . Cp). Suppose that each constraint C comes with
a propagator ρC such that ρC reaches the Hull-consistency, that is ρC(D̂1×· · ·×D̂n)
returns a hull-consistent box for C. Then the propagation scheme as define Algorithm
5.1 computes the Oct-consistent octagon for C1 . . . Cp.

Proof.
This proposition derives from Proposition 5.2.2, and the propagation scheme Algo-
rithm 5.1. The propagation scheme is defined so as to stop when propagSet is empty.
This happens when the difference bound matrix is no more modified. Indeed, the
propagators are added to propagSet only when an element in the difference bound
matrix is modified. Thus when the propagation scheme terminates, the octago-
nal constraints are consistent. Moreover, as the elements in the difference bound
matrix are not changed, it follows that the propagators did not modified the vari-
ables domain. Hence the final octagon is stable by application of all ρCi,j

k
, for all

k ∈ J1, pK and i, j ∈ J1, nK. By hypothesis, the propagators reach consistency, the
boxes are thus hull-consistent for all the initial and rotated constraints. By Proposi-
tion 5.2.2, the returned octagon is Oct-consistent.

�

The refined Floyd-Warshall has a time complexity of O(n3). For each round in its
loop, in the worst case we add all the propagators to the set of propagators to execute,
that is in the worst case p

(
n(n−1)

2 + 1
)

propagators. Thus the time complexity for

the propagation scheme in Algorithm 5.1 is O(n3 + pn2). In the end, the octagonal
propagation uses both representations of octagons. It takes advantage both of the
relational property of the octagonal constraints (Floyd-Warshall), and of the usual
constraint propagation on boxes (propagators). This comes to the cost of computing
the octagon, but is expected to give a better precision in the end.

Now that we have defined for the octagons all the necessary components for the
solving process, namely the octagonal consistency, the octagonal splitting operator,
the octagonal precision and the octagons abstract domain, we can go a step further
and define a fully octagonal solver.

5.3. Octagonal Solver

We saw Section 4.4 that octagons can be the base set for an abstract domain and
that with the consistency and the propagation loop described previously, we obtain

Octagonal Solving 99

an octagonal solver. The solving process is the same that the one in Algorithm 3.1
using octagons. Octagons being closed under intersection (H1) and O not having
infinite decreasing chain (H2), this algorithm terminates and is complete. More-
over, from Algorithm 3.1, this algorithms returns a set of octagons which union over-
approximates the solutions space. More precisely, an octagon is considered as a solu-
tion if all its points are solutions or if it over-approximates a solution set with a preci-
sion r.

To guide the search space exploration, one can define heuristics for the choice of
the variable. Several heuristics are presented in the next subsection.

5.3.1. Variables Heuristics

An important feature of a solver is the heuristic used to choose the variable. It
chooses which variable to split. For continuous constraints, the variable with the
largest domain size is chosen to be split in two. by splitting the largest domain, this
heuristic can arrive faster to the precision. The three following heuristics derived from
this strategy and differ on the set of variables that can be chosen. Let V ′ the set of
all the variables in an octagonal CSP V ′ = (v1 . . . vn, v

1,2
1 , v1,2

2 . . . vn−1,n
n−1 , vn−1,n

n)
which is re-numbered V ′ = (v1 . . . vn, vn+1 . . . vn2) for more simplicity.

Definition 5.3.1 (LargestFirst Heuristic (LF)). Let V ′ = (v1 . . . vn, vn+1 . . . vn2) be
the set of all the variables in the octagonal CSP. The variable to split is the variable vi
which realizes the maximum of

arg max
i∈J1,n2K

(
Di −Di

)

As for the usual continuous split, the variable to split is chosen among all the
variables.

Definition 5.3.2 (LargestCanFirst Heuristic (LCF)). Let V ′ = (v1 . . . vn, vn+1 . . . vn2)
be the set of all the variables in the octagonal CSP. The variable to split is the variable
vi realizing the maximum of

arg max
i∈J1,nK

(
Di −Di

)

In this strategy, the choice is restricted to the initial variables, that are the variables
in the original CSP.

Definition 5.3.3 (LargestOctFirst Heuristic (LOF)). Let V ′ = (v1 . . . vn, vn+1 . . . vn2)
be the set of all the variables in the octagonal CSP. The variable to split is the variable
vi which realizes the maximum of

arg max
i∈Jn+1,n2K

(
Di −Di

)

100 Abstract Domains in Constraint Programming

In this strategy, the choice is restricted to the rotated variables, that are the variables
generated by the rotations.

The three choice heuristics presented above do not take into account the corre-
lation between the variables. Moreover, the variable which has the largest domain
can be in a basis that is of little interest for the problem, or the domains have a wide
range because the constraints are poorly propagated in this basis. We thus define an
octagonal strategy.

Definition 5.3.4 (Oct-Split Heuristic (OS)). This strategy relies on the same remark
as for definition 4.3.2: the variable to split is the variable vi,jk which realizes the max-
imum of

min
i,j∈J1,nK

(
max
k∈J1,nK

(
Di,j
k −D

i,j
k

))

The strategy is the following: choose first a promising basis, that is, a basis in
which the boxes are tight (choose i, j). Then take the worst variable in this basis
as usual (choose k). This heuristic aims at reaching faster the octagonal precision
(Definition 4.3.2).

Figure 5.3 shows examples of the different variables heuristics. In the first two
examples, we consider the octagon obtain by the intersection of the blue and pink
boxes. In the first example, strategies LargestFirst and LargestCanFirst chose to split
in two the domain D1 (along the red dashed line). While strategies LargestOctFirst
and Oct-Split choose to split in two the domain D1,2

1 (along the blue dotted line). In
the second example, strategies LargestFirst and LargestOctFirst choose to split in two
the domain D1,2

1 (along the red dashed line). While strategies LargestCanFirst and
Oct-Split choose to split in two the domain D1 (along the blue dotted line).

For these two examples, the split along the blue dotted line seems the more rele-
vant. In the first example, splitting along the blue dotted line reduces the size of the
domains in the rotated basis which is interesting for this octagon as it corresponds to
the box in the rotated basis. Similarly, in the second example, reducing the size of the
domains in the canonical basis is more relevant as the octagon corresponds to the box
in the canonical basis.

5.3.2. Octogonalization Heuristic

Octagonalization heuristics create partial octagons. For the octagons, all the n(n+
1)/2 possible basis are generated, which for problems of high dimension (large value
for n) created an octagon with a large number of faces. As said previously, maybe
some of the generated basis are less interesting than others with respect to the problem
to solve. We thus define different strategies to determine a subset of bases to generate.

Octagonal Solving 101

v1

v2

(a)

v1

v2

(b)

Figure 5.3. Examples of the different variable heuristics. Figure 5.3(a), the LF and LCF
strategies split along the red dashed line while the LOF and OS strategies split along the blue
dotted line. Figure 5.3(b), the LF and LOF strategies split along the red dashed line while the

LCF and OS strategies split along the blue dotted line.

Given a problem we try to find, by symbolically looking at the constraints, which
bases are more likely to improve the search. In other words, we try to determine in
which bases the problem is easier to solve by only looking at the constraints. This
step is done once at the creation of the octagon unlike in [GOL 10] where the basis
changes after each call to the splitting operator in the solving process.

Definition 5.3.5 (ConstraintBased Heuristic (CB)). Consider a CSP on variables
(v1 . . . vn) to octogonalize. The basis Bi,jα is generated only if the variables vi and vj
appear within the same constraint.

If vi and vj appear in the constraint C, then C links vi with vj . We say that there
exists a relation between vi and vj . The idea behind this heuristic is to emphasize a
relation that already exists between two variables. In the worst case, all the pairs of
variables appear within a constraint thus all the basis will be generated.

Definition 5.3.6 (Random Heuristic (R)). Consider a CSP on variables (v1 . . . vn) to
octogonalize. Among all the possible bases generates one random basis. Chooses i
and j with i < j then generates the basis Bi,jα .

We set the number of generated bases to one, this is purely arbitrary and can be
random for a pure random heuristic.

Definition 5.3.7 (StrongestLink Heuristic (SL)). Consider a CSP on variables
(v1 . . . vn) to octogonalize. This heuristic generates only one basis, the one for which
the variables have the strongest link. In other words, the basis corresponding to the
pair of variables which appears in most constraints.

102 Abstract Domains in Constraint Programming

Example 5.3.1 – Given the following constraints:
{

v1 + v2 + v1 × v2 ≤ 3
cos(v1) + v3 ≤ 10

v1 × v3 ≥ 1

The basis B1,3
α is generated as variables v1 and v3 appear together in two constraints

while the pair {v1, v2} appears in only one constraint.

The idea of the StrongestLink heuristic is to emphasize the strongest relation
between two variables. We want the new variables to be the most constrained as
possible so that the solving process will have more chances to reduce their domains.

The last heuristic rely on the notion of promising scheme.

Definition 5.3.8 (Promising Scheme). Let (v1 . . . vn) be the variables set. We call
promising scheme expressions corresponding to the following patterns: ±vi ± vj or
±vi × vj for i, , j ∈ J1, nK.

These schemas are said promising as they can easily simplified in the correspond-
ing rotated basis.

Example 5.3.2 – Let v1 and v2 be two variables. Consider the expression v1 + v2, the
corresponding expression in the (1, 2)-rotated basis is:

v1 + v2 = av1,2
1 − av1,2

2 + av1,2
1 + av1,2

2

= 2av1,2
1

where a = cos
(
π
4

)
= sin

(
π
4

)
. Similarly, consider the expression v1 × v2. The

corresponding expression in the (1, 2)-rotated basis is:

v1 × v2 =
(
av1,2

1 − av1,2
2

)
×
(
av1,2

1 + av1,2
2

)

=
(
av1,2

1

)2

−
(
av1,2

2

)2

Definition 5.3.9 (Promising Heuristic (P)). Consider a CSP on variables (v1 . . . vn)
to octogonalize. This heuristic generates the basis Bi,jα maximizing the number of
promising patterns in the constraints.

Example 5.3.3 – Given the following constraints:
{

v1 + v2 + v1 × v2 ≤ 3
cos(v1) + v3 ≤ 10

v1 × v3 ≥ 1

The basis B1,2
α is generated as there are two promising patterns with variables v1 and

v2 (v1 +v2 and v1×v2) while for the pair {v1, v3} there is only one promising pattern
(v1 × v3).

Octagonal Solving 103

With this heuristic, we want to reduce the number of multiple occurrences of the
new variables in the rotated constraints. We know that implementations of the Hull-
consistency is sensitive to multiple occurrences of variables. By reducing the number
of multiple occurrences, we hope to have a more efficient consistency and thus, to
have a faster solving process.

5.4. Experimental Results

This section compares the results obtained with the octagonal solver to those
obtained with a traditional interval solver on classical benchmarks.

5.4.1. Implementation

We have implemented a prototype of the octagonal solver, with Ibex, a C++ library
for continuous constraints [CHA 09a]. We use the Ibex implementation of HC4-
Revise [BEN 99] to propagate the constraints. The octagons are implemented with
their matrix representation (DBM). Additional rotated variables and constraints are
posted and dealt with as explained above.

An important point is the rotation of the constraints. The HC4 algorithm is sen-
sitive to multiple occurrences of the variables, and the symbolic rewriting defined
Section 5.1 creates multiple occurrences. Thus, the HC4 propagation on the rotated
constraints could be very poor if performed directly on the rotated constraints. It is
necessary to simplify the rotated constraints with respect to the number of multiple
occurrences for the variables. We use the Simplify function of Mathematica to do
this. The computation time indicated below does not include the time for this treat-
ment, however, it is negligible compared to the solving times.

The propagator is an input of our method: we used a standard one (HC4). Further
work include adding propagators such as [ARA 10], which better takes into account
the symbolic expression of the constraint to improve the propagation.

5.4.2. Methodology

We have tested the prototype octagonal solver on problems from the Coconut
benchmark 1. These problems have been chosen depending on the type of the con-
straints (inequations, equations, or both) and on the number of variables.

First, we have compared the computation time to find the first solution or all the
solutions with the intervals and the octagons. For these experiments, we have fixed the

1. This benchmark can be found at http://www.mat.univie.ac.at/~neum/glopt/coconut/

104 Abstract Domains in Constraint Programming

(a) (b)

Figure 5.4. Comparison of the results obtained with the usual interval resolution 5.4(a) to the
results obtained with the octagonal resolution 5.4(b), given an intersection problem and a time

limit of 10ms.

precision parameter r to 0.01. For all the other experiments, the precision parameter r
is set to 0.001. The second experiment, concerns the study of the different heuristics
for the choice of variable presented Section 5.3.1. The last series of tests, compares
the results obtained by the partial octagons generated by the different octagonalization
heuristics (Section 5.3.2) to the one obtained with octagons and intervals.

All experiments were performed with Ibex 1.18 on a MacBook Pro Intel Core 2
Duo 2.53 GHz. All were performed with the same configurations in IBEX. In partic-
ular, the same propagators were used in order to more accurately compare the results
obtained with the octagonal resolution to those obtained with the intervals. In addition,
we have set a time limit to 3 hours in all cases.

5.4.3. Results

Figure 5.4 compares the results obtained with the interval resolution (5.4(a)) to the
results obtained with the octagonal solver (5.4(b)) given a time limit of 10ms. One can
see that with the standard interval solver, there is a staircase effect caused by the boxes

Octagonal Solving 105

Première solution Toutes les solutions
nom # var ctr type B O B O
h75 5 ≤ 41.40 0.03 - -
hs64 3 ≤ 0.01 0.05 - -
h84 5 ≤ 5.47 2.54 - 7238.74

KinematicPair 2 ≤ 0.00 0.00 53.09 16.56
pramanik 3 = 28.84 0.16 193.14 543.46

trigo1 10 = 18.93 1.38 20.27 28.84
brent-10 10 = 6.96 0.54 17.72 105.02

h74 4 = ≤ 305.98 13.70 1304.23 566.31
fredtest 6 = ≤ 3146.44 19.33 - -

Table 5.1. Results on problems from the Coconut benchmark. For each problem, we give the
CPU time in second to find the first solution or all the solutions with the intervals (B) and the

octagons (O).

on the limit of the solution set. This effect is less present with the octagonal solver.
Thanks to their shape, the octagons can, in some cases, be closer to the solution set.

Tables 5.1, 5.2, 5.3 respectively compare for each chosen problem the results
obtained with the intervals to those obtained with the octagons. The results are com-
pared on three criteria, the CPU computation time in seconds, le number of created
nodes and the number of nodes solution. Table 5.4 compares for each selected prob-
lem the results obtained in terms of time for the different variable heuristics. Table
5.5 compares for each selected problem the computation time (in seconds) obtained
by the intervals to those obtained by the octagons and the partial octagons. Table 5.6
compares for each selected problem the number of boxes created during the inter-
val solving process to the number of octagons created during the octagonal solving.
Finally, Table 5.7 compares for each selected problem the number of boxes solution
to the number of octagons solution.

In all the tables, the first three columns give the name of the problem, the number
of variable and the type of the constraints. Also, the dash symbol ‘-’ stands for ‘time
out’ (3 hours).

5.4.4. Analysis

We analyse here the results obtained with the different experiments.

Comparison one solution vs. all the solutions

Table 5.1 compares the results in term of CPU time needed to find the first solution
or all the solutions of a problem using either the intervals or the octagons. Finding the
first solution is often faster using the octagons than with the intervals. Indeed, the

106 Abstract Domains in Constraint Programming

Première solution Toutes les solutions
nom # var ctr type B O B O
h75 5 ≤ 1 024 085 149 - -
hs64 3 ≤ 217 67 - -
h84 5 ≤ 87 061 1 407 - 22 066 421

KinematicPair 2 ≤ 45 23 893 083 79 125
pramanik 3 = 321 497 457 2 112 801 1 551 157

trigo1 10 = 10 667 397 11 137 5 643
brent-10 10 = 115 949 157 238 777 100 049

h74 4 = ≤ 8 069 309 138 683 20 061 357 1 926 455
fredtest 6 = ≤ 29 206 815 3 281 - -

Table 5.2. Results on problems from the Coconut benchmark. For each problem, we give the
number of created nodes to find the first solution or all the solutions with the intervals (B) and

the octagons (O).

nom # var ctr type B O
h75 5 ≤ - -
hs64 3 ≤ - -
h84 5 ≤ - 10 214 322

KinematicPair 2 ≤ 424 548 39 555
pramanik 3 = 145 663 210 371

trigo1 10 = 12 347
brent-10 10 = 854 142

h74 4 = ≤ 700 669 183 510
fredtest 6 = ≤ - -

Table 5.3. Results on problems from the Coconut benchmark. For each problem, we give the
number of solution nodes to find the first solution or all the solutions with the intervals (B) and

the octagons (O).

nom # var ctr type LF LOF LCF OS
brent-10 10 = - - 362.77 337.48

o32 5 ≤ 104.62 122.82 40.60 40.74
ipp 8 = 5 105.17 5 787.5 282.319 279.36

trigo1 10 = - - 256.71 253.53
KinematicPair 2 ≤ 59.72 60.74 62.91 60.78

nbody5.1 6 = 105.93 121.33 27.33 27.08
pramanik 3 = 396.23 414.76 240.93 240.96

h74 4 = ≤ 2896.58 4036.89 1553.67 647.76

Table 5.4. Comparison of the different variable heuristics on problems from the Coconut
benchmark. For each problem, we give the CPU time in seconds to solve it using the

LargestFirst heuristic (LF), the LargestOctFirst (LOF), the LargestCanFirst (LCF) ant the
Oct-Split (OS).

Octagonal Solving 107

nom # var ctr type B O CB R SL P
brent-10 10 = 21.58 330.73 89.78 92.59 105.91 109.74

o32 5 ≤ 27.25 40.74 40.74 17.63 20.68 21.23
ipp 8 = 38.83 279.36 279.36 30.14 29.07 41.60

trigo1 10 = 40.23 253.53 253.53 38.60 37.03 37.03
KinematicPair 2 ≤ 59.04 60.78 60.78 60.78 60.78 60.78

nbody5.1 6 = 95.99 27.08 22.13 443.07 50.87 439.69
bellido 9 = 111.12 - - 362.69 361.56 318.09

pramanik 3 = 281.80 240.96 240.96 141.94 137.42 131.30
caprasse 4 = 9175.36 - - 1085.21 1131.33 2353.58

h74 4 = ≤ - 647.76 647.76 - 0.15 0.15

Table 5.5. Results on problems from the Coconut benchmark. For each problem, we give the
CPU time in seconds to solve it using the intervals (B), the octagons (O) and all the partial

octagons, Constraint Based (CB), Random (R), Strongest Link (SL) and Promising (P).

nom # var ctr type B O CB R SL P
brent-10 10 = 211 885 5 467 5 841 175 771 205 485 21 495

o32 5 ≤ 161 549 25 319 25 319 52 071 62 911 72 565
ipp 8 = 237 445 21 963 21 963 51 379 50 417 75 285

trigo1 10 = 13 621 4 425 4 425 6 393 5 943 5 943
KinematicPair 2 ≤ 847 643 373 449 373 449 373 449 373 449 373 449

nbody5.1 6 = 598 521 5 435 5 429 578 289 137 047 542 263
bellido 9 = 774 333 - - 577 367 573 481 496 729

pramanik 3 = 1 992 743 243 951 243 951 346 633 315 861 319 037
caprasse 4 = 150 519 891 - - 4 445 655 4 472 839 9 933 597

h74 4 = ≤ - 418 867 418 867 - 625 625

Table 5.6. Results on problems from the Coconut benchmark. For each problem, we give the
number of box created while solving with the intervals (B), as well as the number of octagons

created while solving with the octagons (O) and all the partial octagons, Constraint Based
(CB), Random (R), Strongest Link (SL) and Promising (P).

nom # var ctr type B O CB R SL P
brent-10 10 = 825 149 153 636 1 643 1 765

o32 5 ≤ 74 264 12 523 12 523 35 868 31 216 25 833
ipp 8 = 2 301 2243 2243 4 329 6 922 6 194

trigo1 10 = 40 32 32 168 140 140
KinematicPair 2 ≤ 346 590 186 717 186 717 186 717 186 717 186 717

nbody5.1 6 = 1 012 1 003 996 1 794 50 526 2 230
bellido 9 = 7 372 - - 34 756 32 482 37 508

pramanik 3 = 149 011 54 659 54 659 72 052 69 621 71 239
caprasse 4 = 1 544 - - 164 148 110

h74 4 = ≤ - 209 406 209 406 - 293 293

Table 5.7. Results on problems from the Coconut benchmark. For each problem, we give the
number of box in the computed solution by the intervals (B), as well as the number of octagons
in the solution computed with the octagons (O) and all the partial octagons, Constraint Based

(CB), Random (R), Strongest Link (SL) and Promising (P).

108 Abstract Domains in Constraint Programming

octagons being more precise, they are usually closer to the solutions than the boxes,
and therefore, finding the first solution is faster. However, finding all the solutions can
be longer with the octagons than with the boxes. A first explanation is that constraints
in problems brent-10, pramanik and trigo1 contain many multiple occurrences
of variable, which greatly increases the number of multiple occurrences of rotated
variables, despite the call to the Simplify function in Mathematica.

Looking now to the number of created nodes during the resolution (Table 5.2), the
number of octagons created is often smaller then the number of boxes created during
the resolution. This comes from the fact that octagons are more accurate, and thus
more time is spend during the consistency but we need to split less.

As for the last table containing results for this comparison, Table 5.3, it compares
the number of solution boxes to the number of solution octagons. We can see that for
two problems pramanik and trigo1, the number of octagons solution is larger than
the number of solution boxes. For these two problems, octagons have trouble with the
consistency for the elements on the limit of the solution set.

Comparison of heuristics for the choice of variable

Table 5.4 compares the results, in terms of CPU time, of the different variable
heuristics. We can see that splitting the largest size domain (LF) is not a good strategy.
Indeed, if the domains are not well propagated, this may signify that the basis in which
theses domains are, is of little interest for the problem we try to solve. Restricting the
choice to variables living in rotated basis (LOF) does not improve the results and
even deteriorates them. This shows that there exists basis in which the domains are
large and do not add relevant information. Moreover, this means that sometimes it is
necessary to split in the canonical basis.

When the choice of variables is restricted to the variables in the canonical basis
(LCF), the results are much better and the time limit is not exceeded for any of the
selected problems. This can be explained by the fact that all the rotated bases depend
on the canonical basis. And therefore, any change in the canonical basis is passed on
several other basis and may improve the approximation.

Finally, the strategy Oct-Split (OS) is more often the best. By splitting in a basis of
interest, this heuristic efficiently explores the search space. In addition, it suits more
to the definition of the precision function, which is part of the termination criterion.
For these reasons, we used this heuristic for the octagonal solving in the following
experiments.

Comparison of octagonalization heuristics

By looking at the computation time Table 5.5, octagons and partial octagons obtain
very poor results on problems brent-10 and bellido. In these two problems, the

Octagonal Solving 109

rotated bases have very few rotated constraints. This low number of rotated constraints
does not help reduce the domains of the rotated variables, and thus, does not help
reduce the domains of the initial variables. As, the rotated variables are linked to
the initial variables, reducing the first, reduces the latter and conversely. Conversely,
if the rotated variables are not reduced, no information will be given to the initial
variables. In other words, the information gain provided by these rotated constraints
and variables do not compensate for the time spent to propagate them.

However for problems h74, caprasse and nbody5.1 the octagonal resolution or
one of the ones using partial octagons, greatly improves the results. Given the form of
the constraints, we were hoping to improve the computation time on these problems.
Problem h74 contains constraints of the form vi − vj ≤ c, for only one pair (i, j),
which correspond to octagonal constraints. Thus for the (i, j)-rotated basis, these
constraints are well propagated and solutions are quickly found. Note that, for this
problem, when all the bases are generated, the computation time is large. This shows
that the resolution spend a lot of time trying to reduce domains of variables living in
bases of little interest, which do not add information. The situation is the same for
problem caprasse. On the contrary, in problem nbody5.1, all the variables can be
grouped in pairs following the promising pattern (Definition 5.3.8). Therefore, gener-
ating all the bases (O) or just a subset corresponding to variables pairs (CB) greatly
improves the results. Moreover, we can see that one of the pair is more important than
the others, because the results obtained with the StrongestLink (SL) heuristic are not
deteriorated. We can also say that this pair does not correspond to the pair with the
biggest number of promising patterns, as the Promising (P) heuristic obtain very poor
results. Finally, it seems that it corresponds to the basis maximizing the number of
rotated constraints.

For problem KinematicPair, the time obtained with the octagons is equivalent
to the one obtained with the intervals. For the other problems, the time obtained by
one of the solving methods using partial octagons slightly improve the computation
time obtained with the intervals.

Still looking at the computation time, but this time only for the results obtained
for each of the octagonalization heuristics as a whole rather that on a case to case
basis for each problem. Overall, we can see that, contrary to what was expected, it
is the StrongestLink (SL) octagonalization heuristic which gives the best results. We
expected to have better results with the Promising (P) heuristic. We can therefore
deduce that the more rotated constraints is, the better the propagation of the rotated
variables is. This support the hypothesis given to explain the poor results on problems
brent-10 and bellido.

In Table 5.6, we can see that the number of octagons created during the resolution
process is always smaller that the number of boxes created. Moreover, in most of the
problems, the more basis are generated for the octagons, the less octagons are created

110 Abstract Domains in Constraint Programming

during the resolution. It follows that, the more precise the representation is, the more
time is spent on the propagation and fewer splits are needed.

The conclusion is the same for Table 5.6. The number of octagons solution is
usually smaller when the octagons are composed of a large number of bases.

5.5. Conclusion

In this chapter, we have implemented the unified solving method introduced in
Chapter 3 with the octagon abstract domain (Chapter 4). We gave possible algorithms
for the different components of the octagonal solving process, such as the consistency
and propagation scheme. Moreover, we proposed different heuristic for the choice of
the domain to split and the creation of partial octagons. The details of a solver based
on Ibex are given. And preliminary results on a classical benchmark for continuous
problems are given. These results are encouraging and show that an octagonal split-
ting operator and exploration strategy are mandatory to better take into account the
relations within an octagon and obtain a better octagonal solving method. Several
perspectives are possible such as the use of recent propagators less sensitive of mul-
tiple occurrences of variables like Mohc [ARA 10]; the definition of octagonalization
heuristic offering a better compromise between StrongestLink (SL) and Constraint-
Based (CB); the definition of other abstract domains in Constraint Programming such
as the polyhedra [COU 78] or interval polyhedra [CHE 09].

Chapter 6

An Abstract Solver: AbSolute

In the previous chapters, we have defined some notions of Abstract Interpretation
in Constraint Programming, allowing us to define a unified resolution scheme that
does not depend on the chosen abstract domain. This scheme has been implemented
giving us an octagonal solver. This early work makes it possible, in theory, to develop
a mixed solver. However, there is a practical obstacle: the lack of representation for
both integer and real variables, in solvers in Constraint Programming. A solution is to
do the opposite: use Abstract Interpretation abstract domains, that do not depend on
the variables type, and add the Constraint Programming resolution process in Abstract
Interpretation. In this chapter, we present Constraint Programming using only notions
from Abstract Interpretation. We then present an abstract solver, AbSolute, imple-
mented on top of an abstract domain library.

Using the links highlighted in the Section 2.3.1, we express the constraints reso-
lution in Abstract Interpretation. Solving a CSP is here seen as a concrete semantics.
We thus define concrete and abstract domains, abstract operators for splits and consis-
tency, and an iterative scheme computing an approximation of its concrete semantics.
These definitions allow us to obtain an abstract solving method. We have imple-
mented and tested this method on different problems. As the definitions named above,
the details of this implementation and an analysis of the results obtained are given in
this chapter.

6.1. Abstract Solving Method

Similarly to the analysis of a program in Abstract Interpretation, we define the
concrete semantics of solving a constraint satisfaction problem. Then, we show that
the representations used in Constraint Programming correspond to abstract domains

111

112 Abstract Domains in Constraint Programming

with a size function. In addition, we show that the lower closure operators in Abstract
Interpretation are similar to the propagators in Constraint Programming, and therefore
local iterations are equivalent to the propagation loop. Splitting operators do not exist
in Abstract Interpretation, we define them and thus obtain an abstract solving method.

6.1.1. Concrete Solving as Concrete Semantics

Previously, Section 2.2.1, we saw that solving a constraint satisfaction problem is
similar to computing the solutions set of a conjunction of constraints. Given values
for the variables, constraints answer true or false in the case of discrete variables,
and true, false or maybe for continuous variables. From this observation, solving a
constraint satisfaction problem can be seen as the analysis of a conjunction of tests,
the constraints. The concrete semantic thus corresponds to the solutions set of the
problem. We consider as concrete domain D[the subsets of the initial search space
D̂ = D̂1×· · ·×D̂n (Definition 2.2.1), that is (P(D̂),⊆, ∅,∪). Similarly, in Constraint
Programming, each constraint Ci is associated to a propagator, which corresponds in
Abstract Interpretation to a lower closure operator (Definition 2.1.8) ρ[i : P(D̂) →
P(D̂), such that ρ[i(X) only keeps points of X satisfying constraint Ci. Finally,
concrete solution of the problem is simply S = ρ[(D̂), where ρ[= ρ[1 ◦ · · · ◦ ρ[p.

Furthermore, by formalizing the resolution of a constraints satisfaction problem in
terms of local iterations, the solutions can be expressed as a fixpoint gfpD̂ ρ

[. That
is the greatest fixpoint of the composition of propagators, ρ[, smaller than the initial
search space, D̂. Solving a problem is equivalent to computing a fixpoint. Expressing
the solution set as the greatest fixpoint has already been made [SCH 05].

The solutions set being identified as the concrete domain, existing representations
for domains in Constraint Programming can be seen as abstract domains.

6.1.2. Abstract Domains Existing in Constraint Programming

Solvers do not manipulate individual points in D̂, but rather collections of points
of certain forms, such as boxes, called domains in Constraint Programming. We now
show that Constraint Programming-domains can be the base set D] of an abstract
domain (D],v],⊥],t]) in Abstract Interpretation.

Definition 6.1.1 (Integer Cartesian Product). Let v1, . . . , vn be variables over finite
discrete domains D̂1 . . . D̂n. We call integer Cartesian product any Cartesian product
of integer sets and is expressed in D[by :

S] =

{∏

i

Xi | ∀i,Xi ⊆ D̂i

}

This definition corresponds to Definition 2.2.2.

An Abstract Solver: AbSolute 113

Definition 6.1.2 (Integer Box). Let v1, . . . , vn be variables over finite discrete
domains D̂1 . . . D̂n. We call integer box a Cartesian product of integer intervals and
is expressed in D[by :

I] =

{∏

i

Jai, biK | ∀i, Jai, biK ⊆ D̂i, ai ≤ bi
}
∪ ∅

This definition corresponds to Definition 2.2.3.

Definition 6.1.3 (Box). Let v1, . . . , vn be variables over bounded continuous domains
D̂1 . . . D̂n. A box is a Cartesian product of intervals and is expressed in D[by :

B] =

{∏

i

Ii | Ii ∈ I, Ii ⊆ D̂i

}
∪ ∅

This definition corresponds to Definition 2.2.4.

6.1.3. Abstract Domains Operators

In Constraint Programming, to each representation is associated a consistency.
Along the same lines, we associate to each abstract domain a consistency, and in
addition to the standard operators in Abstract Interpretation, we define a monotonic
size function τ : D] → R+, used as a termination criterion for the splitting operator
(Définition 6.1.7).

Example 6.1.1 – Generalized arc-consistency (Definition 2.2.7) corresponds to the
abstract domain of integer Cartesian products S] (Definition 6.1.1), ordered by
element-wise set inclusion. It is linked with the concrete domain D[by the standard
Cartesian Galois connection:

D[−−−→←−−−αa

γa S]

γa(S1, . . . , Sn) = S1 × · · · × Sn
αa(X[) = λi.{v | ∃(x1, . . . , xn) ∈ X[, xi = v}

The size function τa uses the size of the largest component:

τa(S1, . . . , Sn) = max
i

(|Si|)

Thus, if the considered element is a solution, all variables are instantiated, so all sets
are singletons and τa is equal to 1.

114 Abstract Domains in Constraint Programming

Example 6.1.2 – Bound consistency (Definition 2.2.8) corresponds to the abstract
domain of integer boxes I] (Definition 6.1.2), ordered by element-wise interval inclu-
sion. We have a Galois connection:

D[−−−→←−−−αb

γb I]

γb(Ja1, b1K, . . . , Jan, bnK) = Ja1, b1K× · · · × Jan, bnK
αb(X

[) = λi.J min {v ∈ Z | ∃(x1, . . . , xn) ∈ X[, xi = v},
max {v ∈ Z | ∃(x1, . . . , xn) ∈ X[, xi = v}K

We use as size function the length of the largest dimension plus one so that, like the
integer Cartesian products, if the element is a solution, the size function is equal to 1:

τb(Ja1, b1K, . . . , Jan, bnK) = max
i

(bi − ai) + 1

Example 6.1.3 – Hull consistency (Definition 2.2.9) corresponds to the abstract
domain of boxes with floating-point bounds B] (Definition 6.1.3). We use the
following Galois connection:

D[−−−→←−−−αh

γh B]

γh([a1, b1], . . . , [an, bn]) = [a1, b1]× · · · × [an, bn]
αh(X[) = λi.[max {v ∈ F | ∀(x1, . . . , xn) ∈ X[, xi ≥ v},

min {v ∈ F | ∀(x1, . . . , xn) ∈ X[, xi ≤ v}]

The size function corresponds to the size of the largest dimension:

τh([a1, b1], . . . , [an, bn]) = max
i

(bi − ai)

We observe that to each choice corresponds a classic non-relational abstract
domain in Abstract Interpretation. Moreover, it is an homogeneous Cartesian product
of identical single-variable domains (representation for one variable). However, this
does not need be the case, new solvers can be designed beyond the ones considered
in traditional Constraint Programming by varying the abstract domains further. A
first idea is to apply different consistencies to different variables which permits, in
particular, mixing variables with discrete domains and variables with continuous
domains. Yet, the domains still corresponds to Cartesian products. A second idea is
to parametrize the solver with other abstract domains from the Abstract Interpretation
literature, in particular relational or mixed domains. We choose the second idea, so
the representations are no longer restricted to Cartesian products and can represent
different types of variables. This idea is illustrated below.

Example 6.1.4 – The octagon abstract domainO] [MIN 06] assigns a (floating-point)
upper bound to each binary unit expression ±vi ± vj on the variables v1, . . . , vn.

O] = {αvi + βvj | i, j ∈ J1, nK, α, β ∈ {−1, 1} } → F

An Abstract Solver: AbSolute 115

It enjoys a Galois connection withD[. Let us recall here this Galois connection and the
size function defined previously (Definition 4.3.2). ∀X] ∈ O],∀i, j,∈ J1, nK,∀α, β ∈
{−1, 1}, we denote by X](αvi + βvj) the floating-point upper bound of the binary
unit expression αvi + βvj .

D[−−−→←−−−αo

γo O]
γo(X

]) = {(x1, . . . , xn) | ∀i, j, α, β, αxi + βxj ≤ X](αvi + βvj)}
αo(X

[) = λ(αvi + βvj).max {αxi + βxj | (x1, . . . , xn) ∈ X[}
τo(X

]) = min(max
i,j,β

(X](vi + βvj) +X](−vi − βvj)),
max
i

(X](vi + vi) +X](−vi − vi))/2)

Example 6.1.5 – The polyhedron domain P] [COU 78] abstracts sets as convex,
closed polyhedra. Modern implementations [JEA 09] generally follow the “double
description approach” and maintain two dual representations for each polyhedron: a
set of linear constraints and a set of generators. A generator is either a vertex or a ray
of the polyhedron. A ray corresponds to a vector along which, starting from any vertex
of the polyhedron, any points is part of the polyhedron. However, the polyhedra we
used do not have rays given that they are bounded. There is no abstraction function
α for polyhedra, and so, no Galois connection. Operators are generally easier in one
representation. In particular, we define the size function on generators as the maximal
Euclidian distance between pairs of vertices. Let X] ∈ P],

τp(X
]) = max

gi,gj∈X]
||gi − gj ||

Example 6.1.6 – The mixed box abstract domain M], ordered by inclusion. Let
v1 . . . vn, the variables set and let (v1, . . . , vm),m ∈ J1, nK the set of integer variables
and (vm+1, . . . , vn) the set of real variables. The abstract domain of mixed boxes
assigns to integer variables an integer interval and to real variables a real interval with
floating-point bounds.

M] =

{
m∏

i=1

Jai, biK | ∀i, Jai, biK ⊆ D̂i, ai ≤ bi
}
×
{

n∏

i=m+1

Ii | Ii ∈ I, Ii ⊆ D̂i

}
∪∅

This abstract domain enjoys a Galois connection with D[:

D[−−−−→←−−−−
αm

γm M]

γm(Ja1, b1K, . . . , Jam, bmK, [am+1, bm+1], . . . , [an, bn])
= Ja1, b1K× · · · × Jam, bmK× [am+1, bm+1]× · · · × [an, bn]

αm(X[) = λi.

J min {v ∈ Z | ∃(x1, . . . , xn) ∈ X[, xi = v},
i ∈ J1,mK

max {v ∈ Z | ∃(x1, . . . , xn) ∈ X[, xi = v} K
[max {v ∈ F | ∀(x1, . . . , xn) ∈ X[, xi ≥ v},

i ∈ Jm+ 1, nK
min {v ∈ F | ∀(x1, . . . , xn) ∈ X[, xi ≤ v}]

116 Abstract Domains in Constraint Programming

The size function corresponds to the size of the largest dimension:

τm(Ja1, b1K, . . . , Jam, bmK, [am+1, bm+1], . . . , [an, bn]) = max
i

(bi − ai)

6.1.4. Constraints and Consistency

We now assume that an abstract domain D] underlying the solver is fixed.

Given the concrete semantics of the constraints ρ[= ρ[1 ◦ · · · ◦ ρ[p, and if D]
enjoys a Galois connection D[−−→←−−α

γ D], then the semantics of the perfect propagator
achieving the consistency for all the constraints is simply: α ◦ ρ[◦ γ. Solvers achieve
this algorithmically. They apply the propagator for each constraint in turn until a
fixpoint is reached or, when this process is deemed too costly, return before a fixpoint
is reached.

Remark 6.1.1 – By observing that each propagator corresponds to an abstract test
transfer function ρ]i in D], we retrieve the local iterations proposed by Granger to
analyze conjunctions of tests [GRA 92]. A trivial narrowing is used here: stop refining
after an iteration limit is reached.

Additionally, each ρ]i can be internally implemented by local iterations [GRA 92],
a technique which is used in both the Abstract Interpretation and Constraint Program-
ming communities. A striking connection is the analysis in non-relation domains
using forward-backward iterations on expression trees [MIN 04, §2.4.4], which is
extremely similar to the HC4-revise algorithm [BEN 99] developed independently for
Constraint Programming.

We can thus see the consistency as an abstraction of the concrete semantics of
constraints.

6.1.5. Disjunctive Completion and Split

To approximate the solutions to an arbitrary precision, solvers use a coverage of
finitely many abstract elements from D]. This corresponds in Abstract Interpretation
to the notion of disjunctive completion [COU 92a].

Definition 6.1.4 (Disjunctive Completion). Let D] a set. A disjunctive completion
E] = Pfinite(D]) is a subset of D] which elements are not comparable. That is:

E] = {X] ⊆ D] | ∀B], C] ∈ X], B] v]/ C]}

An Abstract Solver: AbSolute 117

Example 6.1.7 – All the elements a the same level in a lattice form a disjunctive
completion as they cannot be compare to each other. Consider the lattice of integer
boxes I] with inclusion, the set

{J1, 2K× J1, 2K, J1, 2K× J3, 7K}

is a disjunctive completion. Indeed, the integer box J1, 2K × J1, 2K is not comparable
with the inclusion to the integer box J1, 2K × J3, 7K. The first box is not included in
the second and conversely.

We now consider the abstract domain E] = Pfinite(D]), and equip it with the
Smyth orderv]E , such that ∀X], Y] ∈ E] two disjunctive completions, X] is included
in Y] if and only if each element of X] is included in one of the elements of Y]. It is
a classic order for disjunctive completions defined as:

X] v]E Y] ⇐⇒ ∀B] ∈ X], ∃C] ∈ Y], B] v] C]

Example 6.1.8 – Consider the lattice of boxes B] with inclusion. Let X] = {[2, 5]×
[1, 4.5], [1, 4]×[4.5, 8], [5, 8]×[2, 5.5], [6, 9]×[5.5, 9]} and Y] = {[1, 5]×[1, 8], [5, 9]×
[2, 9]} two disjunctive completions. We have X] v]E Y]. Indeed each box of X] is
included in a box of Y]. Graphically, we have the following figure. The boxes on the
left (in pink) are included in the boxes on the right (in blue).

v]E as

The splitting operator ⊕, splits an element of D] in two or more elements. It thus
transforms an element of D] into an element of E]. So, it achieves the creation of
new disjunctive completions. Since the splitting operator does not exist in Abstract
Interpretation, we redefine it here.

Definition 6.1.5 (Split Operator). A split operator is an operator ⊕ : D] → E] such
that ∀e ∈ D],

1) | ⊕ (e)| is finite,
2) ∀ei ∈ ⊕(e), ei v] e, and

118 Abstract Domains in Constraint Programming

3) γ(e) =
⋃ {γ(ei) | ei ∈ ⊕(e)}.

This definition is the abstract domains version of Definition 3.2.3.

Each element of ⊕(e) is included in e (Condition 2), we have ⊕(e) v]E {e}.
Furthermore, Condition 3 shows that ⊕ is an abstraction of the identity. Thus, ⊕
can be freely applied at any place during the solving process without altering the
soundness. The integer instantiation and the split on boxes can be retrieved with this
definition.

Example 6.1.9 – The instantiation of a variable vi in a discrete domain X] =
(S1, . . . , Sn) ∈ S] is a splitting operator:

⊕a(X]) = {(S1, . . . , Si−1, x, Si+1, . . . , Sn) |x ∈ Si}

Example 6.1.10 – The instantiation of a variable vi in a discrete domain X] =
(X1, . . . , Xn) ∈ I] is a splitting operator:

⊕b(X]) = {(X1 × · · · ×Xi−1 × x×Xi+1 × · · · ×Xn) |x ∈ Xi}

Example 6.1.11 – Cutting a box in two along a variable vi in a continuous domain
X] = (I1, . . . , In) ∈ B] is a splitting operator:

⊕h(X]) =
{ (I1 × · · · × Ii−1 × [a, h]× Ii+1 × · · · × In),

(I1 × · · · × Ii−1 × [h, b]× Ii+1 × · · · × In) }

where Ii = [a, b] and h = (a+ b)/2 or h = (a+ b)/2.

Other splitting operators can be defined for non-relational or mixed abstract
domains.

Example 6.1.12 – Given a binary unit expression αvi + βvj , i, j ∈ J1, nK, α, β ∈
{−1, 1}, we define the split on an octagon X] ∈ O] along this expression as:

⊕o(X]) = {X][(αvi + βvj) 7→ h], X][(−αvi − βvj) 7→ −h]}

where h = (X](αvi + βvj)−X](−αvi − βvj))/2, rounded in F in any direction.

This operator corresponds to the one presented Definition 4.3.1. Indeed, cutting
along a binary unit expression αvi + βvj is equivalent to split the domain of variable
vi,ji or vi,jj when i 6= j, and of variable vi or vj when i = j.

An Abstract Solver: AbSolute 119

Example 6.1.13 – Given a polyhedron X] ∈ P] represented as a set of linear con-
straints, and a linear expression

∑
i βivi. We define the splitting operator on a poly-

hedron along this expression as:

⊕p(X]) =

{
X] ∪

{∑

i

βivi ≤ h
}
, X] ∪

{∑

i

βivi ≥ h
}}

with h =

(
min
γ(X])

∑
i

βivi + max
γ(X])

∑
i

βivi

)

2
can be computed by the Simplex algo-

rithm [DAN 97].

Example 6.1.14 – Consider the mies box X] = (X1, . . . , Xm, Im+1, . . . , In) ∈ M].
We define the splitting operator on a mixed box, such that either a discrete variable is
instantiated, or the domain of a continuous variable is split:

⊕m(X]) =

{(X1 × · · · ×Xi−1 × x×Xi+1 × · · · ×Xm × Im+1 × · · · × In)
if i ∈ J1,mK|x ∈ Xi}

{(X1 × . . . Xm × Im+1 × · · · × Ii−1 × [a, h]× Ii+1 × · · · × In),
if i ∈ Jm+ 1, nK(X1 × . . . Xm × Im+1 × · · · × Ii−1 × [h, b]× Ii+1 × · · · × In) }

where ∀i ∈ Jm+ 1, nK, Ii = [a, b] and h = (a+ b)/2 or h = (a+ b)/2.

These splitting operators are parametrized by the choice of a direction of cut (some
variable or expression). For non-relational domains we can use two classic strategies
from Constraint Programming: define and order and split each variable in turn, or
split along a variable with maximal size or with the smallest domain ; that is |Si| for a
variable represented with a set or b−a for a variable represented with an interval [a, b]
or Ja, bK. These strategies lift naturally to octagons by replacing the set of variables
with the (finite) set of unit binary expressions. For polyhedra, one can bisect the
segment between two vertices that are the farthest apart, in order to minimize τp.
However, even for relational domains, we can use a faster and simpler non-relational
split, such as cut along the variable with the largest domain.

Definition 6.1.6 (Choice Operator). A choice operator is an operator π : E] → D]
such that ∀X] ∈ E], for r ∈ R>0 fixed,

1) π(X]) ∈ X], and
2) (τ ◦ π)(X]) > r.

The choice operator choose an element in the disjunctive completion X], bigger than
a given value r.

120 Abstract Domains in Constraint Programming

To ensure the termination of the solver, we impose that any series of reductions,
splits, and choices eventually outputs a small enough element for τ :

Definition 6.1.7 (Compatibility of τ and ⊕). The two operators τ : D] → R+ and
⊕ : D] → E] are said compatible if and only if, for any reductive operator ρ] : D] →
D] (i.e. ∀X] ∈ D], ρ](X]) v] X]) and any family of choice operators πi : E] → D]
(i.e. ∀Y] ∈ E], πi(Y]) ∈ Y]), we have:

∀e ∈ D], ∀r ∈ R>0,∃K such that ∀j ≥ K, (τ ◦πj ◦⊕◦ρ] ◦ · · · ◦π1 ◦⊕◦ρ])(e) ≤ r

All operators ⊕ and ρ] being contracting, the operator π ◦ ⊕ ◦ ρ] is also reducing
the domains. And thus for any r strictly positive, the previous definition is verified.

We can easily verified that the splitting operators previously introduced, ⊕a, ⊕b,
⊕h,⊕o,⊕p, and⊕m, are respectively compatible with the size function, τa, τb, τh, τo,
τp, and τm, respectively proposed for the S], I], B],O], P] andM] abstract domain.

Remark 6.1.2 – The search procedure can be represented as a search tree (defined
Section 2.2.4). With this representation, the set of nodes at a given depth corresponds
to a disjunction over-approximating the solutions set. Moreover, a series of reduction
(ρ), selection (π), and split (⊕) operators corresponds to a tree branch. Definition
6.1.7 states that each branch of the search tree is finite.

6.1.6. Abstract Solving

The abstract solving algorithm is given Algorithm 6.1. It maintains in toExplore
and sols two disjunctions in E], and iterates the following steps:

1) choose an abstract element e in toExplore (pop),
2) apply the consistency (ρ]),
3) and either discard the result e, add it to the set of solutions sols, or split it (⊕).

The solver starts with the maximal element >] of D], which represents γ(>]) = D̂.

This algorithm corresponds to Algorithm 3.1 in which the abstract domain E
defined in Constraint Programming, is replaced by the abstract domain D].

The termination is ensured by the following proposition:

Proposition 6.1.1. If τ and ⊕ are compatible, the algorithm 6.1 terminates.

Proof.

An Abstract Solver: AbSolute 121

list of abstract domains sols← ∅ /* stores the abstract solutions */
queue of abstract domains toExplore← ∅ /* stores the abstract elements to explore */
abstract domain e ∈ D]

push >] in toExplore /* initialization with the abstract search space: γ(>]) = D̂ */

while toExplore 6= ∅ do
e← pop(toExplore)
e← ρ](e)
if e 6= ∅ then

if τ(e) ≤ r or isSol(e) then /* isSol(e) returns true if e contains only solutions */
sols← sols ∪ e

else
push ⊕(e) in toExplore

end if
end if

end while

Algorithm 6.1: Our generic abstract solver

We show that the search tree is finite. Suppose that the search tree is infinite. Its
width is finite by Definition 6.1.5, there would exist an infinite branch (König’s
lemma), which would contradict Definition 6.1.7.
The search tree being finite, algorithme 6.1 terminates.

�

Proposition 6.1.2. Algorithm 6.1 is correct.

Proof.

At each iteration,
⋃{γ(x) |x ∈ toExplore ∪ sols} is an over-approximation of

the set of solutions, because the consistency ρ] is an abstraction of the concrete
semantics ρ of the constraints and the splitting operator ⊕ is an abstraction of the
identity. We note that abstract elements in sols are consistent and either contain
only solutions or are smaller than r. The algorithm terminates when toExplore is
empty, at which point sols over-approximates the set of solutions with consistent
elements that contain only solutions or are smaller than r. To compute the exact set
of solutions in the discrete case, it is sufficient to choose r = 1.
Thus, Algorithm 6.1 computes an over-approximation or an exact approximation in
the discrete case of the solutions set.

�

122 Abstract Domains in Constraint Programming

The solving process presented in Algorithm 6.1 uses a queue data-structure, and
splits the oldest abstract element first. More clever choosing strategies, such as split-
ting the largest element for τ , can be defined. As the two previous propositions do not
depend on the choice operator, the algorithm remains correct and terminates for any
strategy.

Similarly to local iterations in Abstract Interpretation, our solver performs decreas-
ing abstract iterations. More precisely, toExplore ∪ sols is decreasing for v]E in the
disjunctive completion domain E] at each iteration of the loop. Indeed, ρ] is reductive
inD], ρ](e) v] e, moreover, the element returned by the splitting operator is included
in the starting element⊕(e) v]E {e}. However, our solver differs from classic Abstract
Interpretation in two ways. Firstly, there is no splitting operator in Abstract Interpreta-
tion, new components in a disjunctive completion are generally added only at control-
flow joins. For instance, when analyzing a conditional, two elements are created, one
verifying the condition, the other not satisfying it. The first element is used to analyse
the instructions in the block then, the other to analyse the else block. However, once
leaving the conditional, the abstract union t] of the two elements is performed, and
the analysis continues with one element. Secondly, the solving iteration strategy is far
more elaborated than in Abstract Interpretation. The use of a narrowing is replaced
with a data-structure that maintains an ordered list of abstract elements and a split-
ting strategy that performs a refinement process and ensures its termination. Actually,
more complex strategies than the simple one we presented here exist in the Constraint
Programming literature. One example is the AC-5 algorithm [HEN 92] where, each
time the domain of a variable changes, the variable decides which constraints need to
be propagated. The design of efficient propagation algorithms is an active research
area in Constraint Programming [SCH 01].

6.2. The AbSolute Solver

We have implemented a prototype abstract solver, from the ideas presented previ-
ously, to demonstrate the feasibility of our approach. We describe its main features
and present experimental results.

6.2.1. Implementation

Our prototype solver, called AbSolute, is implemented in OCaml. It uses Apron,
a library of numeric abstract domains intended primarily for static analysis [JEA 09].
Several abstract domains are implemented in Apron, such as intervals, octagons and
polyhedra. Moreover, Apron offers an uniform API that hides abstract domains inter-
nal algorithms. Thus, a function can be generically implemented, without knowing
which abstract domain is going to be used. For instance, the consistency can be gener-
ically implemented for any abstract domain, and do not need to be specifically imple-
mented for each abstract domain.

An Abstract Solver: AbSolute 123

Another important feature in Apron, is the fact that abstract domains are defined
for both integer and real variables. In other words, an abstract domain can be defined
for a set of variables that only contains integer or real variables, or that contains both
integer and real variables.

Finally, Apron provides a language of arithmetic constraints sufficient to express
many CSPs: equalities and inequalities over numeric expressions, including operators
such as +, −, ×, /,√, power, modulo, and rounding to integers.

For all those reasons, we choose Apron and take advantages of its abstract
domains, its uniform API, its management of integer and real variables and non linear
constraints.

6.2.1.1. Problem Modelization

In Constraint Programming, a problem is formalized under the form of a CSP. To
represent a CSP in AbSolute, the variables are stored in an environment composed
of two tables, one for the integer variables, the other for the real variables. The con-
straints that can be expressed in Apron, are stored in a table. Since the domains of the
variables is a notion that does not exist in Abstract Interpretation, they are translated
into linear constraints and stored in the constraints table.

Example 6.2.1 – Consider the CSP on integer variables v1, v2 with domains D1 =
D2 = J1, 5K and the real variable v3 with domain D3 = [−10, 10], and with the
constraints

C1: 6v1 + 4v2 − 3v3 = 0
C2: v1 × v2 ≥ 3.5

It is translate in AbSolute as:
let v1 = Var.of_string "v1";;
let v2 = Var.of_string "v2";;
let v3 = Var.of_string "v3";;
let csp =

let vars = Environment.make [|v1 ; v2|] [|v3|] in
let doms = Parser.lincons1_of_lstring vars ["v1 ≥ 1";"v1 ≤ 5";"v2 ≥
1"; "v2 ≤ 5";"v3 ≥ −10";"v3 ≤ 10"] in
let cons = Parser.tcons1_of_lstring vars ["6 ∗ v1 − 4 ∗ v2 − 3 ∗ v3 = 0";
"v1 ∗ v2 ≥ 3.5"] in

(vars, doms, cons);;

The first three lines correspond to the creation of the variables. They are created using
the function Var.of_string that takes a parameter, the string corresponding to the
name of the variable. Then the CSP is created, the set of variables (vars) is created
using the function Environment.make that takes as first argument the set of integer

124 Abstract Domains in Constraint Programming

variables (here {v1, v2}) and as second argument, the set of real variables ({v3}). The
domains are created with function Parser.lincons1_of_lstring which transforms a
table of string into a table of linear constraints on variables vars. Finally, the conjonc-
tion of constraints is created using the function Parser.tcons1_of_lstring which
transforms a table of string into a table of constraints (that can be non-linear) on vari-
ables vars.

6.2.1.2. Abstraction

An abstract domain D] is chosen and initialized with the domains in the CSP.
It is create using a “manager”. Each abstract domain has its own manager. Then
the transfert function of the constraints corresponding to the domains are called to
initialize the abstract domain to the initial search space.

Example 6.2.2 – We continue the example 6.2.1. To create an abstract domain from
the domains, one writes in AbSolute:

let abs = Abstract1.of_lincons_array man vars doms;;

where man corresponds to the type of abstract domain that we want to create.
For instance one will use Oct.manager_alloc() for the octagons. Function
Abstract1.of_lincons_array directly creates an abstract domains for variables
vars with the table of linear constraints doms.

Finally, D] represents an abstract domain in Abstract Interpretation (such as the
octagons) and a conjonction of linear constraints corresponding to the domains in
Constraint Programming (v1 ≥ 1, v1 ≤ 5...).

6.2.1.3. Consistency

The test transfer function naturally provides propagators for the constraints. Inter-
nally, each domain implements its own algorithm to handle tests, including sophisti-
cated methods to handle non-linear constraints. For instance, in the intervals abstract
domain, the algorithm HC4-Revise is implemented to better propagate the non-linear
constraints. For all the abstract domains, if no method is able to propagate non-linear
constraints, they are linearized using the algorithm described in [MIN 04]. This algo-
rithm replaces in each non-linear terms a subset of variables by the interval of possible
values for these variables. We thus have a quasi-linear constraint, that is a constraint
with intervals for coefficients. Then each interval [a, b] is replaced by the value in the
middle (a+ b)/2, and the interval [(a− b)/2, (b− a)/2] is added to the constants.

Example 6.2.3 – Still considering the CSP in Example 6.2.1, constraint C2 can be
transform in the following quasi-linear contraints:

C2.1: J1, 5Kv2 ≥ 3.5
C2.2: J1, 5Kv1 ≥ 3.5

An Abstract Solver: AbSolute 125

Constraint C2.1 corresponds to constraint C2 in which, variable v1 has been
replaced by its domain J1, 5K. Similarly, constraint C2.2 corresponds to constraint C2

in which variable v2 has been replaced by its domain J1, 5K. Finally, the intervals are
replaced by their median value and the interval J−2, 2K is added to the constants. We
obtain the following linear constraints:

C ′2.1: 3v2 + J−2, 2K ≥ 3.5
C ′2.2: 3v1 + J−2, 2K ≥ 3.5

Other linearization algorithms can be considered, such as the one proposed in
[BOR 05] which in the last step, replace the intervals by either the upper or the lower
bound according to the constraint and the starting interval.

In order to simulate the propagation loop, our solver performs local iterations until
either a fixpoint or a maximum number of iterations is reached. This maximal number
is set to three to avoid slow convergences and ensure fast solving.

Example 6.2.4 – Consider the following CSP with two real variables v1 and v2 taking
their values in domains D1 = D2 = [−4, 4] and with the constraints

C1: v1 = v2

C2: v1 = 1
2v2

This problem has a unique solution v1 = v2 = 0, and the consistency has a very
slow convergence. Indeed, by iteratively applying the propagators, the fixpoint is
never reached. The propagator of constraint C2 reduces the domain of v2 to [−2, 2],
then the propagator of constraintC1 reduces the domain of v1 to [−2, 2], then the prop-
agator of constraint C2 v2 to [−1, 1] and so on. The propagators reduce the domains
of the variables by half at each call. The first three iterations are illustrated Figure 6.1.

Remark 6.2.1 – To avoid slow convergences, by default, AbSolute performs only 3
iterations in the consistency. In Constraint Programming solvers, such as Ibex, the
consistency is stopped if the iteration has reduced the domains of less than 10%.

Remark 6.2.2 – In solvers in Constraint Programming, only constraints containing at
least one variable which domain has been modified during the previous iteration are
propagated. However, for simplicity, our solver propagates all the constraints at each
step of the local iteration.

Example 6.2.5 – Continuing Example 6.2.2. Once the abstract domain created, the
consistency can be called, it is performed in AbSolute by the following instruction:

let abs = consistency man abs cons max_iter;;

where max_iter is the maximal number of iterations that can be performed and which
default value is 3. The type of the abstract domain man is mandatory so that Apron can
execute the corresponding transfert functions.

126 Abstract Domains in Constraint Programming

v1

v2

(a)

v1

v2

(b)

v1

v2

(c)

Figure 6.1. Example of the three first iterations in the computation of the consistency with a
slow convergence.

v1

v2

v1

v2

v1

v2

(a) Splitting Operator in AbSolute

v1

v2

v1

v2

v1

v2

(b) Octagonal Splitting Operator

Figure 6.2. Comparison between the naive splitting operator developed in AbSolute applied to
an octagon, and the octagonal splitting operator given Definition 4.3.1.

6.2.1.4. Splitting Operator

Currently, our solver only splits along a single variable at a time. The splitting
operator splits the largest domain in two, even for relational domains and integer vari-
ables. The splitting operator uses the smallest box containing the abstract element,
computes the largest dimension and cuts it in two.

An Abstract Solver: AbSolute 127

Figure 6.2(a), gives an example of the splitting operator applied to an octagon.
The smallest box containing the octagon is first computed. Then the variable v1 is
split along the red dashed line. For comparison, Figure 6.2(b), illustrates the split
performed by the octagonal splitting operator given Definition 4.3.1.

Example 6.2.6 – Continuing Example 6.2.5. Once the abstract consistent domain
computed, the splitting operator can be called, it is performed in AbSolute using the
following instruction:

let list_abs = split man abs vars;;

where the splitting operator split returns a list of abstract domains which abstract
union is equivalent to the starting abstract element abs.

Compared to most Constraint Programming solvers, this splitting strategy is very
basic, and depend neither on the abstract domain, nor on the type of variables (Figure
6.2(a)). Clever strategies from the Constraint Programming literature must be consider
in future works, such as the one defined Section 2.2.5.

6.2.1.5. Polyhedra Particular Case

In the particular case of the polyhedron abstract domain, we realized that, in prac-
tice, the size of the polyhedron should be limited. Indeed, the solving process with
polyhedron may be very slow, since the consistency is not always reductive. And can
add new linear expressions that are not always relevant. For instance, consider the
polyhedron on variables v1 and v2 composed of the following linear expressions:

{v1 ≥ 1, v1 ≤ 5, v2 ≥ 1, v2 ≤ 5}

The consistency for a set of constraints applied to this polyhedron may want to add to
the polyhedron the linear expression v2 − 5v1 ≤ 0. This linear expression is always
true for any point of the polyhedron. Thus it is consider irrelevant. The figure below
illustrates this example, the polyhedron is the pink square, and the new linear expres-
sion corresponds to the blue area. We can clearly see that any point of the polyhedron
satisfies the linear expression since the blue area totally covers the polyhedron.

v1

v2

128 Abstract Domains in Constraint Programming

Finally, in the particular case of the polyhedron abstract domain, only the splitting
operator is reductive. We thus decided to limit the size of the polyhedron by limiting
its number of facets. Rather than giving a fixed number of facets, we chose to limit the
value for the coefficient of the polyhedron linear expressions. By doing so, we do not
need to verify after each split or consistency that the polyhedron still have the good
number of facets. We only need to verify the coefficients of the newly added linear
expressions.

We arbitrary set to 20 this maximum value for the coefficient of the polyhedron
linear expressions. We did not have the time to do exhaustive experiments to deter-
mine, if it exists, the best possible value for this limit. Moreover, on the test we did
performed, we can see that the chosen value is not limiting enough.

6.2.1.6. Solving

We have implemented two versions of the solving process. The first version cor-
responds to the solvingg method given by Algorithm 6.1. The second one, stops as
soon as a first solution is found. In both versions, a queue is used to maintain the set
of abstract elements to explore. No choice operator is implemented for the moment,
and the abstract elements are visited following the order given by the queue. Both
methods use the abstract domain and the value r as parameters. More importantly,
both methods do not depend on the problem to solve, and thus do not depend on the
variable type. Therefore, they can both be used to solve problems containing both
integer and real variables.

6.2.2. Experimental Results

We have run AbSolute on two classes of problems: firstly, on continuous problems
to compare AbSolute efficiency with state-of-the-art Constraint Programming solvers;
secondly, on mixed problems, that these Constraint Programming solvers cannot han-
dle while our abstract solver can.

6.2.2.1. Continuous solving

We use problems from the COCONUT benchmark 1, a standard CP benchmark
with only real variables. We compare the results obtained with AbSolute to the ones
obtained with a standard interval-based Constraint Programming continuous solver
called Ibex 2. Additionally, we compare AbSolute to our extension of Ibex to octagons
(presented Section 5.4.1), which allows comparing the choice of domain (intervals
versus octagons) independently from the choice of solver algorithm (classic Constraint
Programming solver versus our Abstract Interpretation-based solver). Tables 6.2 and

1. Available at http://www.mat.univie.ac.at/~neum/glopt/coconut/.
2. Available at http://www.emn.fr/z-info/ibex/.

An Abstract Solver: AbSolute 129

Intervals Octagons
name # vars ctr type Ibex AbSolute Ibex AbSolute

b 4 = 0.02 0.10 0.26 0.14
nbody5.1 6 = 95.99 1538.25 27.08 ≥ 1h

ipp 8 = 38.83 39.24 279.36 817.86
brent-10 10 = 21.58 263.86 330.73 ≥ 1h

KinematicPair 2 ≤ 59.04 23.14 60.78 31.11
biggsc4 4 ≤ 800.91 414.94 1772.52 688.56

o32 5 ≤ 27.36 22.66 40.74 33.17

Table 6.1. Comparison of the CPU time in seconds to find all solutions with Ibex and
AbSolute.

Intervals Octagons
name # vars ctr type Ibex AbSolute Ibex AbSolute

b 4 = 0.009 0.018 0.053 0.048
nbody5.1 6 = 32.85 708.47 0.027 ≥ 1h

ipp 8 = 0.66 9.64 19.28 1.46
brent-10 10 = 7.96 4.57 0.617 ≥ 1h

KinematicPair 2 ≤ 0.013 0.018 0.016 0.011
biggsc4 4 ≤ 0.011 0.022 0.096 0.029

o32 5 ≤ 0.045 0.156 0.021 0.263

Table 6.2. Comparison of the CPU time in seconds to find the first solution with Ibex and
AbSolute.

6.1 show the run time in seconds to find all the solutions or only the first solution of
each problem.

On average, AbSolute is competitive with the traditional Constraint Programming
approach. More precisely, it is globally slower on problems with equalities, and faster
on problems with inequalities. This difference of performance does not seem to be
related to the type of constraints but rather on the following ratio: the number of
constraints in which a variable appears over the total number of constraints. As said
previously, at each iteration, all the constraints are propagated even those for which
none of their variables have changed. This increases the computation time at each
step and thus increases the overall time. For instance, in the problem brent-10,
there are ten variables, ten constraints, and each variable appears in at most three
constraints. If only one variable has been modified, we will nevertheless propagate all
ten constraints, instead of three at most. This may explain the timeouts observed on
problems brent-10 and nbody5.1 with AbSolute.

Moreover, in our solver, the propagation loop is stopped after three iterations
while, in the classic Constraint Programming approach, the fixpoint is reached. The

130 Abstract Domains in Constraint Programming

name
vars

ctr type M] O] P]int real
gear4 4 2 = 0.017 0.048 0.415

st_miqp5 2 5 ≤ 2.636 3.636 ≥ 1h
ex1263 72 20 = ≤ 473.933 ≥ 1h ≥ 1h

antennes_4_3 6 2 ≤ 520.766 1562.335 ≥ 1h

Table 6.3. Comparison of the CPU time, in seconds, to solve mixed problems with AbSolute
using different abstract domains.

consistency in AbSolute may be less precise than the one used in Ibex. This may
reduce the time spent during the propagation step but may increase the search phase.

These experimentations show that our prototype, which only features quite naive
Constraint Programming strategies, behaves reasonably well on a classic benchmark.
Further studies will include a deeper analysis of the performances and improvements
of AbSolute on its identified weaknesses (splitting strategy, propagation loop). Since it
is called at each node of the search tree, the propagation loop is a key point in complete
solving method. The efficiency of a solving method depends on the efficiency of its
propagation loop.

6.2.2.2. Mixed discrete-continuous solving

As Constraint Programming solvers seldom handle mixed problems, no standard
benchmark exists. We thus gathered problems from MinLPLib, 3 a library of mixed
optimisation problems from the Operational Research community. These problems
are not constraints satisfaction problems, but optimization problems, with constraints
to satisfy and a function to minimize. We thus needed to turn them into constraints
satisfaction problems, following the approach in [BER 09]. We replaced each opti-
mization criterion min f(x) with a constraint |f(x) − best_known_value| ≤ ε. We
compared AbSolute to the mixed solving scheme from [BER 09], using the same ε
and benchmarks, and found that they have similar run times (we do not provide a
more detailed comparison as it would be meaningless due to the machine differences).

More interestingly, we observe that AbSolute can solve mixed problems in reason-
able time and behaves better with intervals than with relational domains. A possible
reason is that current propagations and heuristics are not able to fully use relational
information available in octagons or polyhedra. In Section 5.3.1, we suggest that a
carefully designed splitting operator is key to efficient octagons. Future work will
incorporate ideas from the octagonal Constraint Programming solver into our solver
and develop them further. However, Absolute is able to naturally cope with mixed

3. Available at http://www.gamsworld.org/minlp/minlplib.htm.

An Abstract Solver: AbSolute 131

name
vars

ctr type M] O] P]int real
gear4 4 2 = 0.016 0.036 0.296

st_miqp5 2 5 ≤ 0.672 1.152 ≥ 1h
ex1263 72 20 = ≤ 8.747 ≥ 1h ≥ 1h

antennes_4_3 6 2 ≤ 3.297 22.545 ≥ 1h

Table 6.4. Comparison of the CPU time, in seconds, to find the first solution of mixed
problems with AbSolute using different abstract domains.

Constraint Programming problems in a reasonable time, opening the way to new Con-
straint Programming applications such as the repair and restauration of the electrical
power system after a natural disaster [SIM 12]. The goal is to find a recovery plan,
that is schedule and the route of each repair team in order to restore, as fast as possible,
the power network after a disaster. Another application is for geometrical problems,
an extension of the problem presented in [BEL 07], in these problems, the goal is to
place objects of various shapes (polygons, algebraic varieties, etc.) so that no object
overlaps another while minimizing the surface or the volume occupied.

6.3. Conclusion

In this chapter, we have explored some links between Abstract Interpretation and
Constraint Programming, and used them to design a constraint satisfaction problem
solving scheme built entirely on abstract domains. The preliminary results obtained
with our prototype are encouraging and open the way to the development of hybrid
CP–AI solvers able to naturally handle mixed constraint problems.

In future work, we wish to improve our solver by adapting and integrating
advanced methods from the Constraint Programming literature. The areas of improve-
ment include: split operators for abstract domains, specialized propagators, such as
octagonal consistency or global constraints, and improvements to the propagation
loop.

We built our solver on abstractions in a modular way, so that existing and new
methods can be combined together, as is the case for reduced products in Abstract
Interpretation. When analyzing a program, several abstract domains are generally
used. In this case, the reduced product is used to communicate to abstract domains
the information gathered during the analysis from other abstract domains. Ultimately,
each problem should be automatically solved in the abstract domains which best fit it,
as it is the case in Abstract Interpretation. As a consequence, linear problems should
be solve using polyhedra and second degree polynomials with ellipsoids.

Another exciting development would be to use some methods form Constraint
Programming in a static analyzer in Abstract Interpretation, such as the use of a split

132 Abstract Domains in Constraint Programming

operator in disjunctive completion domains, and the ability of Constraint Program-
ming to refine an abstract element to achieve completeness.

Chapter 7

Conclusion and Perspectives

7.1. Conclusion

In this book, we first studied and compared certain methods of Constraint Pro-
gramming and Abstract Interpretation. We are particularly interested in tools to over-
approximate impossible or difficult domains to compute exactly (concrete domain
Abstract Interpretation, solutions set Constraint Programming). We relied on this
study to abstract the concept of domain used Constraint Programming, in the sense
that the chosen representation for domains becomes a parameter of the solver. This
is equivalent to integrating abstract domains of the Abstract Interpretation framework
in Constraint Programming. This allows new representations for domains to be used,
including relational representations that capture some relationships between variables
(for example, the polyhedron abstract domain integrates linear relationships). Further-
more, the abstract domains allowed us to define a unified solving method that do not
depend on the variables types and uniformly integrate discrete and continuous solving
methods of Constraint Programming.

Secondly, we have defined and implemented the weakly relational abstract domain
of octagons in Constraint Programming for continuous variables. We adapted the
lower closure operator existing in Abstract Interpretation on octagons to design an
optimal octagonal consistency. We then used the relationship between variables
expressed by octagons to guide the search. Tests performed on a classical bench-
mark show that these heuristics are effective. This new solving method shows the
importance of developing new representations for domains in Constraint Program-
ming, especially to integrate relational domains that are more expressive than the
Cartesian product generally used in Constraint Programming. However, to do this,
it is necessary for each new domain, to redefine appropriate splitting operators and
consistencies, which constitutes an obstacle.

133

134 Abstract Domains in Constraint Programming

Yet, operators quite similar to the consistency have already been defined in
Abstract Interpretation for many abstract domains. So, we decided to do the opposite
of the previous work, and instead of integrating the concepts of Abstract Interpre-
tation in Constraint Programming, we expressed Constraint Programming under the
Abstract Interpretation framework. This is done by considering the set of all the
searched solutions as the concrete domain. We have redefined constraint solving with
operators in Abstract Interpretation. This allows us to use existing abstract domains
directly. We implemented this method over Apron, a library of abstract domains.
The prototype developed, AbSolute, that do not integrated Constraint Programming
exploration strategies yet, gave promising early results.

7.2. Perspectives

This work opens up several research perspectives. First, in the short term, AbSo-
lute must be developed to integrate more clever research techniques, such as heuris-
tics for the variable/value choice, splitting operators or setting of the propagation loop
(number and order of local iterations). For relational domains (octagons, polyhedra)
in particular, work on octagons suggests that the key to effectiveness is to use existing
relationships between variables to guide the search. For mixed domains, the current
method can be improved by defining and implementing reduced products between
reals and integer domains. Moreover, AbSolute must also be tested on real applica-
tions, especially for mixed problems such as the problem of restoration and repair
of the power grid after a natural disasters [SIM 12]. The results obtained from these
applications, can lead to new dedicated heuristics.

In the medium term, we should study the many existing abstract domains in
Abstract Interpretation, such as the interval polyhedra, polyhedra, zonotopes or
ellipsoids, as part of the Constraint Programming. This means defining associated
consistencies and splitting operators. In particular, for polyhedra, we should find an
effective approximation of non-linear constraints, which requires a thorough study of
linearization or quasi-linearization existing algorithms.

In the long term, we finally plan to exploit the link between under-approximations
in Constraint Programming and the fixed point computed in Abstract Interpretation.
In Abstract Interpretation, efficient analyzers are largely based on the computation of
the widening operator. We can exploit the important work on the widening to adapt it
to a solving method for inner approximation in Constraint Programming.

7.3. Bibliography

[ABD 96] ABDALLAH C., DORATO P., LISKA R., STEINBERG S., YANG W., “Applications
of Quantifier Elimination Theory to Control Theory”, Proceedings of the 4th IEEE Mediter-
ranean Symposium on New Directions in Control and Automation, 1996.

[ALB 05] ALBERGANTI M., “L’avion qui “bat des ailes” a fédéré de nombreux chercheurs”,
Le Monde, vol. 18741, Page 18, 2005.

[ALP 93] ALPUENTE M., FALASCHI M., RAMIS M. J., VIDAL G., “Narrowing Approxima-
tions as an Optimization for Equational Logic Programs”, Proceedings of the 5th Inter-
national Symposium on Programming Language Implementation and Logic Programming
(PLILP ’93), Lecture Notes in Computer Science, Springer-Verlag, p. 391–409, 1993.

[ANS 09] ANSÓTEGUI C., SELLMANN M., TIERNEY K., “A gender-based genetic algorithm
for the automatic configuration of algorithms”, Proceedings of the 15th International Con-
ference on Principles and Practice of Constraint Programming (CP’09), vol. 5732 of Lec-
ture Notes in Computer Science, Springer-Verlag, p. 142–157, 2009.

[APT 99] APT K. R., “The Essence of Constraint Propagation”, Theoretical Computer Sci-
ence, vol. 221, 1999.

[APT 03] APT K. R., Principles of Constraint Programming, Cambridge University Press,
New York, NY, USA, 2003.

[APT 07] APT K. R., WALLACE M., Constraint logic programming using Eclipse, Cambridge
University Press, New York, NY, USA, 2007.

[ARA 10] ARAYA I., TROMBETTONI G., NEVEU B., “Exploiting Monotonicity in Interval
Constraint Propagation”, Proceedings of the 24th AAAI Conference on Artificial Intelli-
gence, AAAI 2010, 2010.

[ARA 12] ARAYA I., NEVEU B., TROMBETTONI G., “An interval extension based on occur-
rence grouping”, Computing, vol. 94, p. 173–188, 2012.

[ARB 09] ARBELAEZ A., HAMADI Y., SEBAG M., “Online Heuristic Selection in Constraint
Programming”, Proceedings of the 4th International Symposium on Combinatorial Search
(SoCS 2009), 2009.

[Ari96] Rapport de la Commission d’enquête Ariane 501, http://www.astrosurf.com/
luxorion/astronautique-accident-ariane-v501.htm, 1996.

[BAG 05a] BAGNARA R., HILL P. M., MAZZI E., ZAFFANELLA E., “Widening Operators
for Weakly-Relational Numeric Abstractions”, Proceedings of the 12th International Static
Analysis Symposium (SAS’05), vol. 3672 of Lecture Notes in Computer Science, Springer,
p. 3–18, 2005.

[BAG 05b] BAGNARA R., HILL P. M., RICCI E., ZAFFANELLA E., “Precise widening oper-
ators for convex polyhedra”, Science of Computer Programming - Special issue: Static
analysis symposium (SAS 2003), vol. 58, num. 1-2, p. 28–56, 2005.

[BAG 06] BAGNARA R., HILL P. M., ZAFFANELLA E., “Widening operators for powerset
domains”, International Journal on Software Tools for Technology Transfer, vol. 8, num. 4,
p. 449–466, 2006.

135

136 Abstract Domains in Constraint Programming

[BAG 09] BAGNARA R., HILL P. M., ZAFFANELLA E., “Weakly-relational shapes for
numeric abstractions: improved algorithms and proofs of correctness”, Formal Methods
in System Design, vol. 35, num. 3, p. 279–323, 2009.

[BEE 06] VAN BEEK P., “Backtracking Search Algorithms”, ROSSI F., VAN BEEK P., WALSH

T., Eds., Handbook of Constraint Programming, Chapter 4, Elsevier, 2006.

[BEL 07] BELDICEANU N., CARLSSON M., PODER E., SADEK R., TRUCHET C., “A
Generic Geometrical Constraint Kernel in Space and Time for Handling Polymorphic k-
Dimensional Objects”, Proceedings of the 13th International Conference on Principles and
Practice of Constraint Programming (CP’07), vol. 4741 of Lecture Notes in Computer
Science, Springer, p. 180–194, 2007.

[BEL 10] BELDICEANU N., CARLSSON M., RAMPON J.-X., Global Constraint Catalog, 2nd
Edition, Report num. T2010:07, The Swedish Institute of Computer Science, 2010.

[BEN 94] BENHAMOU F., MCALLESTER D. A., VAN HENTENRYCK P., “CLP(intervals)
revisited”, Proceedings of the 1994 International Symposium on Logic programming (ILPS
’94), MIT Press, p. 124–138, 1994.

[BEN 95] BENHAMOU F., “Interval constraint logic programming”, Constraint Programming:
Basics and Trends, vol. 910 of Lecture Notes in Computer Science, p. 1–21, Springer Berlin
/ Heidelberg, 1995.

[BEN 96] BENHAMOU F., “Heterogeneous Constraint Solvings”, Proceedings of the 5th Inter-
national Conference on Algebraic and Logic Programming, p. 62–76, 1996.

[BEN 97a] BENHAMOU F., GOUALARD F., GRANVILLIERS L., “Programming with the
DecLIC Language”, Proceedings of the 2nd International Workshop on Interval Con-
straints, 1997.

[BEN 97b] BENHAMOU F., OLDER W. J., “Applying interval arithmetic to real, integer and
Boolean constraints”, Journal of Logic Programming, vol. 32, num. 1, p. 1–24, 1997.

[BEN 99] BENHAMOU F., GOUALARD F., GRANVILLIERS L., PUGET J.-F., “Revisiting Hull
and Box Consistency”, Proceedings of the 16th International Conference on Logic Pro-
gramming, p. 230–244, 1999.

[BEN 04] BENHAMOU F., GOUALARD F., LANGUENOU É., CHRISTIE M., “Interval con-
straint solving for camera control and motion planning”, ACM Transactions on Computa-
tional Logic, vol. 5, num. 4, p. 732–767, 2004.

[BER 09] BERGER N., GRANVILLIERS L., “Some Interval Approximation Techniques for
MINLP”, Proceedings of the The 8th Symposium on Abstraction, Reformulation and
Approximation (SARA’09), 2009.

[BER 10] BERTRANE J., COUSOT P., COUSOT R., FERET J., MAUBORGNE L., MINÉ A.,
RIVAL X., “Static Analysis and Verification of Aerospace Software by Abstract Interpreta-
tion”, AIAA Infotech@Aerospace 2010, Atlanta, Georgia, American Institute of Aeronautics
and Astronautics, 2010.

[BES 94] BESSIÈRE C., “Arc-consistency and arc-consistency again”, Artificial Intelligence,
vol. 65, num. 1, p. 179–190, 1994.

Conclusion and Perspectives 137

[BES 96] BESSIÈRE C., RÉGIN J.-C., “MAC and Combined Heuristics: Two Reasons to For-
sake FC (and CBJ?) on Hard Problems”, Proceedings of the Second International Confer-
ence on Principles and Practice of Constraint Programming, vol. 1118 of Lecture Notes in
Computer Science, Springer, 1996.

[BES 99] BESSIÈRE C., FREUDER E. C., RÉGIN J.-C., “Using constraint metaknowledge to
reduce arc consistency computation”, Artificial Intelligence, vol. 107, num. 1, p. 125–148,
1999.

[BES 01] BESSIÈRE C., RÉGIN J.-C., “Refining the basic constraint propagation algorithm”,
Proceedings of the 17th International Joint Conference on Artificial intelligence (IJCAI’01),
Morgan Kaufmann, p. 309–315, 2001.

[BES 03] BESSIÈRE C., VAN HENTENRYCK P., “To Be or Not to Be ... a Global Constraint”,
Proceedings of the 9th International Conference on Principles and Practice of Constraint
Programming (CP’03), vol. 2833 of Lecture Notes in Computer Science, Springer, p. 789–
794, 2003.

[BES 04] BESSIÈRE C., HEBRARD E., HNICH B., WALSH T., “The Complexity of Global
Constraints”, Proceedings of the 19th Conference on Artificial Intelligence (AAAI’04),
p. 112-117, 2004.

[BES 06] BESSIÈRE C., “Constraint propagation”, ROSSI F., VAN BEEK P., WALSH T., Eds.,
Handbook of Constraint Programming, Chapter 3, Elsevier, 2006.

[BES 11] BESSIERE C., CARDON S., DEBRUYNE R., LECOUTRE C., “Efficient algorithms
for singleton arc consistency”, Constraints, vol. 16, num. 1, p. 25–53, 2011.

[BOR 05] BORRADAILE G., VAN HENTENRYCK P., “Safe and tight linear estimators for
global optimization”, Mathematical Programming, vol. 102, p. 495 – 517, 2005.

[BOU 92] BOURDONCLE F., “Abstract Interpreting by Dynamic Partitioning”, Journal of
Functional Programming, vol. 2, p. 407–435, 1992.

[BOU 04] BOUSSEMART F., HEMERY F., LECOUTRE C., SAIS L., “Boosting Systematic
Search by Weighting Constraints”, Proceedings of the 16th Eureopean Conference on Arti-
ficial Intelligence, (ECAI’2004), IOS Press, p. 146–150, 2004.

[BRÉ 79] BRÉLAZ D., “New methods to color the vertices of a graph”, Communications of
the ACM, vol. 22, num. 4, p. 251–256, 1979.

[CHA 09a] CHABERT G., JAULIN L., “Contractor Programming”, Artificial Intelligence,
vol. 173, p. 1079–1100, 2009.

[CHA 09b] CHABERT G., JAULIN L., LORCA X., “A Constraint on the Number of Distinct
Vectors with Application to Localization”, Proceedings of the 15th International Confer-
ence on Principles and Practice of Constraint Programming (CP’09), Berlin, Heidelberg,
Springer-Verlag, p. 196–210, 2009.

[CHE 09] CHEN L., MINÉ A., WANG J., COUSOT P., “Interval Polyhedra: An Abstract
Domain to Infer Interval Linear Relationships”, Proceedings of the 16th International Static
Analysis Symposium (SAS’09), p. 309–325, 2009.

138 Abstract Domains in Constraint Programming

[CHI 08] CHI K., JIANG X., HORIGUCHI S., GUO M., “Topology Design of Network-
Coding-Based Multicast Networks”, IEEE Transactions on Parallel and Distributed Sys-
tems, vol. 19, num. 5, p. 627–640, 2008.

[CHO 06] CHOI C. W., HARVEY W., LEE J. H.-M., STUCKEY P. J., “Finite domain bounds
consistency revisited”, Proceedings of the 19th Australian joint conference on Artificial
Intelligence: advances in Artificial Intelligence (AI’06), vol. 4304 of Lecture Notes in
Computer Science, Springer-Verlag, p. 49–58, 2006.

[CHR 06] CHRISTIE M., NORMAND J.-M., TRUCHET C., “Calcul d’approximations
intérieures pour la résolution de Max-NCSP”, Proceedings des Deuxièmes Journées Fran-
cophones de Programmation par Contraintes (JFPC06), 2006.

[CLA 03] CLARKE E., GRUMBERG O., JHA S., LU Y., VEITH H., “Counterexample-Guided
Abstraction Refinement for Symbolic Model Checking”, Journal of the ACM, vol. 50,
p. 752–794, ACM, 2003.

[CLA 04] CLARISÓ R., CORTADELLA J., “The octahedron abstract domain”, Proceedings of
the 11th International Static Analysis Symposium (SAS’04), p. 312–327, 2004.

[COL 94] COLMERAUER A., Spécifications de prolog IV, Report , Faculté des Sciences de
Luminy, 163, Avenue de Luminy - 13288 Marseille cedex 9 - France, 1994.

[COL 99] COLLAVIZZA H., DELOBEL F., RUEHER M., “Extending Consistent Domains of
Numeric CSP”, Proceedings of the 16th International Joint Conference on Artificial Intel-
ligence, p. 406–413, 1999.

[COL 07] COLLAVIZZA H., RUEHER M., “Exploring Different Constraint-Based Modelings
for Program Verification”, Proceedings of the 13th International Conference on Principles
and Practice of Constraint Programming (CP’07), vol. 4741 of Lecture Notes in Computer
Science, Springer, p. 49–63, 2007.

[COR 08] CORTESI A., “Widening Operators for Abstract Interpretation”, CERONE A.,
GRUNER S., Eds., Proceedings of the 6th IEEE International Conference on Software Engi-
neering and Formal Methods, p. 31–40, 2008.

[COR 11] CORTESI A., ZANIOLI M., “Widening and narrowing operators for abstract inter-
pretation”, Computer Languages, Systems & Structures, vol. 37, num. 1, p. 24–42, 2011.

[COU 76] COUSOT P., COUSOT R., “Static determination of dynamic properties of pro-
grams”, Proceedings of the 2nd International Symposium on Programming, p. 106–130,
1976.

[COU 77a] COUSOT P., COUSOT R., “Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints”, Conference Record
of the Fourth Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, Los Angeles, California, ACM Press, New York, NY, p. 238–252, 1977.

[COU 77b] COUSOT P., COUSOT R., “Static determination of dynamic properties of gener-
alized type unions”, Proceedings of an ACM conference on Language design for reliable
software, New York, NY, USA, ACM, p. 77–94, 1977.

[COU 78] COUSOT P., HALBWACHS N., “Automatic discovery of linear restraints among vari-
ables of a program”, Proceedings of the 5th ACM SIGACT-SIGPLAN symposium on Prin-
ciples of programming languages, p. 84–96, 1978.

Conclusion and Perspectives 139

[COU 79] COUSOT P., COUSOT R., “Systematic design of program analysis frameworks”,
Proceedings of the 6th ACM SIGACT-SIGPLAN symposium of Principles of Programming
Languages, p. 269–282, 1979.

[COU 92a] COUSOT P., COUSOT R., “Abstract Interpretation Frameworks”, Journal of Logic
and Computation, vol. 2, num. 4, p. 511–547, Oxford University Press, Oxford, UK, August
1992.

[COU 92b] COUSOT P., COUSOT R., “Comparing the Galois Connection and Widen-
ing/Narrowing Approaches to Abstract Interpretation”, BRUYNOOGHE M., WIRSING M.,
Eds., Proceedings of the 4th International Symposium on Programming Language Imple-
mentation and Logic Programming (PLILP’92), vol. 631 of Lecture Notes in Computer
Science, Springer, p. 269–295, 1992.

[COU 07] COUSOT P., COUSOT R., FERET J., MAUBORGNE L., MINÉ A., MONNIAUX D.,
RIVAL X., “Combination of abstractions in the ASTRÉE static analyzer”, Proceedings
of the 11th Asian computing science conference on Advances in computer science: secure
software and related issues (ASIAN’06), vol. 4435 of Lecture Notes in Computer Science,
Springer-Verlag, p. 272–300, 2007.

[COU 11] COUSOT P., COUSOT R., MAUBORGNE L., “The reduced product of abstract
domains and the combination of decision procedures”, Proceedings of the 14th Interna-
tional Conference on Fondations of Software Science and Computation Structures (FoS-
SaCS 2011), vol. 6604 of Lecture Notes in Computer Science, Springer-Verlag, p. 456–472,
2011.

[COV 03] COVERITY, http://www.coverity.com/, 2003.

[COV 11] COVERITY, CERN Chooses Coverity to Ensure Accuracy of Large Hadron Collider
Software, http://www.coverity.com/press-releases/cern-chooses-coverity-
to-ensure-accuracy-of-large-hadron-collider-software/, 2011.

[COV 12] COVERITY, NASA Jet Propulsion Laboratory Relies on Coverity to
Ensure the Seamless Touchdown and Operation of the Curiosity Mars Rover,
http://www.coverity.com/press-releases/nasa-jpl-relies-on-coverity-
to-ensure-the-seamless-touchdown-and-operation-of-the-curiosity-
mars-rover/, 2012.

[DAN 97] DANTZIG G. B., THAPA M. N., Linear programming 1: introduction, Springer-
Verlag, 1997.

[DEC 87] DECHTER R., PEARL J., “Network-based heuristics for constraint-satisfaction
problems”, Artificial Intelligence, vol. 34, num. 1, p. 1–38, 1987.

[DEC 89] DECHTER R., MEIRI I., PEARL J., “Temporal Constraint Networks”, Proceed-
ings of the 1st International Conference on Principles of Knowledge Representation and
Reasoning, 1989.

[DEC 90] DECHTER R., “Enhancement schemes for constraint processing: backjumping,
learning, and cutset decomposition”, Artificial Intelligence, vol. 41, num. 3, p. 273–312,
1990.

[DEC 03] DECHTER R., Constraint processing, Morgan Kaufmann Publishers Inc., 2003.

140 Abstract Domains in Constraint Programming

[DIA 12] DIAZ D., ABREU S., CODOGNET P., “On the implementation of Gnu Prolog”, The-
ory and Practice of Logic Programming, vol. 12, Cambridge University Press, p. 253–282,
2012.

[D’S 06] D’SILVA V., Widening for automata, PhD thesis, Universität Zürich, 2006.

[D’S 12] D’SILVA V., HALLER L., KROENING D., “Satisfiability Solvers are Static Analy-
sers”, Proceedings of the 19th International Static Analysis Symposium (SAS’12), vol. 7460
of Lecture Notes in Computer Science, Springer, 2012.

[FAG 11] FAGES J.-G., LORCA X., “Revisiting the tree Constraint”, Proceedings of the 17th
International Conference on Principles and Practice of Constraint Programming (CP’11),
vol. 6876 of Lecture Notes in Computer Science, Springer-Verlag, p. 271–285, 2011.

[FAG 14] FAGES J.-G., CHABERT G., PRUD’HOMME C., “Combining finite and continuous
solvers”, Computing Research Repository (CoRR), vol. abs/1402.1361, 2014.

[FER 04] FERET J., “Static Analysis of Digital Filters”, SPRINGER, Ed., European Symposium
on Programming (ESOP’04), vol. 2986, p. 33–48, 2004.

[FLO 62] FLOYD R., “Algorithm 97: Shortest path”, Communications of the ACM, vol. 5,
num. 6, 1962.

[FRE 78] FREUDER E. C., “Synthesizing constraint expressions”, Communications of the
ACM, vol. 21, num. 11, p. 958–966, 1978.

[FRE 82] FREUDER E. C., “A Sufficient Condition for Backtrack-Free Search”, Journal of
the ACM (JACM), vol. 29, num. 1, p. 24–32, 1982.

[FRE 97] FREUDER E. C., “In Pursuit of the Holy Grail”, Constraints, vol. 2, num. 1, p. 57–
61, 1997.

[FRO 95] FROST D., DECHTER R., “Look-ahead value ordering for constraint satisfaction
problems”, Proceedings of the 14th International Joint Conference on Artificial intelligence
(IJCAI’95), Morgan Kaufmann Publishers Inc., p. 572–578, 1995.

[GEE 92] GEELEN P. A., “Dual viewpoint heuristics for binary constraint satisfaction prob-
lems”, Proceedings of the 10th European conference on Artificial intelligence (ECAI’92),
John Wiley & Sons, Inc., p. 31–35, 1992.

[GEN 96] GENT I. P., MACINTYRE E., PROSSER P., SMITH B. M., WALSH T., “An Empir-
ical Study of Dynamic Variable Ordering Heuristics for the Constraint Satisfaction Prob-
lem”, Proceedings of the 2nd International Conference on Principles and Practice of Con-
straint Programming, vol. 1118 of Lecture Notes in Computer Science, Springer, p. 179–
193, 1996.

[GEN 06] GENT I. P., JEFFERSON C., MIGUEL I., “MINION: A Fast, Scalable, Constraint
Solver”, Proceedings of 17th European Conference on Artificial Intelligence (ECAI’06),
IOS Press, p. 98–102, 2006.

[GEN 08] GENT I. P., MIGUEL I., NIGHTINGALE P., “Generalised arc consistency for the
AllDifferent constraint: An empirical survey”, Artificial Intelligence, vol. 172, num. 18,
p. 1973–2000, 2008.

Conclusion and Perspectives 141

[GIN 90] GINSBERG M. L., FRANK M., HALPIN M. P., TORRANCE M. C., “Search lessons
learned from crossword puzzles”, Proceedings of the 8th National conference on Artificial
Intelligence (AAAI’90), AAAI Press, p. 210–215, 1990.

[GOL 91] GOLDBERG D., “What Every Computer Scientist Should Know About Floating
Point Arithmetic”, ACM Computing Surveys, vol. 23, num. 1, p. 5–48, 1991.

[GOL 10] GOLDSZTEJN A., GRANVILLIERS L., “A New Framework for Sharp and Efficient
Resolution of NCSP with Manifolds of Solutions”, Constraints, vol. 15, num. 2, p. 190-212,
2010.

[GRA 92] GRANGER P., “Improving the Results of Static Analyses of Programs by Local
Decreasing Iterations”, Proceedings of the 12th Conference on Foundations of Software
Technology and Theoretical Computer Science, 1992.

[GRA 06] GRANVILLIERS L., BENHAMOU F., “RealPaver: An Interval Solver using Con-
straint Satisfaction Techniques”, ACM Transactions on Mathematical Software, vol. 32,
num. 1, p. 138–156, 2006.

[GRI 11] GRIMES D., HEBRARD E., “Models and strategies for variants of the job shop
scheduling problem”, Proceedings of the 17th International Conference on Principles and
Practice of Constraint Programming (CP’11), vol. 6876 of Lecture Notes in Computer
Science, Springer-Verlag, p. 356–372, 2011.

[HAL 12] HALBWACHS N., HENRY J., “When the Decreasing Sequence Fails”, Proceedings
of the 19th International Static Analysis Symposium (SAS’12), vol. 7460 of Lecture Notes
in Computer Science, Springer, 2012.

[HAN 92] HANSEN E., Global optimization using interval analysis, Marcel Dekker, 1992.

[HAR 79] HARALICK R. M., ELLIOTT G. L., “Increasing tree search efficiency for constraint
satisfaction problems”, Proceedings of the 6th International Joint Conference on Artificial
intelligence (IJCAI’79), Morgan Kaufmann Publishers Inc., p. 356–364, 1979.

[HAV 09] HAVELUND K., GROCE A., SMITH M., BARRINGER H., Monitoring the Execution
of Space Craft Flight Software, http://compass.informatik.rwth-aachen.de/ws-
slides/havelund.pdf, 2009.

[HEN 92] VAN HENTENRYCK P., DEVILLE Y., TENG C.-M., “A Generic Arc-Consistency
Algorithm and its Specializations”, Artificial Intelligence, vol. 57, 1992.

[HEN 95] VAN HENTENRYCK P., SARASWAT V. A., DEVILLE Y., “Design, Implementation,
and Evaluation of the Constraint Language cc(FD)”, Selected Papers from Constraint Pro-
gramming: Basics and Trends, Springer-Verlag, p. 293–316, 1995.

[HEN 97] VAN HENTENRYCK P., MICHEL L., DEVILLE Y., Numerica: a Modeling Language
for Global Optimization, MIT Press, 1997.

[HEN 05] VAN HENTENRYCK P., MICHEL L., Constraint-Based Local Search, MIT Press.,
2005.

[HEN 08] VAN HENTENRYCK P., YIP J., GERVET C., DOOMS G., “Bound consistency for
binary length-lex set constraints”, Proceedings of the 23rd National Conference on Artificial
intelligence (AAAI’08), AAAI Press, p. 375–380, 2008.

142 Abstract Domains in Constraint Programming

[HER 11a] HERMENIER F., DEMASSEY S., LORCA X., “Bin repacking scheduling in virtu-
alized datacenters”, Proceedings of the 17th International Conference on Principles and
Practice of Constraint Programming (CP’11), vol. 6876 of Lecture Notes in Computer
Science, Springer-Verlag, p. 27–41, 2011.

[HER 11b] HERVIEU A., BAUDRY B., GOTLIEB A., “PACOGEN: Automatic Generation of
Pairwise Test Configurations from Feature Models”, Proceedings of the 22nd International
Symposium on Software Reliability Engineering, p. 120–129, 2011.

[HIC 97] HICKEY T., JU Q., Efficient Implementation of Interval Arithmetic Narrowing Using
IEEE Arithmetic, Report , IEEE Arithmetic, Brandeis University CS Dept, 1997.

[HOE 04] HOEVE W. J., “A Hyper-arc Consistency Algorithm for the Soft Alldifferent Con-
straint”, Proceedings of the 10th International Conference on Principles and Practice
of Constraint Programming (CP’04), vol. 3258 of Lecture Notes in Computer Science,
Springer, p. 679–689, 2004.

[JEA 09] JEANNET B., MINÉ A., “Apron: A Library of Numerical Abstract Domains for
Static Analysis”, Proceedings of the 21th International Conference Computer Aided Verifi-
cation (CAV 2009), vol. 5643 of Lecture Notes in Computer Science, Springer, p. 661–667,
June 2009.

[KAS 04] KASK K., DECHTER R., GOGATE V., “Counting-Based Look-Ahead Schemes for
Constraint Satisfaction”, Proceedings of the 10th International Conference on Principles
and Practice of Constraint Programming (CP’04), vol. 3258 of Lecture Notes in Computer
Science, Springer, p. 317–331, 2004.

[KAT 03] KATRIEL I., THIEL S., “Fast Bound Consistency for the Global Cardinality Con-
straint”, Proceedings of the 9th International Conference on Principles and Practice
of Constraint Programming (CP’03), vol. 2833 of Lecture Notes in Computer Science,
Springer Berlin / Heidelberg, p. 437–451, 2003.

[KEA 96] KEARFOTT R. B., Rigorous global search: continuous problems, Kluwer, 1996.

[KIN 69] KING J. C., A Program Verifier, PhD thesis, Carnegie Mellon University, Pittsburgh,
USA, 1969.

[KRO 08] KROENING D., STRICHMAN O., Decision procedures, Springer, 2008.

[KRO 14] KROENING D., TAUTSCHNIG M., “CBMC – C Bounded Model Checker”, Pro-
ceedings of the 20th International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS 2014), vol. 8413 of Lecture Notes in Computer Science,
Springer-Verlag, p. 389–391, 2014.

[LAC 98] LACAN P., MONFORT J. N., RIBAL L. V. Q., DEUTSCH A., GONTHIER G., “ARI-
ANE 5 - The Software Reliability Verification Process”, Proceedings of the conference on
Data Systems in Aerospace, 1998.

[LAZ 12] LAZAAR N., GOTLIEB A., LEBBAH Y., “A CP framework for testing CP”, Con-
straints, vol. 17, num. 2, p. 123–147, 2012.

[LEC 03] LECOUTRE C., BOUSSEMART F., HEMERY F., “Exploiting Multidirectionality in
Coarse-Grained Arc Consistency Algorithms”, Proceedings of the 9th International Con-
ference on Principles and Practice of Constraint Programming (CP’03), vol. 2833 of Lec-
ture Notes in Computer Science, Springer, p. 480–494, 2003.

Conclusion and Perspectives 143

[LÓP 03] LÓPEZ-ORTIZ A., QUIMPER C.-G., TROMP J., VAN BEEK P., “A fast and sim-
ple algorithm for bounds consistency of the all different constraint”, Proceedings of the
18th International Joint Conference on Artificial intelligence (IJCAI’03), Morgan Kauf-
mann Publishers Inc., p. 245–250, 2003.

[MAC 77a] MACKWORTH A. K., “Consistency in Networks of Relations”, Artificial Intelli-
gence, vol. 8, num. 1, p. 99–118, 1977.

[MAC 77b] MACKWORTH A. K., “On Reading Sketch Maps”, Proceedings of the 5th Inter-
national Joint Conference on Artificial Intelligence, p. 598–606, 1977.

[MAC 85] MACKWORTH A. K., FREUDER E. C., “The Complexity of Some Polynomial Net-
work Consistency Algorithms for Constraint Satisfaction Problems”, Artificial Intelligence,
vol. 25, num. 1, p. 65–74, 1985.

[MEH 00] MEHLHORN K., THIEL S., “Faster Algorithms for Bound-Consistency of the Sort-
edness and the Alldifferent Constraint”, Proceedings of the 6th International Conference on
Principles and Practice of Constraint Programming (CP ’00), vol. 1894 of Lecture Notes
in Computer Science, Springer, p. 306–319, 2000.

[MEN 83] MENASCHE M., BERTHOMIEU B., “Time Petri Nets for Analyzing and Verifying
Time Dependent Communication Protocols”, Protocol Specification, Testing, and Verifica-
tion, 1983.

[MIN 04] MINÉ A., Domaines numériques abstraits faiblement relationnels, PhD thesis, École
Normale Supérieure, December 2004.

[MIN 06] MINÉ A., “The Octagon Abstract Domain”, Higher-Order and Symbolic Computa-
tion, vol. 19, num. 1, p. 31–100, Springer, 2006.

[MIN 12] MINÉ A., “Abstract Domains for Bit-Level Machine Integer and Floating-point
Operations”, Proceedings of The 4th International Workshop on Invariant Generation
(WING’12), EpiC, EasyChair, Page 16, 2012.

[Mis92] GAO Report: Patriot Missile Defense, http://www.fas.org/spp/starwars/
gao/im92026.htm, 1992.

[MOH 86] MOHR R., HENDERSON T. C., “Arc and Path Consistency Revisited”, Artificial
Intelligence, vol. 28, num. 2, p. 225–233, 1986.

[MOH 88] MOHR R., MASINI G., “Good Old Discrete Relaxation”, Proceedings of the 8th
European Conference on Artificial Intelligence, p. 651–656, 1988.

[MON 74] MONTANARI U., “Networks of Constraints: Fundamental Properties and Applica-
tions to Picture Processing”, Information Science, vol. 7, num. 2, p. 95–132, 1974.

[MON 09] MONNIAUX D., “A minimalistic look at widening operators”, Higher Order and
Symbolic Computation, vol. 22, num. 2, p. 145–154, 2009.

[MOO 66] MOORE R. E., Interval Analysis, Prentice-Hall, Englewood Cliffs N. J., 1966.

[MOR 93] MORENO-NAVARRO J. J., KUCHEN H., NO CARBALLO J. M., WINKLER S.,
HANS W., “Efficient Lazy Narrowing using Demandedness Analysis”, Proceedings of the
5th International Symposium on Programming Language Implementation and Logic Pro-
gramming (PLILP ’93), Lecture Notes in Computer Science, Springer-Verlag, p. 167–183,
1993.

144 Abstract Domains in Constraint Programming

[PAC 01] PACHET F., ROY P., “Musical Harmonization with Constraints: A Survey”, Con-
straints, vol. 6, num. 1, p. 7–19, 2001.

[PEL 09] PELLEAU M., VAN HENTENRYCK P., TRUCHET C., “Sonet Network Design Prob-
lems”, Proceedings of the 6th International Workshop on Local Search Techniques in Con-
straint Satisfaction, p. 81–95, 2009.

[PEL 11] PELLEAU M., TRUCHET C., BENHAMOU F., “Octagonal Domains for Continuous
Constraints”, Proceedings of the 17th International Conference on Principles and Practice
of Constraint Programming (CP’11), vol. 6876 of Lecture Notes in Computer Science,
Springer-Verlag, p. 706–720, 2011.

[PEL 13] PELLEAU M., MINÉ A., TRUCHET C., BENHAMOU F., “A Constraint Solver based
on Abstract Domains”, Proceedings of the 14th International Conference on Verification,
Model Checking, and Abstract Interpretation (VMCAI 2013), vol. 7737 of Lecture Notes in
Computer Science, Springer Berlin Heidelberg, p. 434–454, 2013.

[PEL 14] PELLEAU M., TRUCHET C., BENHAMOU F., “The octagon abstract domain for
continuous constraints”, Constraints, vol. 19, num. 3, p. 309–337, 2014.

[PER 09] PERRIQUET O., BARAHONA P., “Constraint-Based Strategy for Pairwise RNA Sec-
ondary Structure Prediction”, Proceedings of the 14th Portuguese Conference on Artificial
Intelligence: Progress in Artificial Intelligence (EPIA ’09), vol. 5816 of Lecture Notes in
Computer Science, Springer-Verlag, p. 86–97, 2009.

[PET 11] PETIT T., RÉGIN J.-C., BELDICEANU N., “A Θ(n) bound-consistency algorithm
for the increasing sum constraint”, Proceedings of the 17th International Conference on
Principles and Practice of Constraint Programming (CP’11), vol. 6876 of Lecture Notes
in Computer Science, Springer-Verlag, p. 721–728, 2011.

[POL 06] POLYSPACE, Institute for Radiological Protection and Nuclear Safety Verifies
Nuclear Safety Software, http://www.mathworks.com/company/user_stories/
institute-for-radiological-protection-and-nuclear-safety-verifies-
nuclear-safety-software.html, 2006.

[Pol10] Polyspace Analyser, http://www.mathworks.fr/products/polyspace, 2010.

[PON 11] PONSINI O., MICHEL C., RUEHER M., “Refining Abstract Interpretation-based
Approximations with Constraint Solvers”, Proceedings of the 4th International Workshop
on Numerical Software Verification, 2011.

[PRU 14] PRUD’HOMME C., FAGES J.-G., LORCA X., Choco3 Documentation, TASC,
INRIA Rennes, LINA CNRS UMR 6241, COSLING S.A.S., 2014.

[PUG 98] PUGET J.-F., “A fast algorithm for the bound consistency of alldiff constraints”,
Proceedings of the 15th National/10th Conference on Artificial Intelligence/Innovative
applications of artificial intelligence (AAAI ’98/IAAI ’98), American Association for Arti-
ficial Intelligence, p. 359–366, 1998.

[QUI 03] QUIMPER C.-G., VAN BEEK P., LÓPEZ-ORTIZ A., GOLYNSKI A., SADJAD S.,
“An Efficient Bounds Consistency Algorithm for the Global Cardinality Constraint”, Pro-
ceedings of the 9th International Conference on Principles and Practice of Constraint Pro-
gramming (CP’03), vol. 2833 of Lecture Notes in Computer Science, Springer Berlin /
Heidelberg, p. 600–614, 2003.

Conclusion and Perspectives 145

[RAM 11] RAMAMOORTHY V., SILAGHI M. C., MATSUI T., HIRAYAMA K., YOKOO M.,
“The design of cryptographic S-boxes using CSPs”, Proceedings of the 17th International
Conference on Principles and Practice of Constraint Programming (CP’11), vol. 6876 of
Lecture Notes in Computer Science, Springer-Verlag, p. 54–68, 2011.

[RAT 94] RATZET D., “Box-splitting strategies for the interval Gauss-Seidel step in a global
optimization method”, Computing, vol. 53, p. 337–354, 1994.

[RIV 07] RIVAL X., MAUBORGNE L., “The trace partitioning abstract domain”, ACM Trans-
actions on Programming Languages and Systems (TOPLAS), vol. 29, num. 5, 2007.

[ROB 99] ROBINSON S., “Beyond 2000: Further Troubles Lurk in the Future of Computing”,
The New York Times, July 19 1999.

[ROD 04] RODRIGUEZ-CARBONELL E., KAPUR D., “An abstract interpretation approach for
automatic generation of polynomial invariants”, Proceedings of the 11th International
Static Analysis Symposium (SAS’04), vol. 3148 of Lecture Notes in Computer Science,
Springer, p. 280–295, 2004.

[ROS 06] ROSSI F., VAN BEEK P., WALSH T., Handbook of Constraint Programming (Foun-
dations of Artificial Intelligence), Elsevier Science Inc., New York, NY, USA, 2006.

[SCH 01] SCHULTE C., TACK G., “Implementing Efficient Propagation Control”, Proceed-
ings of the 3rd workshop on Techniques for Implementing Constraint Programming Systems,
2001.

[SCH 02] SCHULTE C., Programming Constraint Services: High-level Programming of Stan-
dard and New Constraint Services, Springer-Verlag, Berlin, Heidelberg, 2002.

[SCH 05] SCHULTE C., STUCKEY P. J., “When do bounds and domain propagation lead to
the same search space?”, ACM Transactions on Programming Languages and Systems
(TOPLAS), vol. 27, num. 3, p. 388–425, 2005.

[SEL 02] SELLMANN M., “An Arc-Consistency Algorithm for the Minimum Weight All Dif-
ferent Constraint”, Proceedings of the 8th International Conference on Principles and
Practice of Constraint Programming (CP’02), vol. 2470 of Lecture Notes in Computer
Science, Springer-Verlag, p. 744–749, 2002.

[SIM 06] SIMON A., KING A., “Widening Polyhedra with Landmarks”, KOBAYASHI N., Ed.,
Proceedings of the 4th Asian Symposium on Programming Languages and Systems (APLAS
2006), vol. 4279 of Lecture Notes in Computer Science, Springer, p. 166–182, 2006.

[SIM 10] SIMON A., CHEN L., “Simple and Precise Widenings for H-Polyhedra”, UEDA K.,
Ed., Proceedings of the 8th Asian Symposium on Programming Languages and Systems
(APLAS 2010), vol. 6461 of Lecture Notes in Computer Science, Springer, p. 139–155,
2010.

[SIM 12] SIMON B., COFFRIN C., VAN HENTENRYCK P., “Randomized adaptive vehicle
decomposition for large-scale power restoration”, Proceedings of the 9th international
conference on Integration of AI and OR Techniques in Constraint Programming for Com-
binatorial Optimization Problems (CPAIOR’12), vol. 7298 of Lecture Notes in Computer
Science, Springer-Verlag, p. 379–394, 2012.

146 Abstract Domains in Constraint Programming

[SOU 07] SOUYRIS J., DELMAS D., “Experimental Assessment of Astrée on Safety-Critical
Avionics Software”, Proceedings of the 26th International Conference on Computer Safety,
Reliability, and Security, p. 479–490, 2007.

[STØ 11] STØLEVIK M., NORDLANDER T. E., RIISE A., FRØYSETH H., “A hybrid approach
for solving real-world nurse rostering problems”, Proceedings of the 17th International
Conference on Principles and Practice of Constraint Programming (CP’11), vol. 6876 of
Lecture Notes in Computer Science, Springer-Verlag, p. 85–99, 2011.

[TEA 10] TEAM C., Choco: an Open Source Java Constraint Programming Library, Research
report num. 10-02-INFO, Ecole des Mines de Nantes, 2010.

[TRU 10] TRUCHET C., PELLEAU M., BENHAMOU F., “Abstract Domains for Constraint
Programming, with the Example of Octagons”, International Symposium on Symbolic and
Numeric Algorithms for Scientific Computing, p. 72–79, IEEE Computer Society, 2010.

[TRU 11] TRUCHET C., ASSAYAG G., Eds., Constraint Programming in Music, ISTE, 2011.

[WOL 04] WOLINSKI C., KUCHCINSKI K., GOKHALE M., “A constraints programming
approach to communication scheduling on SoPC architectures”, Proceedings of the 2004
ACM/SIGDA 12th International Symposium on Field Programmable Gate Arrays (FPGA
’04), ACM, p. 252–252, 2004.

