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ABSTRACT

This paper deals with video segmentation for MPEG-
4 and MPEG-7 applications. Region-based active con-
tours is a powerful technique for segmentation. However
most of these methods are implemented using level-sets.
Although level-set methods provide accurate segmenta-
tion, they suffer from large computational cost.
In this paper we propose to use a regular B-Spline para-
metric method to provide a fast and accurate segmen-
tation.

• Our B-Spline interpolation is based on a fixed num-
ber of points 2j depending on the level of details
desired. Through this spatial multi-resolution ap-
proach, the computational cost of the segmentation
is reduced.

• We introduce a length penalty. This results in im-
proving both smoothness and accuracy.

Then we show some experiments on real video se-
quences.

1 INTRODUCTION: A Region-Based Active
Contour

Segmentation of moving objects in video sequences is a
real challenge of video processing specially for broad-
casting and indexing applications for MPEG-4 and
MPEG-7.

Active contours methods are efficient solutions for seg-
mentation since they involve intrinsic geometry. Active
Contour methods are based on the evolution of a con-
tour minimizing an energy criterion. Contour-based ac-
tive contours were first introduced by [1] and were im-
plemented using parametric methods. In the earliest
contour-based methods, the image features defining the
energy deal only with contour terms (image gradient)[2].

More recently region-based active contours were in-
troduced by [3, 4, 5, 6]. These region-based active con-
tours include terms describing the different regions such
as statistical spatial features (mean, variance, ...) or
temporal gradient.

Figure 1: Domains definition

A video sequence can be considered as a scene with
a background (the motionless region) and a foreground
(the moving objects). In this case, regions based
informations are represented by functions depending on
the temporal gradient so called descriptors.

The general problem for video segmentation is to com-
pute for each frame n the regions minimizing the follow-
ing criterion:

J(Ωn,in, Ωn,out,Γn) =
∫

Ωn,out

k(out)(x, y)dxdy

+
∫

Ωn,in

k(in)(x, y)dxdy +
∫

Γn

k(b)(x, y)ds (1)

For each frame n, Γn is the frontier between the
domains, k(b) is a descriptor of the contour Γn, k(out)

is the descriptor of the background domain Ωn,out, and
k(in) is the descriptor of the object domain Ωn,in.

In order to solve this problem, Jehan & al [6] intro-
duce a dynamic region-based active contour segmenta-
tion. In their method the active contour evolves from
an initial position Γn,0 towards the boundary of the ob-
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jects according to the minimization of the general energy
criterion:

Jn (τ) =
∫

Ωn,out(τ)

k(out)dσ+
∫

Ωn,in(τ)

k(in)dσ+
∫

Γn(τ)

k(b)ds

(2)
In this expression, τ is the parameter for the evolution
of the contour in the current frame n, k(out), k(in) and
k(b) are descriptors as above. Domains depend on the
parameter τ : Ωn,out(τ) is the new background domain,
Ωn,in(τ) is the new object domain and Γn(τ) the fron-
tier between these domains.

Then, this criterion is differentiated in an Eulerian
framework [7]:

J ′(τ) =
∫

Γ(τ)

(k(out) − k(in) − k(b) · κ +∇k(b) · ~N) · ~v ds

(3)
Thus according to the inequality of Cauchy-Schwartz,

the fastest decrease of J(τ) is obtained by choosing ~v =
v ~N .Thus we obtain the following PDE:

{
∂Γn(t)

∂t = v ~N = ~F
Γn(0) = Γn,0

(4)

From the initial curve Γn(0), the contour Γn(t) evolve
following its normal direction ~N with the force defini-
tion:

F = k(in) − k(out) + k(b)κ (5)

where κ is the contour curvature.

For video segmentation, we use the following descrip-
tors: k(out) is the temporal gradient |Sn − Sn−1| where
Sn is the frame n in the sequence, k(in) is a constant
called αc and k(b) is a constant called λ.

Thus the expression of the force of evolution is given
by:

F = |Sn − Sn−1| − αc + k(b)κ (6)

Different implementations can be used to compute ac-
tive contour method evolution:

• Non-parametric implementation: level set tech-
nique is a relevant solution. An efficient method
has been proposed to implement region-based video
segmentation [6]. Its main advantage is the segmen-
tation accuracy. Furthermore it provides an im-
plicit management of topological changes. On the
other hand, the computational cost is important.

• Parametric implementations: The B-Spline inter-
polation of the contour presented in this paper
highly reduces the computational while topology
changes are not easily managed.

In this paper, we propose a fast parametric method
using B-Spline interpolated active contour. Although
standard B-Spline interpolation method has already
been applied in the framework of Contour-Based Active
contours, the basic idea of our method is to use regular
B-Spline interpolation with length constraint for
region-based video segmentation. This results in accu-
rate region based segmentation and fast multi-resolution
parametric computation.

2 B-SPLINE CURVES INTERPOLATION

Among many interpolations of curves, B-Splines provide
a C2 regularity in each point of the curve, even in the in-
terpolated points. Moreover, B-Splines have been shown
to be efficient approaches to interpolate curves [8, 9].
Thus B-Splines appear as the best trade-off between ac-
curacy and computational cost (number of points).

A cubic B-Spline curve is given by a polynomial ex-
pression as below [10]:

Si (s) = Qi−1BS4
i−3

(s) + QiBS4
i−2

(s)

+Qi+1BS4
i−1

(s) + Qi+2BS4
i
(s) (7)

s is the parameter of the curve (in fact the curvilinear
abscissa), the points Qi are the control points of the
B-Spline (they are virtual points), and BS4

i
(s) are

polynomial expressions (with 2 components) defining
basic functions of the B-Spline.

In all these expressions Q and P represent points
in a frame. Hence they both have 2 components
as with Si(s) which is the parametric equation of
the arc between Pi and Pi+1. Thus Si(s) repre-
sents (xi(s), yi(s)) with Pi = (xi(si), yi(si)) and
Pi+1 = (xi(si+1), yi(si+1)).

If all couples (Pi, Pi+1) are evenly sampled along the
curve, ∀i ∈ [0, .., n − 2] 4si = ‖si+1 − si‖, a new pa-
rameterization for each arc into [0, 1] leads to an eas-
ier computation. Hence t is the new parameter, with
t ∈ [0, 1]. Basics functions BS4

i
(t) are identical for all

arcs. The curves of the interpolation become Uniform
B-Splines. The arc equation is [10]:

Si (t) =
(− 1

6 Qi−1 + 1
2 Qi − 1

2 Qi+1 + 1
6 Qi+2

)
t3

+
(

1
2 Qi−1 −Qi + 1

2 Qi+1

)
t2

+
(− 1

2 Qi−1 + 1
2 Qi+1

)
t

+ 1
6 Qi−1 + 2

3 Qi + 1
6 Qi+1

(8)
The computation cost of a regular sampling is lower than
handling a specific equation for each segment of B-Spline
curve Si.
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Each interpolated point Pi corresponds to the poly-
nomial expression Si (t) value when t = 0. From the
expression (Eq. 8) we obtain the relation between n in-
terpolated points Pi, i ∈ [0, ..., n− 1] and n + 2 control
points, Qi, i ∈ [−1, ..., n]:

Si (0) = Pi =
1
6

(Qi−1 + 4Qi + Qi+1) (9)

We have to define the relation between the n interpo-
lated points Pi and the n+2 control points Qi. In order
to close the contour, the first and the last point Q0 and
Qn−1 are used twice. Thus:

Q−1 = Qn−1, Qn = Q0 (10)

Hence the number of control points Q needed to inter-
polate the n points P is n. The circulating n×n system
defining the relation between P and Q is deduced from
the equations (Eq. 9) and (Eq. 10) as follow:



P0

P1

...
Pn−2

Pn−1




=




4
6

1
6 0 0 1

6
1
6

4
6

1
6 0 0

0
. . . . . . . . . 0

0 0 1
6

4
6

1
6

1
6 0 0 1

6
4
6







Q0

Q1

...
Qn−2

Qn−1




(11)

We compute as many control points Q as interpolated
points P

The computation of the coefficients of polynomial
components of each B-Spline segment Si(t) is straightly
deduced from the control points Q (Eq. 9).

Thus curvature κi(t) is computed at each interpolated
points Pi the through relation:

κi = κi(0), with κi(t) =
x′i(t)y

′′
i (t)− x′′i (t)y′i(t)(

x′i(t)
2 + y′i(t)

2
) 3

2
. (12)

where xi(t) and yi(t) are the first component and the
second component of Si(t) respectively.

The analytic components of Si(t) provide a straight
computation of the normal vector at Pi:

−→
Ni =

−−−→
Ni(0),

−−−→
Ni(t)




−y′i(t)√
x′i(t)

2+y′i(t)
2

x′i(t)√
x′i(t)

2+y′i(t)
2


 (13)

The main advantage of using C2 B-Splines interpolation
is that computation of the velocity requires the evalua-
tion of analytic expressions (Eq. 12) and (Eq. 13).

3 REGULAR B-SPLINE

Our algorithm adds multi-resolution properties and lo-
cal smoothness to the following intrinsic properties of
B-Spline interpolation:

• The number of points to be processed is highly re-
duced and fully controlled. For each resolution j we
have n = 2j points.

• A local regularizing term over the smoothness of
the contour is added to the intrinsic C2 regularity
of the B-Splines.

3.1 Spatial Segmentation

First, we fix the number of the points of interpolation.
This number will be 2j where j represents the step in the
multi-resolution process. Thus the segmentation speed
is directly linked to the level of details desired. In ad-
dition, solving the system (Eq. 11) can be avoided. In-
deed, the relation is based on the resolution of a ma-
trix which has a fixed size 2j × 2j depending only on
j, the multi-resolution step of the spatial segmentation.
Thus the inverse matrices can be computed off-line be-
fore computing the segmentation for each level of details
j.

3.2 Spatial Regularization

The second idea deals with the smoothness of the con-
tour. The C2 regularity of the B-Splines curves brings
an intrinsic smoothness. However this regularization is
distributed globally along the contour regardless to lo-
cal variations of the curvature. The regularity of the
contour is improved by introducing the penalty over the
length of the contour (the third term of the energy cri-
terion (Eq. 2)).

4 HANDLING TOPOLOGY CHANGES

One of the most important drawback to use a parametric
active contours method deals with handling topology
changes.

In order to segment many objects in a frame of a
video sequence, topological changes have to be com-
pletely managed. We use in this case the variation di-
minishing property [11] of the Bezier curves: The curve
is not intersected by any straight line more often then
is the interpolation points polygon. Hence in order to
detect self-intersections we can consider only this poly-
gon for a faster computation. When a contour overlap-
ping occurs, we split the contour. Therefore handling
topology changes with this approach increases the com-
putation cost of order N2

p , where Np is the number of
interpolation points. More sophisticated algorithms give
an order of Np log(Np). Fig.2 shows the contour ini-
tialization for segmentation of two children in a video
sequence. Fig.3 shows the spline contour before topo-
logical changing. Fig.4 is the result of the convergence
of our algorithm with topological splitting.
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Figure 2: Interpolating Spline Initialization

Figure 3: Spline before chnging topology

Figure 4: Spline Convergence after changing topology

5 PROPAGATION METHOD

5.1 Principle of the method
The principle is based on applying the velocity (Eq. 6),
over few contour points (the interpolated points). Then
the evolution of the contour depends only on the evolu-

tion of these points . The C2 continuity of the B-Splines
is preserved from step to step. The regularization term
over the contour length (depending on the curvature κ)
(the third term of velocity F (Eq. 6)) is defined in each
point and provides a local regularization.
Thus the segmentation is computed using 32, then 64
and finally 128 points of interpolation through iterations
of the three following processes:

1. Active contour interpolation

2. Descriptors computation and Propagation (Eq. 4)

3. Resampling

5.2 Detailed Algorithm
1. Step 1: Interpolation for resolution j

(a) Initialization of the contour:

i. An initial contour: An ellipse, a circle, a
square on the boundaries of the image, or
from the analysis of a hand made mask of
segmentation.

ii. A segmentation: For example if the final
segmentation of the frame n is used as ini-
tialization of the frame n + 1.

iii. A contour from a lower level of resolution
(From the step j − 1).

(b) From the 2j points of interpolation P2j evenly
sampled, the 2j virtual control points Q2j are
computed (using Eq. 9).

(c) Points Q give the coefficients of the paramet-
ric components for each B-Spline segments Si

(Eq. 8).

2. Step 2: Descriptors Computation and Prop-
agation

• Analytic expressions of each Si curve give the
exact value of the curvature (Eq. 12), and
of the normal vector (Eq. 13) at each point
of interpolation Pi. The temporal gradient is
evaluated only in a neighborhood of the inter-
polated points Pi.

• Velocity (Eq. 6) is computed only along the
contour and the points P are moved to their
new position following the normal direction of
the contour with the velocity as range.

• Contour overlapping checking (See Section 4).

• If the average position of each point of inter-
polation is lower than a given threshold we
consider the segmentation achieved.
Otherwise GOTO Step 1.(b)

3. Step 3: Regular Resampling

Resampling depends on the resolution j:
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• If the highest level of resolution is not reached:
the number of points of interpolation P is in-
creased from 2j to 2j+1. Then Points P are
resampled evenly along the contour in order to
hold the uniformity sampling of the B-Splines.
GOTO Step 1.(a).iii

• If the highest level of resolution is reached: A
new frame is considered. The number of points
of interpolation is reinitialized.
GOTO Step 1.(a).ii

6 EXPERIMENTS

6.1 Comparison between Polygon and B-
Splines

For our algorithm, we compute the computational cost
of the curvature and the normal vector.Thanks to the
C2 continuity of B-Splines this computation comes from
the evaluation of analytic expressions (Eq. 12) and (Eq.
13). This calculus is independent on the point consid-
ered since the B-Splines are C2 regular in each point of
the contour.

Polygon-based methods use as approximation for the
curvature at Pi, the length of the median in the triangle
(Pi−1,Pi,Pi+1) [11]. The normal vector is defined as the
average vector ~N between the normal vectors ~N1 and
~N2 of previous and next polygon segment on both side
of the point Pi [12].

The computation cost comparison is given in the fol-
lowing table (Tab.1).

κ ~N Total
Spline 8 op./p. 12 op./p. 20 op./p.

Polygon 13 op./p. 28 op./p. 41 op./p.

Table 1: Comparison Polygon vs Spline

6.2 Length vs Smoothness

The property of cubic B-Splines C2 continuity enforces
the global contour regularity. We add a local regu-
larization over the contour length to the intrinsic C2

regularity of B-Spline curves. With this penalty, the
smoothness of the contour is locally handled at each in-
terpolated point P . Indeed, figure (Fig.5) shows that
without this penalty (λ = 0) the length of the contour
is only linked to the number of points of interpolation.
Whereas when using the penalty (λ 6= 0), the length of
the contour is independent of the resolution. Thus we
can use a high number of points of interpolation to im-
prove the accuracy while maintaining the regularity of
the contour.

Figure 5: Length vs lambda

6.3 Length vs Smoothness

Introducing the penalty over the length of the contour,
avoids classical drawbacks of splines interpolation meth-
ods such as the flickering. The accuracy is represented
by the number of misclassified pixels comparing our seg-
mentation masks to hand made segmentation masks.
The comparison is based on the COST 211 analysis
model [13]. Diagram (Fig.6) shows the existence of a
non zero value for the parameter λ that gives the highest
accuracy. Hence the accuracy is improved by introduc-
ing the regularization term in criterion (Eq. 2).

Figure 6: Accuracy vs Smoothness

6.4 Accuracy vs Resolution

The diagram (Fig.6) shows the relation between the
resolution and the accuracy of the segmentation. Hence
the tradeoff between accuracy of the segmentation which
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requires a high number of points of interpolation and the
speed of the process has to be optimized.

7 RESULTS

We show some results on real video sequences: Akiyo
and Children (Fig.7 and Fig.8).

Figure 7: Segmentation Result on Akiyo Sequence

Figure 8: Segmentation Result on Children Sequence
after automatic splitting

8 CONCLUSION

In this paper, we propose a new active contour method
using a regular B-Spline interpolation to implement a
Region-Based Active Contour segmentation algorithm.

Model deformations are controlled by criterion (Eq.
2), including region-based features and a curvature
term. We introduce a fixed multi-resolution process and
a smoothness penalty over the contour. This results in
reducing highly the computational cost and improving
the local regularity of the curve regardless to the reso-
lution of the contour.

Finally experimental results show that our regular B-
Spline Region-based active contour method provides a
fast and efficient video segmentation.
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