
Fast Approximate Kernel-Based Similarity Search for Image Retrieval Task ∗

David GORISSE1, Matthieu CORD2, Frederic PRECIOSO1, Sylvie PHILIPP-FOLIGUET1

1 ETIS, CNRS, ENSEA, Univ Cergy-Pontoise, France, 2 LIP6, UPMC-P6, Paris, France
{david.gorisse, frederic.precioso, philipp}@ensea.fr, matthieu.cord@lip6.fr

Abstract

In content based image retrieval, the success of any
distance-based indexing scheme depends critically on
the quality of the chosen distance metric. We propose in
this paper a kernel-based similarity approach working
on sets of vectors to represent images. We introduce a
method for fast approximate similarity search in large
image databases with our kernel-based similarity met-
ric. We evaluate our algorithm on image retrieval task
and show it to be accurate and faster than linear scan-
ning.

1. Introduction

In computer vision, a lot of techniques are now based
on unordered sets of local features to represent the im-
age content. In [10], Lowe shows that features based on
local description like Points of Interest (PoI), provide a
good representation of images.

Content-based image retrieval is usually based on a
similarity function between images and provide a rank-
ing of the database regarding a query image. Designing
powerful similarities and ranking schemes on unordered
sets of local features is a very challenging task. Lowe
proposed a two-step technique: a fast k-Nearest Neigh-
bors (k-NN) search for all the PoIs of the query, then a
voting strategy to rank the images by counting the num-
ber of matching PoIs.

One step further has been done by K. Grauman and
T. Darrell [8]: they propose to use a kernel function,
the pyramid match kernel, to compute the similarity be-
tween sets of PoIs. They speed up their kernel ranking
scheme using an approximate k-NN search [2]. Their
scheme gives good results, but are limited to kernels
that can be explicitly expressed as a dot product in an
induced space1. Extensions proposed by K. Grauman

∗This work is funded by iTOWNS ANR MDCO 2007 Project.
1The mapping function between the original space and the Hilbert

space is explicit. This assumption limits the usable classes of kernels.

[7] as the vocabulary-guided pyramid scheme also suf-
fers of the same limitations.

We investigate here another way to get fast scheme
retrieval for kernel functions without explicit formula-
tion in the induced space. The first requirement is to de-
fine admissible kernels working on sets of PoI vectors.
We use the class of kernels on sets of vectors derived
from kernels on vectors (see for instance chap. 9, [13]).
These kernels have been successfully adapted for ob-
ject retrieval [11, 6]. The major interest is that we are
not anymore limited for the choice of the kernel.

We propose in this paper an original fast retrieval
scheme, similar to the Lowe voting scheme, but us-
ing our kernel-based similarity framework. We adapt
the sublinear Locality Sensitive Hashing (LSH) scheme
(proposed in [9] to approximate k-NN search) to select a
subset of images that should be relevant enough to be at
the top of the similarity ranking. To decrease the com-
putational complexity, the kernel is only computed on
this subset. The resulting scheme is an approximation
of the exact similarity ranking.

After introducing our algorithm, we evaluate the ac-
curacy of approximation and efficiency of our approach.

2. Fast approximate kernel-based search

2.1. Kernels on bags of feature vectors

Local-based image analysis provides a powerful data
representation framework. Relevant features are ex-
tracted on local patches to characterize the objects em-
bedded in the image. Image Ij is represented by a fea-
ture bag Bj composed of s vectors bsj . The similarity
between two bagsBi andBj is measured by the follow-
ing class of kernels on bags K [13]:

K(Bi, Bj) ,
∑

bri∈Bi

∑
bsj∈Bj

k(bri,bsj) (1)

where k is a kernel function. This kernel (called minor
kernel) is defined as a dot product in the space induced

by the embedding function φ:

k(bri,bsj) = 〈φ(bri), φ(bsj)〉 (2)

Although K kernels are quite relevant to evaluate im-
age similarity between bags [11], they are computation-
ally expensive. Such a kernel computation becomes in-
tractable for image retrieval task in large databases, es-
pecially when feature bags contain many vectors. For
example, about 100 to 1000 SIFT vectors are usually
extracted from one image [10].

To avoid the computational complexity of this kernel
while keeping its similarity power, we propose to do an
approximate search: we do not compute the similarity
for all the images of the database but only for a carefully
chosen subset. The selection of the subset of interest is
presented in the following section.

2.2. Approximate similarity search

Let Iq be a query image represented by a bag Q =
{qr} containing r vectors. Denoting K the similarity,
the retrieval problem in the database B of bags Bj can
be written as:

Sort
Bj∈B

(K(Q,Bj)) (3)

In precision-oriented retrieval applications [3], the full
ranking of the database is not computed, only top rank
of the N images most similar to the query Iq , called
TOPN, is considered (usually, N is fixed by the user).
Our idea is to quickly select the images that have a high
probability to be at the top of the ranking.

We assume that two images are very similar if at least
two local features are similar. This local similarity is
expressed using a k-NN approach: the vector bsj ∈ Bj
from image Ij is similar to the vector qr ∈ Q from
query Iq if bsj ∈ k-NN(qr). If S denotes the subset of
images, from B, that have at least one vector similar to
one vector qr of Q:

S = {Bj |∃(qr,bsj) ∈ Q×Bj , bsj ∈ k-NN(qr)}

the optimization problem in (3) is modified as follows:

Sort
Bj∈S

(K(Q,Bj)) (4)

This low-restrictive definition of very similar images al-
lows us to avoid missing true relevant images in S. This
modified optimization scheme is interesting if the com-
putation of S is fast. Instead of doing a linear scan for
the k-NN search, we use an efficient indexing scheme
based on LSH. Thus, the computational time to retrieve
the closest neighbors will be negligible with respect to
the time to compute the true kernel. The approximate
search in (4) will be then about |B||S| faster than a brute-
force linear scan in (3).

2.3. LSH indexing

We shortly report in this section the basic LSH func-
tionalities to explain how we use it in our context.

LSH solves the (R, 1 + ε)-NN problem: find at
least one vector b′ in the ball B(q, (1 + ε)R) if there
is a vector b in the ball B(q, R). b ∈ B(q, R) if
||b − q|| ≤ R. Indyk and Motwani [9] solved this
problem for the Hamming metric with a complexity of
O(n1/(1+ε)) where n is the number of vectors of the
database. Datar and al. [4] proposed an extension of
this method which solves this problem with the Euclid-
ian metric and with similar time performances. The
method generates some hash tables of vectors, where
the hashing function works on tuples of random projec-
tions of the form: ha,c(b) =

⌊
a.b+c
w

⌋
where a is a ran-

dom vector whose each entry is chosen independently
from a Gaussian distribution, c is a real number chosen
uniformly in the range [0, w] andw specifies a bin width
(which is set to be constant for all projections). A tuple
of projections specifies a partition of the space where
all vectors inside the same part have the same key. All
vectors with the same key are in the same bucket C.
Clearly, if the number of projections is carefully cho-
sen, then two vectors which hash into the same bucket
C will be close in the feature space. To avoid bound-
ary effects, many hash tables are generated, each using
a different tuple of projections. In practice, a proportion
of these vectors (called ”false matches”) will be at a dis-
tance greater than R from the query vector q. Thus, a
check (computation of the Euclidian distance between
all points b of bucket C and q) is carried out to remove
those ”false matches”.

In our case, we do not want to find just one vector b,
such that b ∈ B(q, (1 + ε)R), but all of them. Hence,
we use a method from E2LSH [1] which is a modified
version of [4] to solve the (R, 1−δ)-near neighbor prob-
lem: each vector b satisfying ||b − q||2 ≤ R has to be
found with a probability 1−δ. Thus, δ is the probability
that a near neighbor b, of query q, is not reported.

2.4. Fast approximate similarity search scheme

The algorithm is composed of three stages: (i) com-
putation of buckets, (ii) selection of images, (iii) com-
putation of the kernel on selected images.

(i) In the first stage, the hash functions are generated
to split the set of all bsj of the database into buckets.
This process is time consuming but is done off-line.

(ii) For a query Q = {qr}, the set of keys are com-
puted for each vector qr with the hash functions gen-
erated during the off-line stage (i). Each key allows to
quickly select a bucket Cri containing vectors bsj that

get a high probability to be in the ball B(qr, R). A
check is then carried out to eliminate vectors that are
at a distance greater than R of qr. All remaining bags
Bj containing at least one vector bsj in a bucket Cri are
candidates:

Ŝ = {Bj |∃(r, s, i) : (bsj ,qr) ∈ [Cri ∩B(qr, R)]×Cri }

(iii) The similarity is computed only for these images;
the approximate search is defined by:

Sort
Bj∈Ŝ

(K(Q,Bj)) (5)

As seen in section 2.3, some of the ”good matches”
(vectors in ballB(qr, R)) are not reported, thus Ŝ (S.
However, the more similar Bj and Q are, the more vec-
tors bsj close to vectors qr are likely to be found. Since
one match is enough to select the corresponding image,
we see that a close target image is more likely to be se-
lected, and Ŝ should be a relevant estimation of S.

The parameter R allows to tune the approximation
of the search and the time complexity of the algo-
rithm. With R increasing, the number of selected im-
ages (|Ŝ| ≈ |B|) increases. Thus, the approximate
kernel becomes more accurate; however, computational
time tends to true search one (|Ŝ||B| ≈ 1).

In the next section, we empirically evaluate the
tradeoff between approximation and speed up accord-
ing to R.

3. Experiments

In this section we show that our approximate system
search is efficient in the context of a content-based im-
age retrieval. As Gosselin in [6] and Lyu in [11] have
already proved the power of kernels on bags, we con-
sider this class of kernels and focus our results on the
evaluation of our approximation: ranking deterioration
and computational time reduction versus search on the
whole database by linear scan.

We first show that our approximation is almost
equivalent to the true search, comparing the ranking of
similarity by approximate search with the ranking by
searching in the whole database. We focus our evalu-
ation on the first N images of the ranking TOPN, by
computing the accuracy of TOPN, defined as the num-
ber of images of the TOPN obtained with the true search
actually found in the TOPN obtained with the approxi-
mate search.

Then we evaluate the computational time saved with
our approximation by measuring the ratio of the number
of images selected |Ŝ| divided by the number of images
in the database |B|. Finally, we gave for various radii

the actual time improvement factor between the approx-
imate and true search.

We display results of the first two evaluations with
”box and whisker plots”: each box has lines at the
lower quartile, median value, and upper quartile values,
whiskers extend from each end of the box to show the
extent of the rest of data, and outliers are denoted with
pulses. Circles are added to show mean values.

To evaluate our method, we used VOC2006 database
[5] which contains 5,304 images. The database was
indexed using well-known approach combining MSER
region detectors and SIFT descriptors [12]. Each image
is described by a bag of about one hundred PoI. Each
PoI is described by a 128 dimensional SIFT vector rep-
resenting 16 concatenated histogrames of image gradi-
ent orientation of 8 bin each. For all our experiments,
we chose as parameter of E2LSH [1] δ = 0.1 , which
corresponds to 400 hash tables of 20 projections and we
tested for various radii between 4.0 and 6.0. We tested
the kernel of Eq.(1) with a minor kernel Gaussian L2.
All results are obtained with 200 randomized queries.
Figure (1) displays plotted results of the deterioration

Figure 1. Accuracy of TOP100 for various
radii of search around query points.

measure induced by the approximation for N = 100.
With a search radius greater than 5.2, on average, more
than 80% of images of the TOP100 are reported, and
for 50% of queries, it reaches 98% of accuracy. In com-
parison, on Caltech-101 database Grauman obtained a
accuracy of 76% for a TOP5 between her hashing re-
trieval and a true search [8]. Although the mean accu-
racy quickly decreases for lower radius, some queries
reach good accuracy. For example, with a radius of 5.0
and a mean accuracy of 68%, we have all the same 95%
of accuracy for 50% of queries. Figure (2) displays the
percentage of selected images of the database. This fig-
ure helps to explain the last result. Indeed, for a radius

4,0 4,5 5,0 5,1 5,2 5,3 5,4 5,5 6,0

0

10

20

30

40

50

60
P

e
rc

e
n

ta
g

e
 o

f
s
e
le

c
te

d
 i
m

a
g

e
s

RADII

Figure 2. Percentage of selected images
for various radii.

Table 1. Speed improvement factor re-
gards to the true search.

Radius 4 5 5.2 6
factor 122.17 14.85 10.03 3.19

of 5.1 and for 25% of the queries, less than 1.23% of
images of the database (i.e. less than 65 images) were
selected. Therefore, the accuracy could not exceed 0.65
for 25% of the queries. For some queries, we have thus
selected less than 100 images which explains the bad
results.

This figure also shows that for a radius of 5.2 that
gives good result, on average, only 9.6% of images of
the database were selected. We therefore should have
an improvement of computation time of a factor of 10
towards the computation time of the true search. We
have checked that the improvement of computing time
was well reached by comparing obtained computation
time for the true search and the approximate one (tab.1).
For small radii the time improvement factor is important
and it goes to one as R increases.

The average time to compute the true search for a
query is about 95 seconds on a machine with a 3.2 GHz
processor and 8 GB of memory. For a radius of 5.2,
the selection of Ŝ takes 0.14 second and the similarity
on this selection takes 9.26 seconds. The use of LSH
to select images makes the computational time of this
step negligible compared to computation time of the
true search, so we are |Ŝ|

|B| ≈ 10 faster for a radius of
5.2. This approximation makes computing time accept-
able for an online learning scheme.

4. Conclusion

In this paper, we introduced a method to efficiently
achieve similarity retrieval in large image databases.
Our technique is based on a powerful similarity using
local-based image representation and kernel functions.
We short-cut the full database linear scan by only com-
puting the kernel-based similarity on a carefully cho-
sen subset of images. We combined this strategy with
a LSH scheme to efficiently compute the pre-seleted
image subset. Experiments on image datasets demon-
strated that our method achieves a good tradeoff be-
tween accuracy and efficiency for the image similarity
search task. We are currently working on the embed-
ding of this strategy in online category learning scheme.

Acknowledgment

The authors are grateful to A. Andoni for providing
the package E2LSH .

References

[1] A. Andoni. E2lsh. http://www.mit.edu/∼andoni/LSH/.
[2] M. Charikar. Similarity estimation techniques from

rounding algorithms. ACM, pages 380–388, 2002.
[3] Y. Chiaramella, P. Mulhem, M. Mechkour, I. Ounis, and

M. Pasca. Towards a fast precision-oriented image re-
trieval system. ACM, pages 383–384, 1998.

[4] M. Datar, N. Immorlica, P. Indyk, and V. Mirrokni.
Locality-sensitive hashing scheme based on p-stable dis-
tributions. SCG, pages 253–262, 2004.

[5] M. Everingham, A. Zisserman, C. K. I. Williams, and
L. Van Gool. Pascal voc2006.

[6] P.-H. Gosselin, M. Cord, and S. Philipp-Foliguet. Kernel
on bags for multi-object database retrieval. CIVR, 2007.

[7] K. Grauman. Matching Sets of Features for Efficient Re-
trieval and Recognition. PhD thesis, MIT, 2006.

[8] K. Grauman and T. Darrell. Pyramid match hashing:
Sub-linear time indexing over partial correspondences.
CVPR, pages 1–8, 2007.

[9] P. Indyk and R. Motwani. Approximate nearest neigh-
bors: towards removing the curse of dimensionality.
ACM, pages 604–613, 1998.

[10] D. Lowe. Distinctive image features from scale-
invariant keypoints. IJCV, 60(2):91–110, 2004.

[11] S. Lyu. Mercer kernels for object recognition with local
features. CVPR, 2:223–229, 2005.

[12] K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisser-
man, J. Matas, F. Schaffalitzky, T. Kadir, and L. Gool.
A comparison of affine region detectors. IJCV, 65(1):43–
72, 2005.

[13] J. Shawe-Taylor and N. Cristianini. Kernel Methods for
Pattern Analysis. Cambridge University Press, 2004.

